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Abstract

Given data from a general metric space, one of the standard machine learning
pipelines is to first embed the data into a Euclidean space and subsequently apply
machine learning algorithms to analyze the data. The quality of such an embedding
is typically described in terms of a distortion measure. In this paper, we show that
many of the existing distortion measures behave in an undesired way, when consid-
ered from a machine learning point of view. We investigate desirable properties of
distortion measures and formally prove that most of the existing measures fail to
satisfy these properties. These theoretical findings are supported by simulations,
which for example demonstrate that existing distortion measures are not robust to
noise or outliers and cannot serve as good indicators for classification accuracy. As
an alternative, we suggest a new measure of distortion, called σ-distortion. We can
show both in theory and in experiments that it satisfies all desirable properties and
is a better candidate to evaluate distortion in the context of machine learning.

1 Introduction

Given data from a general metric space, one of the standard machine learning pipelines is to first
embed the data into a Euclidean space (for example using an unsupervised algorithm such as Isomap,
locally linear embedding, maximum variance unfolding, etc) and subsequently apply out of the box
machine learning algorithms to analyze the data. Typically, the quality of such an embedding is
described in terms of a distortion measure that summarizes how the distances between the embedded
points deviate from the original distances. Many distortion measures have been used in the past, the
most prominent ones being worst case distortion, lq-distortion (Abraham, Bartal, and Neiman, 2011),
average distortion(Abraham, Bartal, and Neiman, 2011), ε-distortion (Abraham, Bartal, Kleinberg, et
al., 2005), k-local distortion (Abraham, Bartal, and Neiman, 2007) and scaling distortion (Abraham,
Bartal, Kleinberg, et al., 2005). Such distortion measures are sometimes evaluated in hindsight
to evaluate the quality of an embedding, and sometimes used directly as objective functions in
embedding algorithms, for example the stress functions that are commonly used in different variants
of Multidimensional scaling (Cox and Cox, 2000). There also exist embedding algorithms with
completely different objectives. For instance, t-SNE (Maaten and Hinton, 2008) employs an objective
function that aims to enhance the cluster structure present in the data. In this paper, however, we
restrict our analysis to distortion measures that evaluate the quality of distance preserving embeddings.

From a theoretical computer science point of view, many aspects of distance preservation of emed-
dings are well understood. For example, Bourgain’s theorem (Bourgain, 1985) and the John-
son–Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984) state that any finite metric space
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of n points can be embedded into a Euclidean space of dimensionO(log n) with worst case distortion
O(log n). Many related results exist (Gupta, Krauthgamer, and Lee, 2003; Abraham, Bartal, and
Neiman, 2008; Abraham, Bartal, and Neiman, 2011; Abraham, Bartal, Kleinberg, et al., 2005;
Abraham, Bartal, and Neiman, 2007; Abraham, Bartal, and Neiman, 2011; Semmes, 1996).

However, from a machine learning point of view, these results are not entirely satisfactory. The typical
distortion guarantees from theoretical computer science focus on a finite metric space. However, in
machine learning, we are ultimately interested in consistency statements: given a sample of n points
from some underlying space, we would like to measure the distortion of an embedding algorithm as
n→∞. In particular, the dimension of the embedding space should be constant and not grow with
n, because we want to relate the geometry of the original underlying space to the geometry of the
embedding space. Hence, many of the guarantees that are nice from a theoretical computer science
point of view (for example, because they provide approximation guarantees for NP hard problems)
miss the point when applied to machine learning (either in theory or in practice, see below).

Ideally, in machine learning we would like to use the distortion measure as an indication of the quality
of an embedding. We would hope that when we compare several embeddings, choosing the one with
smaller distortion would lead to better machine learning results (at least in tendency). However, when
we empirically investigated the behavior of existing distortion measures, we were surprised to see
that they behave quite erratically and often do not serve this purpose at all (see Section 4).

In pursuit of a more meaningful measure of distortion in the context of machine learning, we take a
systematic approach in this paper. We identify a set of properties that are essential for any distortion
measure. In light of these properties, we propose a new measure of distortion that is designed
towards machine learning applications: the σ-distortion. We prove in theory and through simulations
that our new measure of distortion satisfies many of the properties that are important for machine
learning, while all the other measures of distortion have serious drawbacks and fail to satisfy all of the
properties. These results can be summarized in the following table (where each column corresponds
to one measure of distortion and each row to one desirable property, see Section 2 for notation and
definitions):

Property/Distortion measure σ(sigma) wc avg(lq) navg k-local ε(epsilon)
Translation invariance 3 3 3 3 3 3

Monotonicity 3 3 7 3 3 3
Scale invariance 3 3 7 3 3 3

Robustness to outliers 3 7 3 7 7 3
Robustness to noise 3 7 7 7 7 3

Incorporation of probability 3 7 7 7 7 7
Constant distortion embeddings 3 7 3 ? 3 3

2 Existing measures of distortion

Let (X, dX) and (Y, dY ) be arbitrary finite metric spaces. Let
(
X
2

)
:= {{u, v} | u, v ∈ X, u 6= v}

and for any n ∈ IN , let [n] denote the set {1, 2, ..., n}. An embedding of X into Y is an injective
mapping f : (X, dX) → (Y, dY ). Let P be a probability distribution on X , and Π := P × P the
product distribution on X ×X . Distortion measures aim to quantify the deviation of an embedding
from isometry. Intuitively, the distortion of such an embedding is supposed to measure how far
the new distances dY (f(u), f(v)) between the embedded points deviate from the original distances
dX(u, v). Virtually all the existing distortion measures are summary statistics of the pairwise ratios

ρf (u, v) = dY (f(u), f(v))/dX(u, v)

with u, v ∈ X . The intention is to capture the property that if the ratios dY (f(u), f(v))/dX(u, v)
are close to 1 for many pairs of points u, v, then the distortion is small. The most popular measures
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of distortion are the following ones:

Worst case distortion: Φwc(f) :=

(
max

(u,v)∈(X
2 )
ρf (u, v)

)
·

(
max

(u,v)∈(X
2 )

1

ρf (u, v)

)
.

Average case distortion: Φavg(f) :=
2

n(n− 1)

∑
(u,v)∈(X

2 )

ρf (u, v).

Normalized avg distortion: Φnavg(f) :=
2

n(n− 1)

∑
u6=v∈X

ρf (u, v)

α
with α = min

u6=v∈X
ρf (u, v).

lq-distortion (with 1 ≤ q <∞): Φlq (f) := EΠ(ρf (u, v)q)
1
q .

ε-distortion ( ∀ 0 < ε < 1): Φε(f) := min
S⊂(X

2 ),|S|≥(1−ε)(n
2)

Φwc(fS), where fS denotes the

restriction of f to S.

k-local distortion: Φklocal(f) :=

(
max

u∈X,v∈kNN(u),u 6=v
ρf (u, v)

)
·
(

max
u∈X,v∈kNN(u)u 6=v

1

ρf (u, v)

)
,

where kNN(u) denotes the set of k nearest neighbours of u.

