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Abstract

Random forests are learning algorithms that build large collections of random trees
and make predictions by averaging the individual tree predictions. In this paper,
we consider various tree constructions and examine how the choice of parame-
ters affects the generalization error of the resulting random forests as the sample
size goes to infinity. We show that subsampling of data points during the tree
construction phase is important: Forests can become inconsistent with either no
subsampling or too severe subsampling. As a consequence, even highly random-
ized trees can lead to inconsistent forests if no subsampling is used, which implies
that some of the commonly used setups for random forests can be inconsistent.
As a second consequence we can show that trees that have good performance in
nearest-neighbor search can be a poor choice for random forests.

1 Introduction

Random forests (Breiman, 2001) are considered as one of the most successful general-purpose algo-
rithms in modern-times (Biau and Scornet, 2016). They can be applied to a wide range of learning
tasks, but most prominently to classification and regression. A random forest is an ensemble of trees,
where the construction of each tree is random. After building an ensemble of trees, the random for-
est makes predictions by averaging the predictions of individual trees. Random forests often make
accurate and robust predictions, even for very high-dimensional problems (Biau, 2012), in a variety
of applications (Criminisi and Shotton, 2013; Belgiu and Drăguţ, 2016; Dı́az-Uriarte and Alvarez de
Andrés, 2006). Recent theoretical works have established a series of consistency results of different
variants of random forests, when the forests’ parameters are tuned in certain ways (Scornet, 2016;
Scornet et al., 2015; Biau, 2012; Biau et al., 2008). In this paper, however, we ask the question of
when do random forests fail. In particular, we examine how varying several key parameters of the
algorithm affects the generalization error of forests.

When building a random forest, there are several parameters to tune: the choice of the base trees
(the randomized algorithm that generates the individual trees), the number of trees in the forest, the
size of the leaf nodes, the rate of data subsampling, and sometimes the rate of feature subsampling.
Popular variants of random forests usually come with their own default parameter tuning guidelines,
often suggested by practice. For example, common wisdom suggests that training a large number
of trees and growing deep trees whose leaf sizes are fixed to a small constant lead to better per-
formance. For data subsampling, the original random forest paper (Breiman, 2001) suggests to set
the subsampling (with replacement) rate to be 1, while a later popular variant (Geurts et al., 2006)
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proposes to disable data subsampling altogether. For feature subsampling, the consensus is to set
the rate to d/3 for regression problems, with d being the dimension (Friedman et al., 2009, Sec-
tion 15.3). But in Dı́az-Uriarte and Alvarez de Andrés (2006), the feature sampling rate is found to
be not important, while Genuer et al. (2010) suggests to not subsample the features.

Existing analyses of random forests mostly focus on positive results and typically fall into two
categories: (1) They show a forest is consistent by showing that its base trees are consistent (Biau
et al., 2008; Biau, 2012; Denil et al., 2014). This class of results does not cover the case of deep trees
(because individual deep trees are clearly inconsistent), and fails to highlight the advantage of using
random forests as opposed to single trees. (2) In the deep tree regime, recent theoretical consistency
results require subsampling as a sufficient condition for consistency (Scornet, 2016).

We focus on negative results: When are random forests inconsistent? To facilitate our theoretical
investigation, we restrict our analysis to unsupervised random forests, that is, random forests whose
tree construction does not use label information (Def. 2). We establish two conditions, diversity and
locality (Def. 3 and 4), that are necessary for a forest to be consistent. We then examine how para-
meter tuning affects diversity and locality. Our results highlight the importance of subsampling data
points during the tree construction phase: Without subsampling, forests of deep trees can become
inconsistent due to violation of diversity; on the other hand, if we subsample too heavily, forests
can also become inconsistent due to violation of locality. Our analysis implies two surprising con-
sequences as special cases: (1) When considering partitioning trees that are particularly good for
nearest-neighbor search, such as random projection trees, it is natural to expect them to be also good
for random forests. Our results disagree with this intuition: Unless we use severe subsampling, they
lead to inconsistent forests. (2) In a popular variant of random forests, extremely randomized trees
are used and subsampling is disabled (Geurts et al., 2006). The argument in that paper is that when
forests use extremely randomized trees, the randomness in the trees already reduces variance and
thus subsampling becomes unnecessary. Our results suggest otherwise.

2 Background on random forests

Throughout this paper, we consider n i.i.d. samples X1, . . . , Xn of an unknown random variable X
that has support included in [0, 1]d. Let η : [0, 1]d → R be a measurable function. The responses
Y1, . . . , Yn are R-valued random variables which satisfy

∀1 ≤ i ≤ n, Yi = η(Xi) + εi , (2.1)

where the εi are centered random variables with variance σ2 > 0. We assume that they are in-
dependent from the observations. For any integer n, we set [n] := {1, . . . , n}. We denote by
X[n] := (Xi)1≤i≤n the training set, Y[n] := (Yi)1≤i≤n the responses, and Dn := (Xi, Yi)1≤i≤n the
training sample. We focus on the regression problem, that is, the problem of estimating the unknown
regression function η(x) = E [Y |X = x] by constructing an estimator η̂n(x) based on the training
sampleDn. We define the mean squared error of any estimator η̂n as E

[
|η̂n(X)− η(X)|2

]
, and we

say that the estimator is L2-consistent if the mean squared error goes to zero when the sample size
grows to infinity, that is,

lim
n→∞

E
[
|η̂n(X)− η(X)|2

]
= 0 . (2.2)

The present paper examines the consistency of random forests as estimators of the regression func-
tion. Here and in the rest of this article the expectation E [·] is taken with respect to the random
variables X,X1, . . . , Xn, ε1, . . . , εn, and any additional source of randomness coming from the
(random) tree construction, unless otherwise specified.

Regression trees. A random forest makes predictions by aggregating the predictions of tree-based
estimators. To obtain a tree-based estimator, one first uses the training sample to build a “spatial
partitioning tree.” Any query x in the ambient space is then routed from the root to a unique leaf
node and assigned the mean value of the responses in the corresponding cell.

Formally, the j-th tree in the ensemble constructed from training sample Dn induces a hierarchy
of finite coverings of the ambient space [0, 1]d: let k denote the height of the tree. Then at every
level ` ∈ [k] the tree induces a p`-covering of the ambient space, namely subspaces Aj1, . . . ,Ajp` ⊂
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[0, 1]d such that
⋃p`
i=1 A

j
i = [0, 1]d. Each cell Aji corresponds to a node of the tree. The tree-

induced routing of a query to a unique cell in space at level ` ∈ [k] is a function Aj` : [0, 1]d →
{Aj1, . . . ,Ajp`}; it satisfies ∀x ∈ [0, 1]d,∃! i ∈ {1, . . . , p`} such that Aj`(x) = Aji . In the
following, we refer to function Aj` as the routing function associated with tree j at level `, and we
will often identify the trees with their associated functions at level k, Ajk (or simply Aj when there
is no ambiguity). Note that this routing function is well-defined even for tree structures that allow
overlapping cells.

Once a tree Aj has been constructed, it estimates the regression function η(x) for a query point x,
using only information on training points contained in cell Aj(x). Formally, given a query point
x let N(Aj(x)) denote the number of samples that belong to the cell Aj(x). We define the j-th
tree-based estimator η̂n,Aj : [0, 1]d → R as

η̂n,Aj (x) :=
1

N(Aj(x))

n∑
i=1

Yi 1Xi∈Aj(x) ,

with the convention 0
0 = 0. Intuitively, η̂n,Aj (x) is the empirical average of the responses of sample

points falling in the same cell as x — see Fig. 1. We refer to Friedman et al. (2009, Section 9.2.2)
for a more detailed overview of regression trees.

