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Abstract
We consider the problem of classification in a
comparison-based setting: given a set of objects,
we only have access to triplet comparisons of the
form “object A is closer to object B than to object
C.” In this paper we introduce TripletBoost, a new
method that can learn a classifier just from such
triplet comparisons. The main idea is to aggregate
the triplets information into weak classifiers, which
can subsequently be boosted to a strong classifier.
Our method has two main advantages: (i) it is ap-
plicable to data from any metric space, and (ii) it
can deal with large scale problems using only pas-
sively obtained and noisy triplets. We derive theo-
retical generalization guarantees and a lower bound
on the number of necessary triplets, and we empiri-
cally show that our method is both competitive with
state of the art approaches and resistant to noise.

1 Introduction
In the past few years the problem of comparison-based learn-
ing has attracted growing interest in the machine learning
community [Agarwal et al., 2007, Jamieson and Nowak,
2011, Tamuz et al., 2011, Tschopp et al., 2011, Van
Der Maaten and Weinberger, 2012, Heikinheimo and Ukko-
nen, 2013, Amid and Ukkonen, 2015, Kleindessner and
Luxburg, 2015, Jain et al., 2016, Haghiri et al., 2017, Kazemi
et al., 2018]. The motivation is to relax the assumption that
an explicit representation of the objects or a distance metric
between pairs of examples are available. Instead one only has
access to a set of ordinal distance comparisons that can take
several forms depending on the problem at hand. In this pa-
per we focus on triplet comparisons of the form object xi is
closer to object xj than to object xk, that is on relations of the
form d(xi, xj) < d(xi, xk) where d is an unknown metric1.

We address the problem of classification with noisy triplets
that have been obtained in a passive manner: the examples lie
in an unknown metric space, not necessarily Euclidean, and

1Note that this kind of ordinal information is sometimes just used
as side information [Bellet et al., 2015, Kane et al., 2017], but, as
the references in the main text, we focus on the setting where ordinal
comparisons are the sole information available.

we are only given a small set of triplet comparisons — there
is no way in which we could actively ask for more triplets.
Furthermore we assume that the answers to the triplet com-
parisons can be noisy. To deal with this problem one can try to
first recover an explicit representation of the examples, a task
that can be solved by ordinal embedding approaches [Agar-
wal et al., 2007, Van Der Maaten and Weinberger, 2012, Ter-
ada and von Luxburg, 2014, Jain et al., 2016], and then apply
standard machine learning approaches. However, such em-
bedding methods assume that the examples lie in a Euclidean
space and do not scale well with the number of examples:
typically they are too slow for datasets with more than 103

examples. As an alternative, it would be desirable to have a
classification algorithm that can work with triplets directly,
without taking a detour via ordinal embedding. To the best
of our knowledge, for the case of passively obtained triplets,
this problem has not yet been solved in the literature.

Another interesting question in this context is that of the
minimal number of triplets required to successfully learn a
classifier. It is known that to exactly recover an ordinal
embedding one needs of the order Ω(n3) passively queried
triplets in the worst case (essentially all of them), unless we
make stronger assumptions on the underlying metric space
[Jamieson and Nowak, 2011]. However, classification is a
problem which seems simpler than ordinal embedding, and
thus it might be possible to obtain better lower bounds.

In this paper we propose TripletBoost, a method for clas-
sification that is able to learn using only passively obtained
triplets while not making any assumptions on the underlying
metric space. To the best of our knowledge this is the first
approach that is able to solve this problem. Our method is
based on the idea that the triplets can be aggregated into sim-
ple triplet classifiers, which behave like decision stumps and
are well-suited for boosting approaches [Schapire and Fre-
und, 2012]. From a theoretical point of view we prove that
our approach learns a classifier with low training error, and
we derive generalization guarantees that ensure that its error
on new examples is bounded. Furthermore we derive a new
lower bound on the number of triplets that are necessary to
ensure useful predictions. From an empirical point of view
we demonstrate that our approach can be applied to datasets
that are several order of magnitudes larger than the ones that
can currently be handled by ordinal embedding methods. Fur-
thermore we show that our method is quite resistant to noise.



Figure 1: Example of a triplet classifier. Given two reference points
xj and xk, the space is divided in two half-spaces: examples closer
to xj and examples closer to xk. Triplet information is enough to
reveal which half-space a point xi is in.