The different measures of distortion put their focus on different aspects: the worst case among
all pairs of points (Φwc), the worst case excluding pathological outliers (Φε), the average case
(Φavg,Φnavg,Φlq ) or distortions that are just evaluated between neighboring points (Φklocal).

From a conceptual level, all these measures of distortion make sense, and it is not obvious why one
should prefer one over the other. However, when we studied them in practice, we found different
sources of undesired behavior for many of them. For example, many of them behave in a quite
unstable or even erratic manner, due to high sensitivity to outliers or because they are not invariant
with respect to rescaling. To study these issues more systematically, we will now identify a set of
properties that any measure of distortion should satisfy in the context of machine learning applications.
In Section 3.2 we then prove which of the existing measures satisfies which properties and find that
each of them has particular deficiencies. In Section 3.3 we then introduce a new measure of distortion
that does not suffer from these issues, and demonstrate its practical behavior in Section 4.

3 Properties of distortion measures

In this section we identify properties that a distortion measure is expected to satisfy in the context of
machine learning. In addition to basic properties such as invariance to rescaling and translation, the
most important properties should resonate with an appropriate characterization of the quality of an
embedding. In the following, let (X, dX) be an arbitrary metric space, let Y be an arbitrary vector
space and let dY be a homogeneous and translation invariant metric on Y (See the supplement for the
formal definitions). Let f, g : (X, dX)→ (Y, dY ) be two embeddings and let Φ be any function that
is supposed to measure the distortion of any injective mapping from X to Y .

3.1 Definitions

We start with a set of basic properties that should be satisfied by any function that is supposed to
provide a measure of distortion, irrespective of the context in which it is applied.

Scale Invariance is an essential property for a measure of distortion since embeddings that are
merely different in units of measurement (say, kilometers vs centimeters) should not be assigned
different values of distortion. Formally, let f : (X, dX)→ (Y, dY ) and g : (X, dX)→ (Y, dY ) be
two injective mappings. A distortion measure Φ is said to be scale invariant if for any α ∈ R,

∀u ∈ X, f(u) = αg(u) =⇒ Φ(f) = Φ(g). (1)

Translation Invariance: A measure of distortion should clearly be invariant to translations: Let
f : (X, dX) → (Y, dY ) and g : (X, dX) → (Y, dY ) be two injective mappings. A measure of
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distortion Φ is said to be translation invariant if for any y ∈ Y ,

∀u ∈ X, f(u) = g(u) + y; =⇒ Φ(f) = Φ(g). (2)

Monotonicity captures the property that if distances are preserved more strictly, then the distortion
of the corresponding embedding should be smaller. The formal definition is a bit tricky, because
one has to be careful about scaling issues. We take care of it by standardizing the embeddings
such that the average of the ρ(u, v) is 1. Let f : (X, dX) → (Y, dY ) and g : (X, dX) → (Y, dY )
be embeddings. Define the scaling constants α(f) = ( 2

n(n−1) )
∑
u 6=v∈X ρf (u, v) and α(g) =

( 2
n(n−1) )

∑
u6=v∈X ρg(u, v). Then a measure of distortion Φ is said to be monotonic if

∀u, v∈X,
((ρf (u, v)

α(f)
≤ ρg(u, v)

α(g)
≤ 1
)

or
(ρf (u, v)

α(f)
≥ ρg(u, v)

α(g)
≥ 1
))

=⇒ Φ(f) ≥ Φ(g).

(3)
After having introduced the basic properties that need to be satisfied such that a function Φ deserves
the term “distortion”, we now turn to some advanced properties that specifically identify the
necessary characteristics of distortion measures in the context of machine learning applications.

Robustness to outliers: Outliers are inherent to data processed by machine learning algorithms, and
hence a measure of distortion that is too volatile against outliers is not desirable. What we would like
to achieve is rather that the influence of a single data point or a single distance value on the measure
of distortion is very small. In the spirit of this interpretation, we create two test cases as necessary
conditions to deem a measure of distortion robust to outliers.

Outliers in data: To verify that the effect of a single data point on the measure of distortion is
small, we stipulate that the influence of this point should converge to 0 as the number n of points
goes to infinity. To formulate this property, we compare an isometric embedding to an embedding
that is "isometric except for one point". Formally, let I : (X, dX) → (X, dX) be an isometry. Fix
arbitrary x0, x

∗ ∈ X and β > 0. For any n ∈ IN , let Xn = {x1, x2, ..., xn} ⊂ X \ B(x0, β). Let
fn : Xn ∪ {x0} → X such that

fn(x) =

{
x∗, if x = x0.

x, otherwise.
(4)

We say that a measure of distortion Φ is not robust to outliers if lim
n→∞

Φ(fn) 6= lim
n→∞

Φ(In), where

In denotes the restriction of the mapping I to Xn ∪{x0}. In the formal definition, one needs to make
sure that the distortions do not grow arbitrarily fast, which can happen either if points in the original
space are too close or if points in the image space are too far from each other. The ball of positive
radius β prevents the first case, and the fact that we choose x∗ as a fixed point prevents the second
case.

Outliers in distances: To evaluate whether a measure of distortion is robust to outliers in distances,
we consider mappings for which at most a constant (K) number of distances are distorted and compare
the resulting distortion measure to the one of an isometry. Formally, let I : (X, dX)→ (X, dX) be an
isometry. Let XD = {x1, x2, ...., } ⊂ X . Let f : XD → X be an injective mapping such that there
exists a constantK ∈ IN for which the setG = {(u, v) ∈ XD ×XD : dX(f(u), f(v)) 6= dX(u, v)}
satisfies |G| ≤ K. For any n ∈ IN , let fn and In denote the restriction of the mappings f and I ,
respectively, to Xn = {x1, x2, ..., xn} ⊂ XD. We say that a measure of distortion Φ is not robust to
outliers if lim

n→∞
Φ(fn) 6= lim

n→∞
Φ(In).

Incorporation of the probability distribution: In machine learning, a standard assumption is that
the data has been sampled according to some probability distribution from an underlying space. A
measure of distortion should be able to take this probability distribution into account, in the sense that
distortions of points in high density regions should be more costly than distortions of points in low
density regions. We formalize this idea by stipulating that given two different embeddings which are
"isometric except for one point", where the two embeddings distort two different points such that the
ratios of distorted distances are the same for both the embeddings, then the embedding that distorts
the point that occurs with higher probability needs to have a higher value of distortion.

Let (X, dX) be an arbitrary metric space. Let Xn = {x1, x2, ..., xn} be a finite subset of X . Let
P denote a probability distribution on Xn. Fix arbitrary x∗, y∗ ∈ Xn such that P (x∗) > P (y∗).
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Let x
′
, y

′ ∈ X such that ∀i ∈ [n], dX(xi, x
′
) = αdX(xi, x

∗) and dX(xi, y
′
) = αdX(xi, y

∗). Let
f, g : Xn → X be two embeddings such that:

f(x) =

{
x

′
, if x = x∗.

x, otherwise.
, g(x) =

{
y

′
, if x = y∗.

x, otherwise.