Random forests. A random forest builds an ensemble of T tree estimators that are all constructed
based on the same data set and the same tree algorithm, which we call the base tree algorithm.
Due to the inherent randomness in the base tree algorithm, which we denote by Θ, each tree Aj
will be different; Aj can depend on both the training data Dn, and Θ. For instance, the random
variable Θ may encode what feature and threshold are used when splitting a node. An important
source of randomness is the one coming from what we simply call “subsampling”: when building
each tree Aj , we do not use the entire data set during tree construction, but just a susbsample of the
data (which can be with or without replacement). This source of randomness is also encoded by Θ.
Formally, the random forest estimator associated to the collection of trees VT =

{
Aj , 1 ≤ j ≤ T

}
is defined by

η̂n,VT
(x) :=

1

T

T∑
j=1

η̂n,Aj (x) =
1

T

T∑
j=1

1

N(Aj(x))

n∑
i=1

Yi 1Xi∈Aj(x) . (2.3)

We refer to Friedman et al. (2009, Chapter 15) and Biau and Scornet (2016) for a more comprehen-
sive introduction to random forests algorithms.

Local average estimators and infinite random forests. An important fact about random forest
estimators is that they can be seen as local average estimators (Devroye et al., 1996, Section 6.5),
a concept that generalizes many nonparametric estimators, including histogram, kernel, nearest-
neighbor, and tree-based estimators. A local average estimator takes the following generic form:

η̂n(x) =

n∑
i=1

Wn,i(x)Yi . (2.4)

For a given query x, a local average estimator predicts its conditional response by averaging the
responses in the training sample that are “close” to x. Wn,i(x) can be thought of as the “weight” or
the contribution of the i-th training point in predicting the response value for x.

Random forests form a special class of local average estimators: introducing the weightsWT
n,i(x) :=

1
T

∑T
j=1

1Xi∈Aj(x)

N(Aj(x)) , we can immediately see from Eq. (2.3) that

η̂n,VT
(x) =

n∑
i=1

1

T

T∑
j=1

1

N(Aj(x))
1Xi∈Aj(x) Yi =

n∑
i=1

WT
n,i(x)Yi . (2.5)

It is clear that the weights defined by a random forest are non-negative. To analyze the asymptotic
properties of forests, there are different regimes that one can consider: the regime “fixed T , and
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large n” essentially does not differ from analyzing an individual tree. To see advantages of forests,
one needs to let both T and n go to infinity. As it is common in the literature on random forests, we
first let T → ∞ to get rid of the randomness Θ that is inherent to the tree construction: According
to the law of large numbers, the estimator defined by Eq. (2.5) behaves approximately as an infinite
random forest with associated estimator

η̂n,V∞(x) :=

n∑
i=1

W∞n,i(x)Yi ,

where W∞n,i(x) := EΘ

[
1Xi∈A(x)

N(A(x))

]
are the asymptotic weights and A(·) is the routing function asso-

ciated with a generic random tree. Indeed, Scornet (2016, Theorem 3.1) shows that η̂n,V∞(·) is the
limiting function of η̂n,VT

(·) as the number of trees T goes to infinity. The concept of the infinite
forest captures the common wisdom that one should use many trees in random forests (see the next
paragraph). In the following, we focus on such infinite random forests. Now our question becomes:
If we construct infinitely many trees by a particular base tree algorithm, is the forest consistent as
the number n of data points goes to infinity?

Common beliefs and parameter setups in random forests. Different variants of random forests
usually have different parameter tuning principles. However, there are three common beliefs about
random forests in general, both in the literature and among practitioners. The first belief is that
“many trees are good,” in the sense that adding trees to the ensemble tends to decrease the gen-
eralization error of random forests (Biau and Scornet, 2016, Sec. 2.4). For example, the results
in Theorem 3.3 of Scornet (2016) and Arlot and Genuer (2014) both corroborate this belief. The
second belief is that, in the context of random forests, “it is good to use deep trees” (Breiman, 2000).
Definition 1 (Deep trees and fully-grown trees). We say a random forest has deep trees if there
exists an integer n0 such that, for any sample size n, the leaf nodes of its base trees have at most n0

points almost surely; a fully-grown tree is a deep tree whose leaves have exactly one data point.

The use of deep trees seems counter-intuitive at first glance: They have low bias but extremely high
variance that does not vanish as the sample size increases, and thus are destined to overfit. However,
while a single deep tree estimator is clearly not consistent in general, it is believed that combining
many deep trees can effectively reduce the variance of individual trees. Thus, it is believed that a
random forest estimator takes advantage of the low bias of individual deep trees while retaining low
variance. Recent work of Scornet (2016) provided theoretical evidence of this belief by showing
that forests of fully-grown quantile trees are consistent under certain sufficient conditions. The third
belief is that a diverse portfolio of trees helps alleviate overfitting (by reducing variance), and that
randomizing the tree construction helps creating a more diverse portfolio. Since the introduction
of random forest, “tree diversity,” which has been defined as correlation of fit residuals between
base trees in Breiman (2001), has been perceived as crucial for achieving variance reduction. It
has also become a folklore knowledge in the random forest community that by introducing “more
randomness,” trees in the ensemble become more diverse, and thus less likely to overfit. In prac-
tice, many ways of injecting randomness to the tree construction have been explored, for example
random feature selection, random projection, random splits, and data subsampling (bootstrapping).
Geurts et al. (2006) suggest using extremely randomized trees; taking this idea to the limit yields
the totally randomized trees, that is, trees constructed without using information from the responses
Y[n]. Our analysis takes into account all three common beliefs, and studies forest consistency under
two extreme scenarios of subsampling setup.

2.1 Related Work

Random forests were first proposed by Breiman (2001), where the base trees are chosen as Classifi-
cation And Regression Trees (CART) (Breiman et al., 1984) and subsampling is enabled during tree
construction. A popular variant of random forests is called “extremely randomized trees” (extra-
trees) (Geurts et al., 2006). Forests of extra-trees adopt a different parameter setup than Breiman’s
forest: They disable subsampling and use highly randomized trees as compared to CART trees. Be-
sides axis-aligned trees such as CART, oblique trees (trees with non-rectangular cells) such as ran-
dom projection trees are also used in random forests (Ho, 1998; Menze et al., 2011; Rodriguez et al.,
2006; Tomita et al., 2015). On the theoretical side, all previous works that we are aware of investi-
gate forests with axis-aligned base-trees. Most works analyze trees with UW-property (see Def. 2)
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and focus on establishing consistency results (Scornet (2016); Biau (2012); Biau et al. (2008)). A
notable breakthrough was Scornet et al. (2015), who were the first to establish that Breiman’s for-
est, which do not satisfy the UW-property (Def. 2), is consistent on additive regression models. To
our knowledge, few works focus on negative results. An exception is Lin and Jeon (2006), which
provides a lower bound on the mean squared error convergence rate of forests.