2 The TripletBoost Algorithm
In this paper we are interested in multi-class classification
problems. Let (X , d) be an unknown and general met-
ric space, typically not Euclidean. Let Y be a finite la-
bel space. Let S = {(xi, yi)}ni=1 be a set of n exam-
ples drawn i.i.d. from an unknown distribution DS defined
over X × Y . Note that we use the notation xi as a con-
venient way to identify an object; it does not correspond
to any explicit representation that could be used by an al-
gorithm (such as coordinates in a vector space). Let T =
{(xi, xj , xk) : (xi, yi), (xj , yj), (xk, yk) ∈ S, xj 6= xk} be a
set ofm triplets. Each ordered tuple (xi, xj , xk) ∈ T encodes
the following relation between the three examples:

d(xi, xj) < d(xi, xk) . (1)

Given the triplets in T and the label information of all points,
our goal is to learn a classifier. We make two main assump-
tions about the data. First, we assume that the triplets are
uniformly and independently sampled from the set of all pos-
sible triplets. Second, we assume that the triplets in T can
be noisy (that is the inequality has been swapped, for exam-
ple (xi, xk, xj) ∈ T while the true relation is d(xi, xj) <
d(xi, xk)), but the noise is uniform and independent from
one triplet to another. In the following Ia denotes the indi-
cator function returning 1 when a property a is verified and
0 otherwise,Wc is an empirical distribution over S × Y , and
wc,xi,y is the weight associated to object xi and label y.

2.1 Weak Triplet Classifiers
Rather than considering triplets as individual pieces of infor-
mation we propose to aggregate them into decision stumps
that we call triplet classifiers. The underlying idea is to select
two reference examples, xj and xk, and to divide the space
into two half-spaces: examples that are closer to xj and ex-
amples that are closer to xk. This is illustrated in Figure 1. In
principle, this can be achieved with triplets only. However, a
major difficulty in our setting is that our triplets are passively
obtained: for most training points xi we do not know whether
they are closer to xj or xk. In particular, it is impossible to
evaluate the classification accuracy of such a simple classi-
fier on the whole training set. To deal with this problem we
propose to use an abstention scheme where a triplet classifier

Algorithm 1 TripletBoost: boosting with triplet classifiers
Input: S = {(xi, yi)}ni=1 a set of n examples,

T = {(xi, xj , xk) : xj 6= xk} a set of m triplets.
Output: H(·) a strong classifier.

1: LetW1 be the empirical uniform distribution:
∀(xi, yi) ∈ S, ∀y ∈ Y, w1,xi,y = 1

n|Y| .
2: for c = 1, . . . , C do
3: Choose a triplet classifier hc according to Wc (Equa-

tion (2)).
4: Compute the weight αc of hc according to its perfor-

mance onWc (Equation (3)).
5: Update the weights of the examples to obtain a new

distributionWc+1 (Equation (4)).
6: end for

7: return H(·) = arg max
y∈Y

(
C∑
c=1

αcIhc(·) 6=ϑ∧y∈hc(·)

)

abstains if it does not know on which side of the hyperplane
the considered point lies. Given a set T of triplets and two
reference points xj and xk, we define a triplet classifier as:

hj,k(x) =

{
oj if (x, xj , xk) ∈ T ,
ok if (x, xk, xj) ∈ T ,
ϑ otherwise.

In our multi-class setting, oj and ok will be sets of labels,
that is oj , ok ⊆ Y . In Section 2.2 we describe how we choose
them in a data dependent fashion to obtain classifiers with
minimal error on the training set. The prediction ϑ simply
means that the triplet classifier abstains on the example. Let
H denote the set of all possible triplet classifiers.

The triplet classifiers are very simple and, in practice, we
do not expect them to perform well at all. But we prove in
Section 3.1 that, for appropriate choices of oj and ok, they are
at least as good as random predictors. This is all we need to
ensure that they can be used successfully in a boosting frame-
work. The next section describes how this works.

2.2 TripletBoost
Boosting is based on the insight that weak classifiers (that is
classifiers marginally better than random predictors) are usu-
ally easy to obtain and can be combined in a weighted lin-
ear combination to obtain a strong classifier. This weighted
combination can be obtained in an iterative fashion where,
at each iteration, a weak-classifier is chosen and weighted
so as to minimize the error on the training examples. The
weights of the points are then updated to put more focus on
hard-to-classify examples [Schapire and Freund, 2012]. In
this paper we use a well-known boosting algorithm called Ad-
aBoost.MO [Schapire and Singer, 1999, Schapire and Freund,
2012]. This method can handle multi-class problems with
a one-against-all approach, works with abstaining classifiers
and is theoretically well founded. Algorithm 1 summarizes
the main steps of our approach that we detail below.
Choosing a triplet classifier. To choose a triplet classifier
we proceed in two steps. In the first step, we select two refer-
ence points xj and xk such that yj 6= yk. This is done by ran-
domly sampling from an empirical distribution Wc,X on the