Then a measure of distortion Φ is said to incorporate the probability distribution P if Φ(f) > Φ(g).

Robustness to noise: Noisy observations, just as outliers, are common in machine learning. In
machine learning applications we would expect that the measure of distortion is smaller if there is
less noise on the data. For this property, we do not provide a formal definition. Rather, we conduct
experiments to empirically verify whether this is the case in simple settings.

We believe that in order to be useful for machine learning, a measure of distortion should satisfy all
the basic as well as the advanced properties. We would like to conclude this list with a last property
that is perhaps not absolutely crucial, but nice to have: the ability to provide constant-dimensional
embeddings.

In learning theory we often assume that we are given a set of data points that has been sampled
according to some underlying probability distribution, and then we are interested in consistency
statements: given a sample of n points, we study the behavior of algorithms as the sample size n goes
to infinity. In particular, when we consider embeddings we would hope that as the sample size grows,
the geometry of the embedded points “converges” to something that is close to the “true geometry” of
the underlying space. In particular, if the underlying space is “simple”, we would like to embed into a
Euclidean space of constant dimension — the dimension is not supposed to grow with the sample size
because we would then have to deal with an infinite-dimensional space in the limit case, which would
allow for too complex geometries. For embeddings in a constant-dimensional space, we would then
like to bound the distortion, ideally by a quantity that is bounded by a constant that is independent
of n and just depends on the geometry of the true underlying space. In general, it is impossible to
guarantee the existence of an embedding into Euclidean space with constant dimension and constant
distortion (for all the standard measures of distortion, cf. (Semmes, 1999; Semmes, 1996; Abraham,
Bartal, and Neiman, 2011)). However, guarantees can be given if we make assumptions on the
underlying metric space. For example if (X, dX) is doubling, it is possible to achieve an embedding
into constant dimensional Euclidean space with O(1) average distortion (but Ω(log n) worst case
distortion) (Abraham, Bartal, and Neiman, 2011). Hence we stipulate that a measure of distortion
that is nice for machine learning should satisfy that if the underlying geometry of the metric space is
“nice” (according to an appropriate definition), then we can guarantee that there exists an embedding
in constant dimension with constant distortion.

3.2 Theoretical results: existing distortion measures fail to satisfy all properties

In the following theorem we investigate which measure of distortion satisfies which of the properties
mentioned above. All the proofs can be found in the appendix.
Theorem 1 (Properties of existing distortion measures). For all choices of the parameters 1 ≤
q <∞, 0 < ε < 1, 1 ≤ k ≤ n, the following statements are true:

(a) Φwc, Φavg , Φnavg, Φlq , Φε and Φklocal satisfy the property of translation invariance.

(b) Φwc, Φnavg , Φε, Φklocal satisfy the properties of scale invariance and monotonicity. Φavg and
Φlq fail to satisfy these properties.

(c) Φε, Φavg , Φlq satisfy the property of robustness to outliers. The measures Φwc, Φnavg , Φklocal
fail to do so.

(d) The distortion measures Φwc, Φavg, Φnavg, Φlq , Φε, Φklocal fail to incorporate a probability
distribution defined on the data space.

At the current point in time, we do not yet have a formal guarantee towards robustness to noise.
However, in our experiments we show that ε−distortion is considerably robust to noise for certain
values of ε and the rest of the distortion measures do not demonstrate robustness to noise.

Regarding the constant-dimensional embeddings, there exists a large literature. In the case of
average distortion, ε-distortion, and k-local distortion for fixed values of k, ε, it has been shown
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that any finite subset of a doubling metric space (see the supplement for a formal definition) can
be embedded into a constant dimensional Euclidean space with O(1) distortion (Abraham, Bartal,
and Neiman, 2011; Abraham, Bartal, and Neiman, 2009). Hence these measures of distortion also
satisfy the "nice to have" property. Such a result for Normalized average distortion doesn’t exist in
the literature to the best of our knowledge. Worstcase distortion, however, fails to satisfy this property
(Semmes, 1999; Semmes, 1996).

3.3 A new measure of distortion that satisfies all properties

We have seen that all the existing measures of distortion fail to satisfy at least one of the properties
that we identified above. In the light of these results, we introduce a new measure of distortion, the
σ−distortion (Φσ). The intuition for our definition is as follows. For a given data set X , consider a
histogram of the ratios ρf (u, v). An embedding of high quality should preserve most distances as
well as possible, that is we would like to see that most of these ratios are close to 1. We characterize
this by measuring the “concentration” of the distribution of the ratio of distances (ρf (u, v)) in terms
of the variance. The fact that we consider the variance of this distribution makes our definition robust
against outliers (one of the properties which most of the other distortion measures fail to satisfy).
By a rescaling step we will achieve invariance with respect to scale. Furthermore we will see that
also all the other properties are satisfied by our definition. Let Xn be a finite subset of X . Given a
distribution P over Xn, let Π = P × P denote the distribution on the product space Xn ×Xn. For
any embedding f , let ρ̃f (u, v) denote the normalized ratio of distances given by

ρ̃f (u, v) :=
(n)(n− 1)ρf (u, v)

2
∑

(u,v)∈(X
2 ) ρf (u, v)

.

The σ-distortion is then defined as

EΠ(ρ̃f (u, v)− 1)2. (5)

If P is a uniform probability distribution over Xn, then σ-distortion measures the variance of the
distribution of the normalized ratio of distances, ρ̃f (u, v).
Theorem 2 (Properties of σ-distortion). The σ- distortion (a) is invariant to scale and translations,
(b) satisfies the property of monotonicity, (c) is robust to outliers in data and outliers in distances,
and (d) incorporates a probability distribution into its evaluation.

In addition to satisfying all of the aforementioned properties, the proofs of Abraham, Bartal, and
Neiman, 2011 can be extended to show that one can embed any finite subset of a doubling metric
space into constant dimensional Euclidean space (or any lp space) with O(1) distortion. So the
σ-distortion also satisfies the nice-to-have property regarding constant dimensional embeddings with
bounded distortion. The formal guarantees are given in the following two theorems:
Theorem 3 (General metric spaces: embeddable with constant σ-distortion in log n dimen-
sions). Given any finite sample Xn = {x1, x2, ..., xn} from an arbitrary metric space (X, dX) and
a probability distribution P on Xn, for any 1 ≤ p < ∞ there exists an embedding f : Xn → lDp ,
where D = O(log n) with σ-distortion = O(1).
Theorem 4 (Doubling metric spaces: embeddable with constant σ-distortion in constant di-
mensions). Given any finite sample Xn = {x1, x2, ..., xn} from a doubling metric space (X, dX)
and a probability distribution P on Xn, for any 1 ≤ p <∞ there exists an embedding f : Xn → lDp ,
where D = O(1) with σ-distortion = O(1).