2.2 Overview of our results

Section 3 establishes two notions, “diversity” and “locality,” that are necessary for local average
estimators to be consistent. Then, viewing infinite random forests as local average estimators, we
establish a series of inconsistency results in Section 4. In Section 4.1, we show that forests of deep
trees with either nearest-neighbor-preserving property (Def. 6) or fast-diameter-decreasing prop-
erty (see condition in Prop. 1) violate the diversity condition, when subsampling is disabled. As a
surprising consequence, we show that trees with nearest-neighbor-preserving property (Algorithm 1
and 2) can be inconsistent if we follow a common forest parameter setup (Def. 5). In Section 4.2, we
show that when undersampled, forests of deep trees can violate the locality condition. Our analysis
applies to trees that are both axis-aligned and irregularly shaped (oblique).

3 Inconsistency of local average estimators

A classical result of Stone (1977, Theorem 1) provides a set of sufficient conditions for local average
estimators to be consistent. In this section, we derive new inconsistency results for a general class
of local average estimator satisfying an additional property, often used in theoretical analyses:
Definition 2 (UW-property). A local average estimator defined as in Eq. (2.4) satisfies the “un-
supervised-weights” property (UW-property) if the weightsWn,i depend only on the unlabeled data.

3.1 Diversity is necessary to avoid overfitting

We first define a condition on local average estimators, which we call diversity, and show that if
local average estimators do not satisfy diversity, then they are inconsistent on data generated from a
large class of regression models. In fact, from the proof of Lemma 1, it can be seen that violating
diversity results in high asymptotic variance, hence inconsistent estimators.
Definition 3 (Diversity condition). We say a local average estimator as defined in Eq (2.4) satisfies
the diversity condition, if E

[∑n
i=1W

2
n,i(X)

]
−→ 0 as n→∞ .

Intuitively, the diversity condition says that no single data point in the training set should be given
too much weight asymptotically. The following lemma shows that diversity is necessary for a local
average estimator (with UW-property) to be consistent on a large class of regression models.
Lemma 1 (Local average estimators without diversity are inconsistent). Consider a local aver-
age estimator η̂n as in Eq. (2.4) that satisfies the UW-property. Suppose the data satisfies Eq. (2.1),
and σ be as defined therein. Suppose the diversity condition (Def. 3) is not satisfied: that is, there
exists δ > 0 such that E

[∑n
i=1W

2
n,i(X)

]
≥ δ for infinitely many n. Then η̂n is not consistent.

A related result is proved in Stone (1977). It considers the artificial scenario where the data dis-
tribution (X,Y ) satisfies that (i) Y is independent of X , and (ii) Y is standard Gaussian. On this
particular distribution, Stone (1977, Prop. 8) shows that condition (5) of Stone (1977, Theorem 1) is
necessary for a local average estimator to be consistent. In contrast, our Lemma 1 applies to a much
larger class of distributions.

3.2 Locality is necessary to avoid underfitting

Now we introduce another necessary condition for the consistency of local average estimators, which
we call locality. While diversity controls the variance of the risk, locality controls the bias.
Definition 4 (Locality condition). We say that a local average estimator η̂n with weights Wn,i

satisfies the locality condition if, for any a > 0, E
[∑n

i=1Wn,i(X)1‖Xi−X‖>a
]
−→ 0 as n→∞ .

The locality condition is one of the conditions of Stone’s theorem for the consistency of local average
estimators. In plain words, it requires the estimator to give small weight to sample points located
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Algorithm 1 Randomized Projection Tree
Input: Sample S, maximum leaf size n0;
Output: T = RPT (S, n0);

1: T ← empty tree;
2: if |S| > n0 then
3: Sample U uniformly from Sd−1;
4: Sample q uniformly from

[
1
4 ,

3
4

]
;

5: tq ← empirical q-th quantile of UT · S;
6: SL ← {x ∈ S : UT · x ≤ tq};
7: T.graft (RPT (SL, n0));
8: SR ← S \ SL;
9: T.graft (RPT (SR, n0));

10: end if

Algorithm 2 Randomized Spill Tree
Input: S, n0, α ∈ (0, 1/2);
Output: T = RST (S, n0, α);

1: T ← empty tree;
2: if |S| > n0 then
3: Sample U uniformly from Sd−1;
4: tL ← top 1

2 + α-quantile of UT · S;
5: tR ← bottom 1

2 + α-quantile of UT · S;
6: SL ← {x ∈ S : UT · x ≤ tL};
7: T.graft (RST (SL, n0, α));
8: SR ← {x ∈ S : UT · x ≥ tR};
9: T.graft(RST (SR, n0, α));

10: end if

outside a ball of fixed radius centered around a query. Indeed, intuitively, a local average estimator
should be able to capture fine-scale changes in the distribution of X in order to be consistent. Our
next result shows that there exists a distribution such that, when a local average estimator with
non-negative weights violates the locality property, it is inconsistent.

Lemma 2 (Local average estimators without locality are inconsistent). In the setting given by
Eq. (2.1), let η̂n be a local average estimator with non-negative weights Wn,i. Suppose that η̂n
satisfies the UW-property (Def. 2). Assume furthermore that η̂n does not satisfy locality (Def. 4).
Then, there exists a continuous bounded regression function η : [0, 1]d → R such that η̂n is not
consistent.

This result is a straightforward application of Prop. 6 of Stone (1977). Intuitively, when locality is
violated, a local average estimator can be highly biased when the regression function η has a large
amount of local variability. Note that the data models on which we prove locality is necessary in
Lemma 2 are more restricted in comparison to that of diversity.

4 Inconsistency of random forests

Viewing forests as a special type of local average estimators, we obtain several inconsistency results
by considering the choice of subsampling rate in two extreme scenarios: in Section 4.1, we study
trees without subsampling, and in Section 4.2, we study trees with constant subsample sizes.

4.1 Forests without subsampling can be inconsistent

In this section, we establish inconsistency of some random forests by showing that they violate
the diversity condition. In particular, we focus on infinite random forests with the following tree-
construction strategy:

Definition 5 (Totally randomized deep trees). We say a random forest has totally randomized deep
trees if its base trees (i) have the UW -property (Def. 2), (ii) are deep (Def. 1), and (iii) are grown
on the entire dataset (no subsampling).

This parameter setup is similar to the one suggested by Geurts et al. (2006), and the term “totally
randomized” in Def. 5 follows the naming convention therein.

Trees with nearest-neighbor-preserving property. Besides serving as the base algorithms for
random forests, spatial partitioning trees are also widely used for other important tasks such as
nearest-neighbor search (Yianilos, 1993). We show that, surprisingly, trees that are good for nearest-
neighbor search can lead to inconsistent forests when we adopt the parameter setup that is widely
used in the random forest community. Given X[n] and any x ∈ [0, 1]d, we let X(i)(x) denote the
i-th nearest neighbor of x from the set

{
X[n]

}
for the Euclidean distance. We define the nearest-

neighbor-preserving property of a tree as follows.
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Definition 6 (Nearest-neighbor-preserving property). LetA(·) be the routing function associated
with a generic (randomized) tree. We say that the tree has nearest-neighbor-preserving property if
there exists ε > 0 such that, P

(
X(1)(X) ∈ A(X)

)
≥ ε for infinitely many n .

Intuitively, Def. 6 means that if we route a query point x through the tree to its leaf cell A(x),
then its nearest neighbor is likely to be in the same cell, which is quite appealing when trees are
used for nearest-neighbor search. However, via Lemma 1, we can now show that such trees lead to
inconsistent forests whenever we grow the trees deep and disable subsampling.
Theorem 1 (Forests with deep, nearest-neighbor-preserving trees are inconsistent). Suppose
that the data distribution satisfies the condition in Eq (2.1). Suppose that the infinite random forest
η̂n,V∞ is built with totally randomized deep trees that additionally satisfy the nearest-neighbor-
preserving property, Def. 6. Then η̂n,V∞ is L2-inconsistent.