4 Experiments

We evaluate the behavior of various distortion measures by conducting experiments in two different
settings: 1) Dimensionality reduction 2) A pipeline consisting of dimensionality reduction followed
by classification. We start with simulated data for which we know all ground truth parameters. In
order to generate datasets of dimension D, we sample each coordinate independently from a specified
1-dimensional distribution. Several different distributions such as Gaussian distribution, Gamma
distribution, Beta distribution, Gaussian mixture distribution, Laakso Space (Bartal, Gottlieb, and
Neiman, 2015) with many different parameter settings have been used to conduct the experiments.
Embeddings are then generated by various dimensionality reduction algorithms. In particular, we
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used Isomap (Tenenbaum, De Silva, and Langford, 2000), Maximum Variance Unfolding(Weinberger
and Saul, 2006), Multidimensional Scaling, PCA (Hotelling, 1933), Probabilistic PCA (Tipping and
Bishop, 1999), and Structure Preserving Embedding (Shaw and Jebara, 2009). All experiments have
been repeated 10 times, the error bars in the plots depict the standard deviations over the different
repetitions.

Embedding dimension vs distortion: For a dataset sampled from a Euclidean space with fixed
dimension, it is natural to expect that any meaningful measure of distortion decreases with increasing
embedding dimension. Intuitively, higher-dimensional spaces have more degrees of freedom to
place points, and theoretical results confirm the general tendency (Chan, Gupta, and Talwar, 2010;
Abraham, Bartal, and Neiman, 2008). In Figure 1, we show that this behavior can also be verified
experimentally for most measures of distortion including σ−distortion, except for average distortion.
The failure of average distortion to conform to this trend is clearly because it does not demonstrate
invariance to scaling. To clarify, average distortion simply computes the sum of the ratios of distances
ρf (u, v). An embedding can deviate from isometry by either contracting the distances between pairs
of points or expanding them relative to the original distances. An immediate consequence of scale
invariance of a distortion is that it treats expansions and contractions symmetrically in the following
sense: if an embedding expands all distances by α, a scale invariant distortion would assign the
embedding the same value of distortion as an embedding that contracts them by α. Average distortion
does not possess this property and places undue emphasis on expansions and underscores contractions.
The balance of the weight of contractions and expansions influence the trend followed by average
distortion, which is thereby unpredictable.

Distortion vs original dimension: For datasets generated from Euclidean spaces of increasing
dimension, it is also natural to expect that for a fixed embedding dimension, the quality of an
embedding decreases with increasing original dimension. The intuition here is that the data gets
more complex, but the embedding space does not have the capacity to reflect this. To our surprise,
this behavior cannot be observed for most of the traditional measures of distortion, as can be seen
from Figures 2 and 3 (this observation was one of the starting points of this whole line of research).
When looking closer into the data, we come to the conclusion that the reason for this failure is that
these measures (except for average distortion, which shows erratic behaviour due to its dependence
on the scale of the embedding) suffer from outliers, which disproportionately affect the distortion
measures. There are only two measures of distortion that show the desired behavior: σ-distortion
and ε-distortion. We attribute this to the fact that these two measures are robust to outliers (as also
been shown in our theoretical results). We can also see from the error bars in Figures 2, 3 that the
variability of the rest of the distortion measures is significantly larger compared to that of ε-distortion
as well as σ-distortion. Again we attribute this behavior to the brittleness of the other distortions in
the presence of outliers.
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Figure 1: Embedding dimension vs various measures of distortion. From left to right: Φwc, Φavg,
Φnavg, Φε for ε = 0.1, Φklocal for k = 5, Φσ. The color of each curve indicates the dimension of
the original space, the x-axis the dimension of the embedding space. We can clearly see that for
all but the average distortion, distortion decreases with embedding dimension. Data was generated
according to a standard normal distribution of dimension as indicated by the color, embeddings have
been generated using Isomap. Results for other distributions and algorithms look similar.

Effect of noise: In order to test the effect of noise on various measures of distortion, we generated
mixture of Gaussian data in R2 similar to that of the previous experiment and added normally
distributed noise in R20 of increasing variance to the data to generate different datasets. Embeddings
were then performed using various algorithms into R2. In a first evaluation, we investigated whether
the distortion increases with increasing noise. In Figure 4 (left) we can see that while σ-distortion
clearly shows the desired trend, all other measures of distortion fail to show the correct behavior.
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Figure 2: Original dimension vs measures of distortion. From left to right: Φwc, Φavg , Φnavg , Φε for
ε = 0.1, Φklocal for k = 5, Φσ. The x-axis shows the dimension of the original space, the color of
the curve corresponds to the dimension of the embedding space. Each curve corresponds to Isomap
embeddings of data generated according to gamma distribution (a = 1.5, b = 4) from Euclidean space
of dimensions (10 : 10 : 100). Results for other distributions and algorithms look similar.

20 40 60 80 100

2

4

6

8

10

wc

20 40 60 80 100

-1

-0.5

0

0.5

avg

20 40 60 80 100

2

4

6

8

navg

20 40 60 80 100

0.5

1

1.5

epsilon

20 40 60 80 100

2

3

4

5

6

7

klocal

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

sigma

Figure 3: Same setting as in Figure 2, but data generated according to beta distribution (a = 0.75, b =
0.75).

In a second evaluation, we then performed classification on the embedded data. The corresponding
SVM and kNN loss are plotted against the variance of the additive noise. Figure 4 clearly shows
that the SVM and kNN classification loss increase with increasing variance of noise. This reiterates
that the quality of the embedding indeed worsens with increasing additive noise. We performed
this experiment using different embedding algorithms (Isomap, PCA, MVU) and the plots in all the
experiments paint the same picture.
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Figure 4: Left: Variance of noise vs distortion measures. The x-axis shows the variance of noise. As
the measures of distortion are not all in the same range, we added two y-axes: the left (blue) one
for σ-distortion, and the right (red) one for the values of the rest of the distortion measures. Right:
Variance of noise vs. classification error. The x-axis shows the variance of noise, the y-axis the
classification error. All embeddings here are created using Isomap. The behavior corresponding to
the other embedding algorithms is similar.

Distortion vs classification accuracy: In this set of experiments, we want to investigate whether a
measure of distortion is a good indicator for classification accuracy. To this end, we sampled data
from various mixture of Gaussian distributions in R2 with different sets of parameters. Gaussian noise
in R20 was then added to the data to generate various datasets. The datasets were then embedded
into R2 using various embedding algorithms: PCA (Hotelling, 1933), GPLVM (Lawrence, 2004),

8



Isomap (Tenenbaum, De Silva, and Langford, 2000), MVU (Weinberger and Saul, 2006), SPE (Shaw
and Jebara, 2009). Classification is performed on the resulting embeddings using kernel SVM (with
RBF kernel) and kNN classification algorithms. In Figure 5, we plot the distortions incurred by the
embeddings against the classification loss incurred by the classifier (where we sorted the outcome of
all the simulations according to their resulting classification accuracy). Note that in this experiment,
we compare the quality of embeddings across different embedding algorithms. The ideal behavior
would be that distortion increases with increasing classification loss (in such a case, a measure of
distortion could be used to select the best embedding, for example). This setting encapsulates the idea
of using distortion measure as a means of evaluating the quality of an embedding in machine learning
tasks. The plots clearly show that σ-distortion and ε-distortion consistently show the expected
increasing trend with the classification loss, whereas the other measures of distortion fail to do so.
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Figure 5: Classification error vs. distortion, for kNN (left) and SVM (right). x-axis: classification
error and y-axis: distortion. The measures of distortion are not all in the same range, we added two
y-axis: the left (blue) one for σ-distortion, and the right (red) one for the values of the rest of the
distortion measures. Each curve corresponds to a distortion measure as indicated in the legend. The
distortions are scaled appropriately for visualization.

5 Discussion

We investigate the properties of various measures of distortion for machine learning. Both in theory
and experiments we can demonstrate that many of the existing measures of distortion behave in an
undesired way: in simulations they show the wrong tradeoff with respect to the dimension of the
original space, and they are not robust to noise or outliers, and cannot serve as a good indicator for
classification accuracy. As an alternative, we define a new measure of distortion, called σ-distortion.
In a nutshell, it measures the variance of the pairwise distortion ratios (rather than a norm of the vector
of these ratios). We can show in theory and in experiments that it satisfies all our desirable properties.
There is only one existing measure of distortion that comes close to our new σ-distortion, namely
the ε-distortion. It explicitly excludes an ε fraction of outlier points from the distortion computation.
For most properties it behaves nice as well, but it fails to take the probability measure into account.
This is important because ε-distortion provides no guarantees on ε fraction of the pairwise distances,
which could be critical for a given machine learning task. One of its drawbacks is that it has an
important parameter to tune, the value of ε (fraction of outliers), whereas σ-distortion does not have a
parameter. Our work clearly shows the need to study measures of distortion from a more systematic
point of view, both in theory and practice.
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Supplement to “Measures of distortion for machine
learning”

A Proof of Theorems 1 and 2

Homogeneous metric: A metric, dX , on a vector space, X , is said to satisfy the property of
homogeneity if for all u, v ∈ X and for any scalar α ∈ R, dX satisfies the following condition:
dX(α · u, α · v) = |α| · dX(u, v). We refer to such a metric, dX , as a homogeneous metric and the
corresponding metric space, (X, dX), as a homogeneous metric space.

Translation invariant metric: A metric dX on a vector space X is said to be translation invariant if
for any u, v and w ∈ X , dX satisfies the following condition: dX(u+ w, v + w) = dX(u, v).

Recall that (X, dX) is an arbitrary metric space and (Y, dY ) is assumed to be a homogeneous
and a translation invariant metric. Let f, g : (X, dX) → (Y, dY ) be two injective mappings. For
any S ⊆

(
X
2

)
, let fS denote the restriction of the mapping f to the set S. Formally, fS :=

{(f(u), f(v))|(u, v) ∈ S}.

A.1 Scale and translation invariance

A distortion measure Φ is said to be scale invariant if for any α ∈ R

∀u ∈ X, f(u) = αg(u); =⇒ Φ(f) = Φ(g).

Φ is said to be translation invariant if for any y ∈ Y ,

∀u ∈ X, f(u) = g(u) + y; =⇒ Φ(f) = Φ(g).

(a) Φwc, Φnavg , Φε, Φklocal and Φσ are invariant to scaling:

Proof. The proofs naturally follow from the definitions of these distortion measures and rely on the
assumption of homogeneity of the target metric.

worstcase distortion: By the virtue of homogeneity of dY ,

Φwc(g) = max
u 6=v∈X

{
|α| · dY (f(u), f(v))

dX(u, v)

}
· max
u6=v∈X

{
dX(u, v)

|α| · dY (f(u), f(v))

}
= Φwc(f).

normalized average distortion:

Φnavg(g) =
2

n(n− 1)

∑
u6=v∈X

ρg(u, v)

min
u 6=v∈X

ρg(u, v)
, where ρg(u, v) =

dY (g(u), g(v))

dX(u, v)
.

ρg(u, v) =
|α| · dY (f(u), f(v))

dX(u, v)
= |α| · ρf (u, v). (from homogeneity of dY ).

Φnavg(g) =
2

n(n− 1)

∑
u6=v∈X

|α| · ρf (u, v)

min
u 6=v∈X

|α| · ρf (u, v)

= Φnavg(f).

ε-distortion: The scale invariance of ε-distortion follows from the fact that if f, g are two embeddings
that are scaled versions of each other, then for any subset S of

(
X
2

)
, the worstcase distortions of

fS , gS are equal: For any ε ∈ (0, 1),

Φε(g) = min
S⊂(X

2 ),|S|≥(1−ε) n(n−1)
2

Φwc(gS)

1



and thus, for any S ⊂
(
X
2

)
,

Φwc(gS) = max
{{u,v}∈S}

{
dY (g(u), g(v))

dX(u, v)

}
· max
{{u,v}∈S}

{
dX(u, v)

dY (g(u), g(v))

}
= max
{{u,v}∈S}

{
|α| · dY (f(u), f(v))

dX(u, v)

}
· max
{{u,v}∈S}

{
dX(u, v)

|α| · dY (f(u), f(v))

}
= Φwc(fS).

k-local distortion: For any k ∈ IN and for any u ∈ X , let kNN(u) denote the k-nearest neighbours
of u in X according to dX . The set S defined as {{u, v} | u, v ∈ X, v ∈ kNN(u)} is a subset of(
X
2

)
. As shown in the case of ε-distortion, for any two embeddings f, g which are scaled versions of

each other, we have Φwc(gS) = Φwc(fS) and hence Φklocal(g) = Φklocal(f).

σ-distortion: For any {u, v} ∈
(
X
2

)
, let ρ̃f (u, v) denote the normalized ratio of distances defined as

ρf (u, v)/αf , where αf =
∑

{u,v}∈(X
2 )
ρf (u, v)/

(
n
2

)
. Observe that, by the virtue of homogeneity of dY ,

ρ̃f (u, v) = ρ̃g(u, v). Therefore,

Φσ(g) = EΠ(ρ̃g − 1)2 = EΠ(ρ̃f − 1)2 = Φσ(f).

(b) Φavg and Φlq are not invariant to scaling.

Proof. The proof follows from the linearity of the expectation. We prove the statement for the lq
distortion, the case of the average distortion then is the special case of q = 1.

Φlq (g) = EΠ(ρg(u, v)q)
1
q = EΠ(|α| · ρf (u, v)q)

1
q = |α| · Φlq (f).

(c) All the distortion measures, Φwc,Φlq ,Φnavg,Φε,Φklocal and Φσ are invariant to
translations.

Proof. It is straightforward to see that all the distortion measures derive this property from the
translation invariance of dY .

A.2 Monotonicity

For any f : (X, dX) → (Y, dY ), let αf =
(
n
2

)
/
∑

u6=v∈X
ρf (u, v). Observe that αf > 0. Let

f, g : (X, dX)→ (Y, dY ) be two embeddings such that for all u, v ∈ X ,

αf · ρf (u, v) ≤ αg · ρg(u, v) ≤ 1 or αf · ρf (u, v) ≥ αg · ρg(u, v) ≥ 1.