The intuition behind Theorem 1 is that trees with nearest-neighbor-preserving property are highly
homogeneous when subsampling is disabled: given a query point x, each tree in the forest tends to
retrieve in its leaf of x a very similar set from the training data, namely those data points that are
likely nearest neighbors of x. This in turn implies violation of diversity and leads to overfitting (and
inconsistency) of the random forest.

Theorem 1 suggests that without subsampling, forests of totally randomized trees can still overfit
(that is, subsampling is necessary for some forests to be consistent under the totally randomized
deep tree construction regime). On the other hand, we speculate that proper subsampling can make
the forests consistent again, while fixing other parameters (that is, subsampling is also sufficient
for forests consistency here): with subsampling, the nearest-neighbor-preserving property of the
base tree algorithm should still hold, but each time applied on a subsample of the original data;
taken together, all nearest neighbors on different subsamples are a much more significant set, hence
diversity should work again. If this can be proved, then it would imply that, in contrary to common
belief (Geurts et al., 2006), different ways of injecting randomness in the tree construction phase
may not be equivalent in reducing overfitting, and that subsampling may be more effective than
other ways of injecting randomness to the algorithm. We leave this for future work.

Example: Forests of deep random projection trees. Random-projection trees (Dasgupta and
Freund, 2008) are a popular data structure, both for nearest-neighbor search (Dasgupta and Sinha,
2015) and regression. In particular in the latter case, random-projection tree based estimators were
theoretically shown to be L2-consistent, with a convergence rate that adapts to the intrinsic data
dimension for regression problems when they are pruned cleverly (Kpotufe and Dasgupta, 2012).
Below we show, however, that two variants of these trees, namely random projection trees (Algo-
rithm 1) and randomized spill trees (Algorithm 2) can make bad candidates as base trees for random
forests when tree pruning and data subsampling are disabled.
Theorem 2 (Forests of deep random projection trees are inconsistent). Suppose that X is dis-
tributed according to a measure µ that has doubling dimension d0 ≥ 2. Suppose additionally that
the responses satisfy Eq. (2.1). Let c0 be a constant such that Dasgupta and Sinha (2015, Theorem 7)
holds—we recall this result as Theorem 5 in the Appendix. For any δ ∈ (0, 1/3) and ε ∈ (0, 1),
suppose that we grow the base trees such that each leaf contains at most n0 sample points, where n0

is a constant which does not depend on n and is defined as follows:

• (Random projection tree) n0 = max

{
8 log 1/δ

(
2c0d

2
0

1−ε

)d0
, exp

(
2c0d

3
0(8 log 1/δ)1/d0

1−ε

)}
.

• (Randomized spill tree) n0 = 8 log 1/δ
(

c0d0
α(1−ε)

)d0
, with α ≤ α0 = α0(c0, d0, ε, δ).

Then the random forest estimator η̂n,V∞ is L2–inconsistent.

Theorem 2 is a direct consequence of Theorem 1 and Theorem 5; the latter shows that both Algo-
rithms 1 and 2 are nearest-neighbor-preserving.

Trees with fast shrinking cell diameter. Local average estimators such as k-nearest-neighbor
(k-NN), kernel, and tree based estimators, often make predictions based on information in a neigh-
borhood around the query point. In all these methods, the number of training data contained in
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Figure 1: Left: Illustration of the “aggregating” effect of a forest induced local neighborhood; the
black dot is a query point x; the blue points are training points; each cell is the leaf cell of a single
tree in the forest containing x; the maximal leaf size is n0 = 1. We can see that the aggregated cell
(the union of the individual cells) is much larger (less local) than the individual cells. Right: The
vertical blue lines represent the response values of the sample points belonging to the same cell as
the query x. The predicted value (in black) is the empirical mean of theses values.

the local neighborhood controls the bias-variance trade-off of the estimator (Devroye et al., 1996,
Sec. 6); for these methods to be consistent, the local neighborhood needs to adapt to the training
size. For example, in k-NN methods, the size of the neighborhood is determined by the choice of k,
the number of nearest neighbors of the query point. The classical result of Stone (1977) shows that
the k-NN classifier is universally consistent if k grows with n and, at the same time, if k does not
grow too fast, namely k/n → 0. We now present a necessary condition on the local neighborhood
size for random forests to be consistent. In a particular tree j, the local neighborhood of a query x
is the leaf cell containing it, Aj(x). In a forest, the local neighborhood of a query can be viewed as
an aggregation of all possible realizations of tree cells containing x.

Intuitively, the aggregated cell in the forest should behave better in the following sense: Consider
trees that are fully grown, that is each leaf cell contains only one point. Then the local neighborhood
of any query is too small and will result in a tree-based estimator with high variance. Considering
the forest, different tree realizations will partition the space differently. This means when fixing a
query point x, different training data will end up in the leaf cell containing x in different trees, and
the aggregated cell can potentially be much larger than the individual tree cell. See the left panel of
Fig. 1 for an illustration of this effect. Based on this observation, one would hope that even forests
of deep trees can have low enough variance and eventually become consistent.

Our result implies that whether the intuition above holds or not depends on the size of the local
neighborhood, controlled by the diameter of the generic (random) function A(·): if the generic tree
cell is too small, compared to the data size, then aggregating tree cells will not do much better.

Proposition 1 (Forests of fully-grown trees with fast shrinking cells are inconsistent). Suppose
that the data satisfy Eq. (2.1). Suppose additionally that (i) the distribution of X has a density f
with respect to the Lebesgue measure on [0, 1]d, (ii) there exists constants fmin and fmax such that
∀x ∈ [0, 1]d , 0 < fmin ≤ f(x) ≤ fmax < +∞ . Consider the random forest estimator η̂n,V∞ built
with totally randomized deep trees, and in addition, each tree leaf contains exactly one data point.
If with positive probability with respect to X , X[n] and Θ, there exists a deterministic sequence an
of order 1

n1/d such that diam (A(X)) ≤ an, then η̂n,V∞ is L2–inconsistent.

Prop. 1 is similar in spirit to Lin and Jeon (2006, Theorem 3), which is the first result connecting
nearest-neighbor methods to random forests. There it was shown that forests with axis-aligned trees
can be interpreted to yield sets of “potential nearest neighbors.” Using this insight, the authors show
that forests of deep axis-aligned trees without subsampling have very slow convergence rate in mean
squared error, of order 1/ (log n)

(d−1), which is much worse than the optimal rate for regression,
O(1/n2m/(2m+d)) by Stone (1980) (the parameter m controls the smoothness of regression func-
tion η). To the best of our knowledge, this is the only previous result applying to non-artificial
data models. We adopt a different approach and directly relate the consistency of forests with the
diameter of the generic tree cell. Prop. 1 is stronger than Lin and Jeon (2006), since it establishes
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inconsistency, whereas the latter only provides a lower bound on the convergence rate. In addi-
tion, Prop. 1 can be applied to any type of trees, including irregularly shaped trees, whereas the
aforementioned result is only applicable to axis-aligned trees.

4.2 Forests with too severe subsampling can be inconsistent

In contrast to the “totally randomized tree” setup considered in Section 4.1, where subsampling
is disabled, we now consider forests with severe subsampling—when the subsample size remains
constant as the data size grows to infinity.