(a) Φwc,Φnavg,Φε,Φklocal and Φσ satisfy the property of monotonicity.

Proof. The proofs follow directly from the definitions and utilize the scale invariance property of the
corresponding distortion measure:

worstcase distortion:

Φwc(f) = Φwc(αf · f) (Scale invariance of Φwc)

= max
u6=v∈X

{αf · ρf (u, v)} · 1

min
u6=v∈X

{αf · ρf (u, v)}

≥ max
u6=v∈X

{αg · ρg(u, v)} · 1

min
u 6=v∈X

{αg · ρg(u, v)}

= Φwc(g).

2



The inequality follows since max
u6=v∈X

{αf · ρf (u, v)} ≥ 1 and min
u6=v∈X

{αf · ρf (u, v)} ≤ 1.

normalized average distortion:

Φnavg(f) = Φnavg(αf · f) (Scale invariance of Φnavg)

=

∑
u6=v∈X

{αf · ρf (u, v)}

min
u6=v∈X

{αf · ρf (u, v)}

≥ 2

(n) · (n− 1) min
u 6=v∈X

{αg · ρg(u, v)}

= Φnavg(g).

The inequality follows since min
u6=v∈X

{αf · ρf (u, v)} ≤ 1.

ε-distortion: Let Ψ = arg min
S⊂(X

2 ),|S|>(1−ε) n(n−1)
2

Φwc(fS). Then,

Φε(f) = Φwc(fΨ) ≥ Φwc(gΨ) ≥ min
S⊂(X

2 ),|S|>(1−ε) n(n−1)
2

Φwc(gS) = Φε(g).

The first inequality follows due to the monotonicity of Φwc.

k-local distortion: For any k ∈ IN , the set S = {(u, v)|u, v ∈ X, v ∈ kNN(u)} is a subset of
(
X
2

)
.

Then,
Φklocal(f) = Φwc(fS) ≥ Φwc(gS) = Φklocal(g).

The first equality follows by definition and the first inequality follows due to the monotonicity of
Φwc.

σ-distortion For any f : (X, dX)→ (Y, dY ) and for all u ∈ X , let f
′
(u) = (n)(n−1)f(u)

2
∑
ρf (u,v) . Then

Φσ(f) = EΠ(ρf ′(u, v)− 1)2.

Observe that, by the definition of monotonicity, we have that for all u, v ∈ X , (ρf ′(u, v)− 1)2 ≥
(ρg′(u, v)− 1)2. Hence it follows that,

Φσ(f) = EΠ(ρf ′(u, v)− 1)2) ≥ EΠ(ρg′(u, v)− 1)2) = Φσ(g).

(b) Φavg,Φlq fail to satisfy the property of monotonicity.

Proof. Proof by contradiction.

average distortion, lq distortion:

Let f, g : (X, dX)→ (Y, dy) be two embeddings such that there exists a constant β > 1 and for all
u ∈ X , βf(u) = g(u). Let αf = (n)(n − 1)/2

∑
(u 6=v∈X)

ρf (u, v). Then for all {u, v} ∈
(
X
2

)
, f, g

satisfy the following condition:

αfρf (u, v) ≤ αgρg(u, v) ≤ 1 or αfρf (u, v) ≥ αgρg(u, v) ≥ 1.

However Φavg(f) =
Φavg(f)

β < Φavg(g).

A.3 Robustness to outliers

(a) Φavg,Φε and Φσ are robust to outliers in distances.

Proof. Let X, dX be an arbitrary metric space. Let XD = {x1, x2, ...., } be a subset of X . Let
f : XD → X be an injective mapping such that there exists a constant K ∈ IN such that the
set G =

{
{u, v} ∈

(
XD

2

)
| dX(f(u), f(v)) 6= dX(u, v)

}
satisfies |G| ≤ K. Let fn denote the
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restriction of f to Xn = {x1, x2, ..., xn}. Let I : (X, dX) → (X, dX) be an isometry and let In
denote the restriction of I to Xn.

average distortion: For any n ∈ IN , let Gn =
{
{u, v} ∈

(
Xn

2

)
: dX(fn(u), fn(v)) 6= dX(u, v)

}
.

By definition, it follows that for all n ∈ N, there exists a K ∈ N such that, |Gn| ≤ |G| ≤ K. This
implies that there exists a n0 ∈ N such that, for all n ≥ n0, Gn = G and |G| = K.

Therefore for any fixed n ≥ n0, ρfn can be expressed as

ρfn = [ 1, 1, ..., 1︸ ︷︷ ︸
(n
2)−K times

, α1, α2, ..., αK︸ ︷︷ ︸
K

],

where for all i = {1, 2, ...,K}, αi’s denote the ratio of distances ρf (u, v) corresponding to each
{u, v} ∈ G. Therefore for any fixed n ≥ n0, average distortion of fn can be expressed as

Φavg(fn) =

(
(
n
2

)
−K) +

K∑
i=1

αi(
n
2

) .

Hence lim
n→∞

Φavg(fn) = 1 = lim
n→∞

Φavg(In).

ε-distortion: For any ε ∈ (0, 1),

Φε(fn) = min
S⊂(Xn

2 ),|S|≥(1−ε) n(n−1)
2

Φwc(fnS
).

Observe that for all n > 1 +
√

1 + 8K
ε , there exists a set S ⊂

(
Xn

2

)
such that |S| ≥ (1− ε)n(n−1)

2

and Φwc(fnS
) = 1. Hence lim

n→∞
Φε(fn) = 1 = lim

n→∞
Φε(In).

σ-distortion: The proof follows along the same lines as that of average distortion.

For any fn : (Xn, dX)→ (X, dX), Φσ(fn) can be expressed as

Φσ(fn) =

∑
(u,v)∈(Xn

2 )
[
(
n
2

)
ρfn(u, v)−

∑
(u,v)∈(Xn

2 )
ρfn(u, v)]2(

n
2

)
[

∑
(u,v)∈(Xn

2 )
ρfn(u, v)]2

. (1)

For any n ∈ IN , let Gn = {(u, v) ∈ Xn : dX(fn(u), fn(v)) 6= dX(u, v)}. By definition, it follows
that for all n ∈ N, there exists a K ∈ N such that, |Gn| ≤ |G| ≤ K. This implies that there exists a
n0 ∈ N such that, for all n ≥ n0, Gn = G and |G| = K. Therefore for any fixed n ≥ n0, ρfn can be
expressed as

ρfn = [ 1, 1, ..., 1︸ ︷︷ ︸
(n
2)−K times

, α1, α2, ..., αK︸ ︷︷ ︸
K

],

where for all i = {1, 2, ...,K}, αi’s denote the ratio of distances ρf (u, v) corresponding to each
{u, v} ∈ G. Therefore for any fixed n ≥ n0, σ-distortion of fn can be expressed as

Φσ =

(
n
2

)
(K −

K∑
i=1

αi)
2(
(
n
2

)
−K) +

K∑
i=1

(
(
n
2

)
(αi − 1) +K −

K∑
i=1

αi)
2

(
n
2

)
(
(
n
2

)
−K +

K∑
i=1

αi)2

.

Hence, lim
n→∞

Φσ(fn) = 0 = lim
n→∞

Φσ(In).

(b) Φavg,Φε and Φσ are robust to outliers in data

Proof. The proofs follow by definition and utilize the subadditivity of the target metric dY .
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average distortion: Let fn : Xn → X be an embedding as specified in the premise of the definition.
Then the average distortion of fn is evaluated as

Φavg =

(
n
2

)
− (n− 1) +

n−1∑
i=1

αi(
n
2

) , where αi =
dY (f(xi), f(x0))

dX(xi, x0)
=
dY (f(xi), f(x0))

dY (f(xi), I(x0))
.

From the subadditivity of dY , it follows that

|dY (I(x0), f(x0))

dY (I(x0), f(xi))
− 1| < αi <

dY (I(x0), f(x0))

dY (I(x0), f(xi))
+ 1.

By construction, we have that dY (I(x0), f(xi)) = dY (I(x0), I(xi)) = dX(x0, xi) > β for some
β > 0 and it follows that

0 < |dY (I(x0), f(x0))

dY (I(x0), f(xi))
− 1| < αi <

dY (I(x0), f(x0))

β
+ 1.

This implies, (
n
2

)
− (n− 1)(
n
2

) < Φavg(fn) <

(
n
2

)
− (n− 1) + (n−1)dY (I(x0),f(x0))

β(
n
2

) .

Note that β > 0 is a constant and for a fixed x0 ∈ X , dY (I(x0), f(x0)) is also a constant. Therefore,
lim
n→∞

Φavg(fn) = 1 = lim
n→∞

Φavg(In).

ε-distortion:

Let fn : Xn → X be an embedding as specified in the premise of the definition. Its easy to verify
that for any ε ∈ (0, 1) and for all n > 8

ε , there exists a set S ⊂
(
X
2

)
such that, |S| > (1− ε)n(n−1)

2
and the worstcase distortion of fn restricted to S is 1 = Φε(In).

σ-distortion:

Let fn : Xn → X be an embedding as specified in the premise of the definition. Let µ(ρ) denote∑
u6=v∈X

ρfn(u, v)/
(
n
2

)
and for all i ∈ [n], let αi = dY (f(xi), f(x0))/dX(xi, x0). Then Φσ(fn) is

evaluated as ∑
(u,v)∈(Xn

2 )
[ρfn(u, v)− µ(ρ)]2(
n
2

)
µ(ρ)2

=

(n
2)−(n−1)∑
i=1

[1− µ(ρ)]2 +
n−1∑
i=1

[αi − µ(ρ)]2(
n
2

)
[µ(ρ)]2

.

By substituting µ(ρ) =
(n
2)−(n−1)+

n−1∑
i=1

αi

(n
2)

we have

Φσ(fn) =

(
n
2

)2
(
n−1∑
i=1

α2
i )− (2

(
n
2

)
(
(
n
2

)
− (n− 1)))

n−1∑
i=1

αi −
(
n
2

)
(
n−1∑
i=1

αi)
2

(
n
2

)
[(
(
n
2

)
− (n− 1))2 + (

n−1∑
i=1

αi)2 + 2
n−1∑
i=1

αi(
(
n
2

)
− (n− 1))]2

.

Since I is an isometry, and since we have f(xi) = I(xi) by definition , we obtain that

dY (f(xi), f(x0))

dX(xi, x0)
=
dY (f(xi), f(x0))

dY (I(xi), I(x0))
=
dY (f(xi), f(x0))

dY (f(xi), I(x0))
.

By subadditivity of dY , we have that, ∀i ∈ [n]

|dY (I(x0), f(x0))

dY (I(x0), f(xi))
− 1| < αi <

dY (I(x0), f(x0))

dY (I(x0), f(xi))
+ 1.
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By construction, we have that dY (I(x0), f(xi)) = dY (I(x0), I(xi)) = dX(x0, xi) > β for some
β > 0 and it follows that

0 < |dY (I(x0), f(x0))

dY (I(x0), f(xi))
− 1| < αi <

dY (I(x0), f(x0))

β
+ 1.

Hence there exists a constant C ∈ R such that for all i ∈ IN , 0 < αi < C. It follows that

0 <

n−1∑
i=1

αi < (n− 1)C, 0 <

n−1∑
i=1

α2
i < (n− 1)C2 and 0 < (

n−1∑
i=1

αi)
2 < ((n− 1)C)2.

By substitution and simplification, it follows that ∀n > 2,

Φσ(fn) <

(
n
2

)2
C2(n− 1)(

n
2

)
(
(
n
2

)
− (n− 1))2

and

Φσ(fn) >
−(2

(
n
2

)
(
(
n
2

)
− (n− 1)))((n− 1)C)−

(
n
2

)
((n− 1)C)2(

n
2

)
[(
(
n
2

)
− (n− 1))2 + ((n− 1)C)2 + 2(n− 1)C(

(
n
2

)
− (n− 1))]2

.

Observe that

lim
n→∞

−(2
(
n
2

)
(
(
n
2

)
− (n− 1)))((n− 1)C)−

(
n
2

)
((n− 1)C)2(

n
2

)
[(
(
n
2

)
− (n− 1))2 + ((n− 1)C)2 + 2(n− 1)C(

(
n
2

)
− (n− 1))]2

= 0 and

lim
n→∞

(
n
2

)2
C2(n− 1)(

n
2

)
(
(
n
2

)
− (n− 1))2

= 0.

Hence it follows that lim
n→∞

Φσ (fn) = 0 = lim
n→∞

Φσ (In).

(c) Φwc,Φnavg and Φklocal are not robust to outliers in data or distances.

Proof. Proof by a counterexample. We first construct a sequence of embeddings for which the
number of distances that are distorted is bounded by a constant K and the distances distorted stem
from mapping a single point away from an isometry. Then we show that in the limit, as the size of
the metric space tends to infinity, Φwc,Φnavg and Φklocal do not have the same distortion as that of
an isometry.