Theorem 3 (Forests of undersampled fully-grown trees can be inconsistent). Suppose that the
data satisfy Eq. (2.1) and that X has bounded density. Suppose that the random forest estimator
η̂n,V∞ has base trees that satisfy the following properties:

• Finite subsample size: each tree is constructed on a subsample (sampling with replacement,
that is, bootstrapping) of the data S of size m, such that m does not vary with n;

• Fully-grown tree: each tree leaf has exactly one data point.

Then η̂n,V∞ is L2–inconsistent.

Theorem 3 applies Lemma 5 in the undersampled setup. The intuition here is that when the sample
points are too “sparse,” some cells will have large size when the tree leaves are non-empty (satisfied
when trees are fully-grown). Consequently, when a query point falls into a leaf cell, with high
probability, it will be far away from the training data in the same cell, violating locality (see the
right panel of Fig. 1). It is interesting to compare this result with Prop. 1, which relates the average
diameter of a cell in the randomized tree with the tree diversity.

5 Discussion

We have shown that random forests with deep trees with either no subsampling or too much sub-
sampling can be inconsistent. One surprising consequence is that trees that work well for nearest-
neighbor search problems can be bad candidates for forests without sufficient subsampling, due to
a lack of diversity. Another implication is that even totally randomized trees can lead to overfitting
forests, which disagrees with the conventional belief that injecting more “randomness” will prevent
trees from overfitting (Geurts et al., 2006). In summary, our results indicate that subsampling plays
an important role in random forests and may need to be tuned more carefully than other parameters.

There are interesting future directions to explore: (1) While we consider the extreme case of no
subsampling or constant subsample size, it would be interesting to explore whether inconsistency
holds in cases in-between. Results in this direction would indicate how to choose the subsampling
rate in practice. (2) In our analysis, we first let the number of trees T to infinity, and then analyze
the consistency of forests as n grows. In the future, it would also be interesting to study the finer
interplay between T and n when both of them grow jointly. (3) Bootstrapping, that is subsampling
with replacement with subsample size equal to n, is a common practice in random forests. It differs
subtly from the no subsampling scheme and has been a matter of debate in the theory community
(Biau, 2012). We believe that some of our inconsistency results can be extended to the bootstrap
case. For example, consider Theorem 2 in the bootstrap case: one would expect that the nearest
neighbor property of random projection trees holds on bootstrapped samples as well (according to
the central limit theorem for bootstrapped empirical measure (Gine and Zinn, 1990)); when the
bootstrap sample size equals n, the setup will thus not differ much from the no-subsampling set up,
and inconsistency should follow.
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Appendix
We collect in this Appendix all the proofs of the results presented in the paper. Section A contains
the main proofs, while Section B contains technical results used in Section A. For completeness’
sake, we recall existing theoretical results mentioned in the paper in Section C. Finally, reference to
a concentration result as well as a quick summary of the properties of conditional expectation that
are used in Section A are collected in Section D and E.

A Proofs of the main results

Proof of Lemma 1. In the proof, we first obtain a bias–variance decomposition of the mean
squared error, and then proceed to lower bound the variance term for infinitely many n.

Since the diversity condition does not hold, there exists δ > 0 such that, for infinitely many n,

E

[
n∑
i=1

W 2
n,i(X)

]
≥ δ . (A.6)

Set n as in Eq. (A.6). We define the auxiliary estimator ηn as

ηn(x) :=

n∑
i=1

η(Xi)Wn,i(x) for any x ∈ [0, 1]d . (A.7)

According to Lemma 3,

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
.

We now proceed to lower bound the variance term. First, we condition with respect to X,X[n] and
Θ to obtain

E
[
|ηn(X)− η̂n(X)|2

∣∣∣X,X[n],Θ
]

= Var
(
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
)

(Eq. (B.12))

= Var

(
n∑
i=1

(Yi − η(Xi))Wn,i(X)

∣∣∣∣∣X,X[n],Θ

)
(definition of ηn (Eq. (A.7)) and η̂n (Eq. (2.4)))

= Var

(
n∑
i=1

εiWn,i(X)

∣∣∣∣∣X,X[n],Θ

)
(Eq. (2.1))

=

n∑
i=1

W 2
n,i(X) Var

(
εi
∣∣X,X[n],Θ

)
(UW-property + independence of the random variables εi)

=

n∑
i=1

W 2
n,i(X) Var (εi)

(each εi is independent from X , X[n] and Θ)

E
[
|ηn(X)− η̂n(X)|2

∣∣∣X,X[n],Θ
]

=

n∑
i=1

W 2
n,i(X)σ2 .

By the tower property of the conditional expectation (Prop. 2),

E
[
|ηn(X)− η̂n(X)|2

]
= E

[
E
[
|ηn(X)− η̂n(X)|2

∣∣∣X,X[n],Θ
]]

= σ2 E

[
n∑
i=1

W 2
n,i(X)

]
.

12



Finally, recall that n was chosen such that E
[∑n

i=1W
2
n,i(X)

]
≥ δ. Thus

E
[
|ηn(X)− η̂n(X)|2

]
≥ δσ2 ,

and we can conclude.

Proof of Lemma 2. According to the contrapositive of Prop. 6 in Stone (1977), since we assumed
that η̂n has non-negative weights and does not satisfy the locality condition, there exists a bounded
continuous function η : [0, 1]d → R such that the following does not hold:

n∑
i=1

Wn,i(X)η(Xi) −→ 0 in probability .

Thus we can choose ε > 0 and δ > 0 such that

P (|η(X)− ηn(X)| ≥ ε) ≥ δ , (A.8)

for infinitely many n—recall that we defined ηn(x) =
∑n
i=1Wn,i(X)η(Xi). According to

Lemma 3, for any n,

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
.

In particular,
E
[
|η(X)− η̂n(X)|2

]
≥ E

[
|η(X)− ηn(X)|2

]
.

Let n be such that Eq. (A.8) holds. Then

E
[
|η(X)− η̂n(X)|2

]
≥ E

[
|η(X)− ηn(X)|2

]
≥ P (|η(X)− ηn(X)| ≥ ε) ε2

(Markov’s inequality)

E
[
|η(X)− η̂n(X)|2

]
≥ δε2 .

(Eq. (A.8))

Since the last display holds for infinitely many n, we can conclude.

Proof of Theorem 1. Note that the first assumption of Lemma 1 is satisfied. The major part of the
proof is to show that the second assumption of Lemma 1, namely Eq. (A.6), is also satisfied.

In this proof, we write Wn,i(X) short for W∞n,i(X). Let n ∈ N \ {0} be as in the nearest-neighbor
property. By the definition of the asymptotic weights and the deep tree assumption, for any 1 ≤ i ≤
n,

Wn,i(X) = EΘ

[
1Xi∈A(X)

N(A(X))

]
≥ EΘ

[
1Xi∈A(X)

n0

]
. (A.9)

Let us denote by Wn,(1)(X) the asymptotic weight corresponding to the nearest-neighbor of X .
Since

n∑
i=1

W 2
n,i(X) ≥W 2

n,(1)(X) a.s. ,

we have

E

[
n∑
i=1

W 2
n,i(X)

]
≥ E

[
W 2
n,(1)(X)

]
≥ 1

n2
0

E
[(

EΘ

[
1X(1)(X)∈A(X)

])2
]

(Eq. (A.9))

≥ 1

n2
0

(
E
[
EΘ

[
1X(1)(X)∈A(X)

]])2
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(x 7→ x2 is convex + Jensen’s inequality)

=
1

n2
0

P
(
X(1)(X) ∈ A(X)

)2
E

[
n∑
i=1

W 2
n,i(X)

]
≥ ε2

n2
0

.

(nearest-neighbor-preserving property)

Since n0 does not depend on n, the second assumption of Lemma 1 is satisfied for δ = ε2/n2
0 and

we can conclude.

Proof of Theorem 2. The proof of this result relies on Theorem 1. For both the randomized spill
tree and the random projection tree, the UW-property is satisfied. Moreover, by assumption, they
are deep trees with almost surely at most n0 sample points per leaf. Thus we only have to check that
the nearest-neighbor-preserving property is satisfied, which we achieve thanks to Theorem 5 with
k = 1.

We first focus on the randomized spill tree case. Let us fix x ∈ [0, 1]d, δ ∈ (0, 1/3), and ε ∈ (0, 1).
The hypotheses of Theorem 5 are satisfied: provided that 1 ≤ αn0/2, there is an event E with
probability greater than 1− 3δ such that

P
(
X(1)(x) /∈ A(x)

∣∣E) ≤ c0d0

α

(
8 log 1/δ

n0

)1/d0

.

By definition of n0, 1 ≤ αn0/2 holds for any α such that

α ≤ (4 log 1/δ)
d0−1

(
c0d0

1− ε

) d0
d0−1

=: α0 ,

and in this case, we have P
(
X(1)(x) /∈ A(x)

∣∣E) ≤ 1 − ε . Since the previous statement is true for
any x ∈ [0, 1]d, we have in fact proved that

P
(
X(1)(X) ∈ A(X)

∣∣E) ≥ ε .
Now, since P (A|B)P (B) ≤ P (A) for any events A and B, we obtain

P
(
X(1)(X) ∈ A(X)

)
≥ P

(
X(1)(X) ∈ A(X)

∣∣E)P (E) ≥ ε(1− 3δ) > 0 .

In other words, the nearest-neighbor-preserving property of Theorem 1 is satisfied and we can con-
clude.

The proof for random projection trees is similar, with the difference that we have to check whether
1 ≤ c03d0 log 1/δ. This is true since d0 ≥ 2, δ ∈ (0, 1/3) and one can take c0 ≥ 1 in the statement
of Theorem 5. Then, with E defined as before, according to Theorem 5,

P
(
X(1)(x) /∈ A(x)

∣∣E) ≤ c0d0(d0 + log n0)

(
8 log 1/δ

n0

)1/d0

.

Now, n0 ≥ 8 log 1/δ
(

2c0d
2
0

1−ε

)d0
, therefore

c0d
2
0

(
8 log 1/δ

n0

)1/d0

≤ 1− ε
2

.

Moreover, it also holds that n0 ≥ exp
(

2c0d
3
0(8 log 1/δ)1/d0

1−ε

)
. Thus

c0d0 log n0

(
8 log 1/δ

n0

)1/d0

= c0d
2
0

log n
1/d0
0

n
1/d0
0

(8 log 1/δ)
1/d0

≤ c0d2
0

1

log n
1/d0
0

(8 log 1/δ)
1/d0
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(log x/x ≤ 1/ log x for any x > 1)

≤ c0d2
0

1− ε
2c0d2

0 (8 log 1/δ)
1/d0

(8 log 1/δ)
1/d0

c0d0 log n0

(
8 log 1/δ

n0

)1/d0

≤ 1− ε
2

.

We deduce
P
(
X(1)(x) /∈ A(x)

∣∣E) ≤ 1− ε
2

+
1− ε

2
= 1− ε .

We conclude the proof with the same argument used in the randomized spill trees case.

Proof of Prop. 1. In this proof we write Wn,i(X) short for W∞n,i(X). We are going to use
Lemma 1 to show that η̂n,V∞ is inconsistent.

For any n ∈ N\{0}, it holds that
∑n
i=1Wn,i(X) = 1 almost surely since each cell contains exactly

one sample point. Let (an)n≥1 be a deterministic sequence such that diam (A(X)) ≤ an holds with
probability greater than η ∈ (0, 1). Set δ = η/2 and define N as in Lemma 4. Let n ≥ N . We have

E

[
n∑
i=1

Wn,i(X)1diam(A(X))≤an

]
= P (diam (A(X)) ≤ an) ≥ η .

On the event
{

diam (A(X)) ≤ an
}

, for any 1 ≤ i ≤ n, then ‖Xi −X‖ > an implies ‖Xi −X‖ >
diam (A(X)). In turn it holds that Xi /∈ A(X), i.e, Wn,i(X) = 0. Therefore,

E

[
n∑
i=1

Wn,i(X)1diam(A(X))≤an

]
= E

[
n∑
i=1

Wn,i(X)1diam(A(X))≤an 1‖Xi−X‖≤an

]

≤ E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

]
.

Thus we have obtained

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

]
≥ η .

Define E as the event
{∑n

i=1 1‖Xi−X‖≤an ≤ N
}

. According to the law of total expectation,

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

]
= E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣E
]
P (E)

+ E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣Ec

]
P (Ec) .

Thus

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣E
]
P (E) = E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

]

− E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣Ec

]
P (Ec)

≥ η − P (Ec) .

(
∑n
i=1Wn,i(X)1‖Xi−X‖≤an ≤ 1 almost surely)

According to Lemma 4, we have P (Ec) ≤ δ and thus

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣E
]
≥ η

2
. (A.10)
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Now, according to the Cauchy-Schwarz inequality for discrete sequences, conditionally to E,(
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

)2

≤
n∑
i=1

W 2
n,i(X) ·

n∑
i=1

1‖Xi−X‖≤an ≤ N ·
n∑
i=1

Wn,i(X)2 . (A.11)

We write

E

[
n∑
i=1

W 2
n,i(X)

]
≥ E

[
n∑
i=1

W 2
n,i(X)

∣∣∣∣∣E
]
P (E)

(law of total expectation + monotony)

≥ 1

N
E

( n∑
i=1

Wn,i(X)1Xi−X ≤ an

)2
∣∣∣∣∣∣E
P (E)

(Eq. (A.11))

≥ 1

N

(
E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣E
])2

P (E)

(t 7→ t2 convex + conditional Jensen’s inequality)

E

[
n∑
i=1

W 2
n,i(X)

]
≥ 1

N
· η

2

4
· (1− η/2) .

(Eq. (B.12))

Since N only depends on quantities that are fixed with respect to n, we can conclude thanks to
Lemma 1.

Proof of Theorem 3. The sketch of the proof is the following. First, we use Lemma 5 to find
a radius ρ that violates the locality condition for any subsample of the original data. This radius
depends on m, the size of this subsample. But since m is constant by assumption, ρ violates the
locality condition for any n. Finally we conclude with Lemma 2.

Let ε ∈ (0, 1). Set

ρ :=
1

2

[
(1− ε)Γ

(
d
2 + 1

)
mfmaxπd/2

]1/d

.

Note that ρ does not depend on n. To any subset S ⊆ {1, . . . , n} corresponds the local average
estimator η̂Sm build upon (Xi)i∈S . We denote by WS

m,i its weights. We extend this notation to
WS
n,i = WS

m,i if i ∈ S and WS
n,i = 0 otherwise. According to Lemma 5, it holds that

E

[
n∑
i=1

WS
n,i(X)1‖Xi−X‖≥ρ

]
≥ ε .