Let {ei}{i=1,..,d} denote the standard orthonormal basis for (Rd, l2). Fix x0 = (α − 1) · ed for
some 1 < α < 2. Let x1 = ed. For any n ∈ IN , set Xn = {x2, x3, ..., xn}, such that for
all i ∈ {2, 3, ..., n}, xi is sampled according to some distribution P on span {e1, ..., ed−1}. Let
f : (Rd, l2)→ (Rd, l2) be the mapping defined as f(x) = x, ∀x ∈ Rd, x 6= x0 and f(x0) = −x0.
Let fn denote the mapping f restricted to Xn∪{x0, x1}. It is easy to verify that the ratio of distances
ρfn(x0, x1) = α and ρfn(xi, xj) = 1 for any {xi, xj} ∈

(
Xn

2

)
\ {x0, x1}.

worstcase distortion:

The worstcase distortion evaluated on fn : (Xn ∪ {x0, x1} , dX) → (X, dX) for any n ∈ IN is α
and thus lim

n→∞
Φwc(fn) = α > lim

n→∞
Φwc(In) = 1, where In denotes the restriction of the mapping

I to Xn ∪ {x0, x1}.
normalized average distortion:

The sequence of average distortions evaluated on mappings {fn} is given by:

Φnavg(fn) =
(
(
n
2

)
− 1)α+ 1(
n
2

)
Thus, lim

n→∞
Φnavg(fn) = α > Φnavg(In) = 1.

k-local distortion:

Since x0 lies in the set of k-nearest neighbours of x1, for any n ≥ 2, the k-local distortion evaluated
on the mapping fn : (Xn ∪ {x0, x1} , dX) → (X, dX) is α and thus lim

n→∞
Φklocal(fn) = α >

lim
n→∞

Φklocal(In) = 1.
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A.4 Incorporation of a probability distribution

Let (X, dX) be an arbitrary metric space. Let Xn = {x1, x2, ..., xn} be a finite subset of X . Let
P denote a probability distribution on Xn and let Π = P × P denote the product distribution on
Xn ×Xn. Fix any arbitrary x∗, y∗ ∈ Xn such that P (x∗) > P (y∗). Let x

′
, y
′ ∈ X such that for

all i ∈ [n], dX(xi, x
′
) = αdX(xi, x

∗) and dX(xi, y
′
) = αdX(xi, y

∗). Let f, g : Xn → X be two
embeddings such that:

f(x) =

{
x
′
, if x = x∗.

x, otherwise.
, g(x) =

{
y
′
, if x = y∗.

x, otherwise.

(a) Φwc,Φavg,Φnavg,Φε, and Φklocal fail to incorporate a probability distribution into their
evaluation.

Proof. The proofs follow directly from the definitions of the distortion measures.

worstcase, normalized avg, ε-distortion and k-local distortion: The above distortion measures,
by definition are independent of the probability distribution over the data space.

average (lq) distortion: The proof follows from explicit evaluation of the average distortion of any
two embeddings (f, g) that satisfy the conditions as specified in the definition. Average distortion of
f can be expressed as:

Φavg(f) = EΠ[ρf (u, v)] = [
∑

i,j 6=1,2

Πij +
∑
i6=1

αΠi1 +
∑
i6=2

Πi2].

Φavg(f)− Φavg(g) = [
∑
i6=1,2

(Πi1 −Πi2)(α− 1)]

= (
∑
i6=1,2

(Πi)(Π1 −Π2)(α− 1))

< 0 if α < 1.

The case of lq-distortion follows similarly.

(b) Φσ incorporates a probability distribution into its evaluation.

Proof. Observe that
∑

u6=v∈X
ρf (u, v) =

∑
u 6=v∈X

ρg(u, v) =
(
n
2

)
− (n − 1) + (n − 1)α. Let κ =(

n
2

)
/
∑

u6=v∈X
ρf (u, v) =

(
n
2

)
/
∑

u6=v∈X
ρg(u, v). Then,

Φσ(f)− Φσ(g) = EΠ[(κρf (u, v)− 1)2]− EΠ[(κρg(u, v)− 1)2]

= EΠ[κ2ρf (u, v)2 − 2κρf (u, v)]− EΠ[κ2ρg(u, v)2 − 2κρg(u, v)].

= κ2(α2 − 1)
∑

i,j 6=1,2

(Π1i −Π2i)− 2κ(α− 1)
∑

i,j 6=1,2

(Π1i −Π2i)

= K2(Π1 −Π2)(α− 1)(κ(α+ 1)− 2)
∑
i 6=1,2

Πi.

It is easy to verify that for any α ≥ 0 and for all n > 4, (κ(α+ 1)− 2)(α− 1) ≥ 0 and by definition
Π1 > Π2. Therefore, Φσ(f) ≥ Φσ(g).

B Proofs of Theorems 3 and 4

Doubling space: A metric space (X, dX) is referred to as a doubling space if there exists a doubling
constant λ > 0 such that for any u ∈ X and r > 0, the ball B(u, r) = {v | dX(u, v) < r} can be
covered by at most λ balls of radius r/2.
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B.1 Theorem 3:

Abraham, Bartal, and Neiman, 2011 showed the existence of an embedding from any arbitrary metric
space into an Euclidean space with properties as stated in Theorem A. Combined with Lemma A,
this provides the sought upper bound on σ-distortion.
Theorem A. (Abraham, Bartal, and Neiman, 2011) Given any arbitrary finite metric space (X, dX),
there exists an embedding f : X → lDp where D = O(log n) and for any ε ∈ (0, 1), there exists a
set Gε and constants C1 and C2 (independent of ε,n) such that |Gε| ≥ (1 − ε) ·

(|X|
2

)
and for any

x, y ∈ Gε: C1 ≤
‖f(x)−f(y)‖p

dX(x,y) ≤ C2 · log( 2
ε ).

Lemma A. (Abraham, Bartal, and Neiman, 2011) Given any finite metric spaces (X, dX) and
(Y, dY ) and an embedding f : X → Y satisfying properties described in Theorem A, for any

distribution Π over X ×X , there exists a constant K = K(Π) such that EΠ

(
dY (f(x),f(y))

dX(x,y)

)2

< K

and EΠ

(
dY (f(x),f(y))

dX(x,y)

)
< K.

Proof of Theorem 3: From theorem A, by choosing any ε < 2
n(n−1) , we have that ∀x, y ∈ X ,

C1 ≤
‖f(x)−f(y)‖p

dX(x,y) implies C1 ≤ EΠ

(‖f(x)−f(y)‖p
dX(x,y)

)
. Recall that σ-distortion is defined as

EΠ[ρf (u, v)− 2
n(n−1)

∑
ρf (u, v)]2

( 2
n(n−1)

∑
ρf (u, v))2

.

Combined with Lemma A, this completes the proof of Theorem 3.

B.2 Theorem 4:

(Abraham, Bartal, and Neiman, 2011) also showed the existence of an embedding from any arbitrary
doubling metric space into an Euclidean space with properties as stated in Theorem B and Lemma B.
These results provide an upper bound on the σ-distortion evaluated on this embedding.
Theorem B. (Abraham, Bartal, and Neiman, 2011) Given any finite metric space (X, dX) with
doubling constant λ, there exists an embedding f : X → lDp and a constant K = K(λ) such D < K
and for any ε ∈ (0, 1), there exists a set Gε and constants C1 and C2 (independent of ε) such that

|Gε| ≥ (1− ε) ·
(|X|

2

)
and for any x, y ∈ Gε: C1 ≤

‖f(x)−f(y)‖p
dX(x,y) ≤ C2 · log26( 1

ε ).

Lemma B. (Abraham, Bartal, and Neiman, 2011) Given a finite metric space (X, dX) with doubling
constant λ, another metric space (Y, dY ) and an embedding f : X → Y satisfying the properties
described in Theorem B, then for any distribution Π over X ×X , there exists a constant K = K(Π)

such that EΠ

(
dY (f(x),f(y))

dX(x,y)

)2

< K.

Proof of Theorem 4: Same as the proof of Theorem 4.
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