Then, since the weights corresponding to η̂n satisfyWn,i = E
[
WS
n,i

]
(where the expectation is with

respect to the subsampling), it holds that

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≥ρ

]
≥ ε .

We conclude with Lemma 2.

B Auxiliary results

In this section, we collect some auxiliary results used in the proofs throughout this paper.

Our first result is a standard bias-variance decomposition used in the proof of Lemma 1 and
Lemma 2.
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Lemma 3 (Bias-variance decomposition). Suppose that the observations satisfy Eq. (2.1). Then,
for any local average estimator η̂n satisfying the UW-property,

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
.

Proof. Let n be an integer. We first decompose the mean squared error as

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X) + ηn(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
+ 2E [(η(X)− ηn(X)) (ηn(X)− η̂n(X))] .

Further inspection of the double-product term shows that

E [(η(X)− ηn(X)) (ηn(X)− η̂n(X))] = E
[
E
[
(η(X)− ηn(X)) (ηn(X)− η̂n(X))

∣∣X,X[n],Θ
]]

(tower property)

= E
[
(η(X)− ηn(X))E

[
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
]]
.

(η(X) and ηn(X) are σ(X,X[n],Θ)-measurable by the UW-property)

Additionally,

E
[
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
]

= ηn(X)− E
[
η̂n(X)

∣∣X,X[n],Θ
]

(ηn(X) is σ(X,X[n],Θ)-measurable by the UW-property)

=

n∑
i=1

η(Xi)Wn,i(X)− E

[
n∑
i=1

Wn,i(X)Yi

∣∣∣∣∣X,X[n],Θ

]
(definition of ηn (Eq. (A.7)) and η̂n (Eq. (2.4)))

=

n∑
i=1

η(Xi)Wn,i(X)−
n∑
i=1

E
[
Wn,i(X)Yi

∣∣X,X[n],Θ
]

(linearity)

E
[
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
]

=

n∑
i=1

Wn,i(X)

{
η(Xi)− E

[
Yi
∣∣X,X[n],Θ

]}
.

(Wn,i(X) is σ(X,X[n],Θ)-measurable by the UW-property)

By irrelevance of independent information (Prop. 2),

E
[
Yi
∣∣X,X[n],Θ

]
= E [Yi|Xi] ,

and by Eq. (2.1), E [Yi|Xi] = η(Xi). We conclude that

E
[
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
]

= 0 , (B.12)

and therefore the double-product term vanishes. We have obtained the following decomposition for
the mean squared error:

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
.

The following result is used in the proof of Prop. 1 to control the number of sample points falling in
a certain ball around X .
Lemma 4 (Controlling the number of sample points near X). Let δ ∈ (0, 1/2). Under the
assumptions of Lemma 1, we can choose constants 0 < m < M < +∞ such that, for any n ∈
N \ {0}, m ≤ ann1/d ≤M . Set

C :=
Γ
(
d
2 + 1

)
log 4

δ

mfmin

(
1 +

√
1 + 2mfmin

)
,
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N0 :=
(C + 1)Mfmaxπ

d/2

Γ
(
d
2 + 1

) and N1 :=

(
8Mfmaxd

δ

)d
.

Then, for any n ≥ N := max (N0, N1),

P

(
n∑
i=1

1‖Xi−X‖≤an > N

)
≤ δ .

Proof. Set ∂ the boundary of [0, 1]d. We first show that for any fixed x ∈ [0, 1]d far away from the
boundary, that is, x such that d (x, ∂) ≥ an, then

P

(
n∑
i=1

1‖Xi−x‖≤an > N

)
≤ δ/2 .

Set x ∈ [0, 1]d such that d (x, ∂) ≥ an and p := µ(B (x, an)). We write

P

(
n∑
i=1

1‖Xi−x‖≤an > N

)
≤ P

(
n∑
i=1

1‖Xi−x‖≤an > N0

)

= P

(
1

n

n∑
i=1

1‖Xi−x‖≤an −p >
N0

n
− p

)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

1‖Xi−x‖≤an −p

∣∣∣∣∣ > N0

n
− p

)
We notice that

p = µ(B (x, an))

(definition of µ)

≥ fminµLeb
(
B (x, an) ∩ [0, 1]d

)
(µ has bounded density on [0, 1]d)

= fminµLeb(B (x, an))

(we assumed d (x, ∂) ≥ an)

=
fminπ

d/2adn
Γ
(
d
2 + 1

)
(volume of the hypersphere in dimension d)

p ≥ mfminπ
d/2

nΓ
(
d
2 + 1

) ,
(an ≥ m/n1/d)

where µLeb is the Lebesgue measure on Rd. The converse direction is similar, and we write

mfminπ
d/2

nΓ
(
d
2 + 1

) ≤ p ≤ Mfmaxπ
d/2

nΓ
(
d
2 + 1

) . (B.13)

Therefore,
N0

(C + 1)n
=
Mfmaxπ

d/2

Γ
(
d
2 + 1

)
n
≥ p ,

and we deduce that N0/n− p > pC. As a consequence,

P

(
n∑
i=1

1‖Xi−x‖≤an > N

)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

1‖Xi−x‖≤an −p

∣∣∣∣∣ > pC

)
.
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Set

Zn :=
1

n

n∑
i=1

1‖Xi−x‖≤an .

The random variable Zn is a normalized sum of independent 0–1-valued Bernoulli random vari-
ables taking value 1 with probability p. Note that

∑
i E
[
12
‖Xi−x‖≤an

]
= np. According to the

Bernstein’s inequality (Lemma 6), our choice of C and the lower bound on p,

P (|Zn − p| > pC) ≤ 2 exp

(
− nC2p

2 + 2C/3

)
≤ δ

2
.

We have proved that, for any fixed x such that d (x, ∂) ≥ an,

P

(
n∑
i=1

1‖Xi−x‖≤an > N

)
≤ δ/2 .

We now focus on the points that are near the boundary of [0, 1]d. Since we assumed that X has
bounded density on [0, 1]d, it holds that

P (d (X, ∂) ≤ an) ≤ fmaxµLeb

({
x ∈ [0, 1]d s.t. d

(
x, ∂

(
[0, 1]d

)
≤ an

)})
≤ fmax · 4d · an

(the unit cube has 2d (d− 1)–dimensional faces)

≤ 4Mfmaxd

n1/d

(an ≤M/n1/d)

P (d (X, ∂) ≤ an) ≤ δ

2
,

(n ≥ N1)

and we can conclude.

Lemma 5 (Relation between locality and sample size). Suppose that the data satisfy Eq. (2.1)
and that X has bounded density. Consider an infinite random forest estimator η̂n whose base trees
satisfy the two properties listed in Theorem 3. Let ε ∈ (0, 1). Then, for any

ρ <

[
(1− ε)Γ

(
d
2 + 1

)
nfmaxπd/2

]1/d

,

we have

E

[
n∑
i=1

Wni(X)1‖Xi−X‖≥ρ

]
≥ ε .

Proof. The intuition behind the proof is very simple: if ρ is small enough with respect to the size of
the cells, since X has bounded density on [0, 1]d, then it is very unlikely that X falls into balls of
radius ρ centered in the sample points—see the Right panel of Fig. 1.

First, we notice that

E

[
n∑
i=1

Wni(X)1‖Xi−X‖≥ρ

]
= E

[
n∑
i=1

EΘ

[
1Xi∈A(X)

N(A(X))

]
1‖Xi−X‖≥ρ

]
.

Since the leaves of the tree contain exactly one data point, the leaves are non-empty, Therefore,

E

[
n∑
i=1

Wni(X)1‖Xi−X‖≥ρ

]
= E

[
n∑
i=1

1Xi∈A(X) 1‖Xi−X‖≥ρ

]
.
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Again, since N(A(X)) = 1 almost surely, we can set unambiguously Ai the cell containing data
point Xi, and Xi ∈ A(X) is equivalent to X ∈ Ai. We write

P
(
Xi ∈ A(X) and ‖X −Xi‖ ≥ ρ

∣∣X[n],Θ
)

= P
(
X ∈ Ai and ‖X −Xi‖ ≥ ρ

∣∣X[n],Θ
)

= P
(
X ∈ Ai \ B (Xi, ρ)

∣∣X[n],Θ
)
.

By the union bound,

n∑
i=1

P
(
Xi ∈ A(X) and ‖X −Xi‖ ≥ ρ

∣∣X[n],Θ
)
≥ P

(
X ∈

n⋃
i=1

Ai \ B (Xi, ρ)

∣∣∣∣∣X[n],Θ

)

≥ P

(
X ∈ [0, 1]d \

n⋃
i=1

B (Xi, ρ)

∣∣∣∣∣X[n],Θ

)
(
⋃
iAi = [0, 1]d)

≥ 1− P

(
X ∈

n⋃
i=1

B (Xi, ρ)

∣∣∣∣∣X[n],Θ

)
(union bound)

≥ 1− n · P
(
X ∈ B (Xi, ρ)

∣∣X[n],Θ
)

(satisfies the bounded density assumption)
≥ 1− n · fmax ·Vol (B (X1, ρ))

n∑
i=1

P
(
Xi ∈ A(X) and ‖X −Xi‖ ≥ ρ

∣∣X[n],Θ
)
≥ 1− nfmaxπ

d/2ρd

Γ
(
d
2 + 1

) .

We deduce that
n∑
i=1

P (Xi ∈ A(X) and ‖X −Xi‖ ≥ ρ) ≥ 1− nfmaxπ
d/2ρd

Γ
(
d
2 + 1

) ,

and we can conclude.

•
•
X

•
Xi

•

•

•

•

•

•

A(X) = Ai

Figure 2: Proof of Lemma 5. The black dots correspond to sample points, the circles around them
are of radius ρ. The cells form a partition of [0, 1]2. Here X belong to the same cell as Xi (in blue).
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C Previous results

Theorem 4 (Consistence of local average estimators Stone, 1977, Theorem 1). Consider the lo-
cal average estimator η̂n defined in Eq. (2.4) and suppose that the following conditions are satisfied.

1. There is a C ≥ 1 such that, for every nonnegative Borel function f on Rd, and for any
n ≥ 1,

E

[
n∑
i=1

|Wn,i(X)| f(Xi)

]
≤ C E [f(X)] .

2. There exists D ≥ 1 such that P (
∑
i |Wn,i(X)| ≤ D) = 1, for all n ≥ 1;

3.
∑
i |Wn,i(X)|1‖Xi−X‖>a → 0 in probability for all a > 0;

4.
∑
iWn,i(X)→ 1 in probability;

5. maxi |Wn,i(X)| → 0 in probability.

Then the local average estimator η̂n is consistent.

Theorem 5 (Nearest-neighbor search guarantees Dasgupta and Sinha, 2015, Theorem 7). There
is an absolute constant c0 for which the following holds. Suppose µ is a doubling measure on Rd of
intrinsic dimension d0 ≥ 2, i.e.,

∀x ∈ [0, 1], ∀r > 0, ∀a ≥ 1, 0 < µ(B (x, ar)) < ad0µ(B (x, r)) .

Pick any query x ∈ [0, 1]d and draw X1, . . . , Xn independently from µ. Let n0 be as before the
maximal number of sample points in a leaf. For any δ ∈ (0, 1/3), with probability at least 1 − 3δ
over the choice of data:

• For the randomized spill tree, if k ≤ αn0/2,

P (tree fails to return the k-nearest neighbors of x) ≤ c0d0k

α

(
8 max(k, log 1/δ)

n0

)1/d0

.

• For the random projection tree, if k ≤ c0(3k)d0 max(k, log 1/δ),

P (tree fails to return the k-nearest neighbors of x) ≤ c0d0k(d0+log n0)

(
8 max(k, log 1/δ)

n0

)1/d0

.

Theorem 6 (Convergence w.r.t. number of trees (Scornet, 2016, Theorem 3.1)). DefineKn(·, ·) :
[0, 1]d × [0, 1]d → [0, 1] the random forest connection function as

Kn(x, y) = P (x and y in the same cell|Dn) .

Consider a continuous or discrete random forest, that is, assume Kn piecewise-constant or continu-
ous for any fixed Dn. Then, conditionally on the data Dn, for almost every query points x ∈ [0, 1]d,
we have

η̂n,VT
(x) −−−−−→

T→+∞
η̂n,V∞(x) .

Theorem 7 (Infinite forests have smaller risks (Scornet, 2016, Theorem 3.3)). Suppose that

Y = η(X) + ε ,

where ε is a centered Gaussian random variable with finite variance σ2, independent of X . Assume
also that ‖η‖∞ <∞. Then, for all T, n ∈ N \ {0},

E
[
|η̂n,VT

(X)− η(X)|2
]

= E
[
|η̂n,V∞(X)− η(X)|2

]
+

1

T
EX,Dn

[VarΘ (η̂n,A(X))] .
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D A concentration inequality

The following result is known as the Bernstein’s inequality.
Lemma 6 (Bernstein’s inequality (Boucheron et al., 2013, Eq. (2.10))). Let Z1, . . . , Zn be inde-
pendent random variables. Assume that there exist positive numbers b and v such that

∀1 ≤ i ≤ n, |Zi| ≤ b a.s., and
∑
i

E
[
Z2
i

]
≤ v .

Then, for any t > 0,

P

(∑
i

Zi − E [Zi] > t

)
≤ exp

(
− t2

2(v + bt/3)

)
.

E Conditional expectation

In this section, we recall the basic properties of the conditional expectation that are used throughout
this paper. We refer to Billingsley (2008, Chapter 6, Section 34) for a proof of the following facts.
Proposition 2 (Basic properties of conditional expectation). Let X and Y be integrable random
variables, let G andH be subalgebras of F . Then the following hold:

1. (linearity) For any real numbers α, β,

E [αX + βY |G] = αE [X|G] + βE [Y |G] a.s.

2. (monotonicity) If X ≤ Y a.s., then E [X|G] ≤ E [Y |G] a.s.

3. (conditional Jensen) If f is a convex function such that f(X) is integrable, then

E [f(X)|G] ≤ f (E [X|G]) a.s.

4. (measurability) If Y is G-measurable and XY is integrable, then

E [XY |G] = Y E [X|G] a.s.

5. (tower property) IfH ⊆ G, then

E [E [X|G]|H] = E [X|H] a.s.

6. (irrelevance of independent information) IfH is independent of σ (G, X), then

E [X|σ (G,H)] = E [X|G] a.s.

In particular, if X is independent ofH, then E [X|H] = E [X] a.s.
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