examples. Here Wc,X denotes the marginal distribution of
Wc with respect to the examples. This distribution is updated
at each iteration to put more focus on those parts of the space
that are hard to classify while promoting triplet classifiers that
are able to separate different classes (see Equation 4).
Choosing the predicted labels. In the second step, we
choose oj and ok, the sets of labels that should be predicted
for each half space of the triplet classifier. Given one of the
half spaces, we propose to add a label to the set of predicted
labels if the weight of examples of this class is greater than
the weight of examples of different classes. Formally, with
wc,xi,y defined as in Algorithm 1, we construct oj as follows:

oj =

{
y :

∑
(xi,yi)∈S,

(xi,xj ,xk)∈T

(Iy=yi − Iy 6=yi)wc,xi,y > 0

}
. (2)

We construct ok in a similar way. The underlying idea is
that adding hc to the current combination of triplet classifiers
should improve the predictions on the training set as much as
possible. In Section 3.1 we show that this strategy is optimal
and that it ensures that the selected triplet classifier is either a
weak classifier or has a weight αc of 0.
Computing the weight of the triplet classifier. To choose
the weight of the triplet classifier hc we start by computing
Wc,+ andWc,−, the weights of correctly and incorrectly clas-
sified examples:

Wc,+ =
∑

(xi,yi)∈S,
hc(xi) 6=ϑ

(
Iyi∈hc(xi)wc,xi,yi+

∑
y 6=yi

Iy/∈hc(xi)wc,xi,y

)
,

Wc,− =
∑

(xi,yi)∈S,
hc(xi) 6=ϑ

(
Iyi /∈hc(xi)wc,xi,yi+

∑
y 6=yi

Iy∈hc(xi)wc,xi,y

)
.

(3)

We then set αc = log

(
Wc,++ 1

n
Wc,−+ 1

n

)
/2. The term 1

n is a smoothing
constant [Schapire and Singer, 2000]: in our setting with few,
passively queried triplets it helps to avoid numerical problems
that might arise when Wc,+ or Wc,− = 0. In Theorem 2 we
show that this choice of αc leads to a decrease in training
error as the number of iterations increases.
Updating the weights of the examples. In each iteration
of our algorithm, a new triplet classifier hc is added to the
weighted combination of classifiers, and we need to update
the empirical distributionWc over the examples for the next
iteration. The idea is (i) to reduce the weights of correctly
classified examples, (ii) to keep constant the weights of the
examples for which the current triplet classifier abstains, and
(iii) to increase the weights of incorrectly classified exam-
ples. The weights are then normalized by a factor Zc so
that Wc+1 remains an empirical distribution over the exam-
ples. Formally, ∀(xi, yi) ∈ S, ∀y ∈ Y , if hc(xi) = ϑ then
wc+1,xi,y =

wc,xi,y
Zc

and if hc(xi) 6= ϑ then

wc+1,xi,y =
wc,xi,y
Zc

exp {−αc (Iy=yi − Iy 6=yi)

×
(
Iy∈hc(xi) − Iy/∈hc(xi)

)}
. (4)

Using H for prediction. Given a new example x, Triplet-
Boost predicts its label as

H(x) = arg max
y∈Y

(
C∑
c=1

αcIhc(x)6=ϑ∧y∈hc(x)

)
(5)

that is the label with the highest weight as predicted
by the weighted combination of selected triplet classi-
fiers. However, recall that we are in a passive setting,
and thus we assume that we are given a set of triplets
Tx = {(x, xj , xk) : (xj , yj), (xk, yk) ∈ S, xj 6= xk} associ-
ated with the example x (but there is no way to choose them).
Hence, some of the triplets in Tx correspond to triplet classi-
fiers in H (that is (x, xj , xk) ∈ Tx and the reference points
for hc were xj and xk) and some do not. In particular, it
might happen that none of the triplets in Tx corresponds to a
triplet classifier in H and, in this case, H can only randomly
predict a label. In Section 3.3 we provide a lower bound on
the number of triplets necessary to avoid this behaviour. The
main computational bottleneck when predicting the label of a
new example x is to check whether the triplets in Tx match
a triplet classifier in H . A naive implementation would com-
pare each triplet in Tx to each triplet classifier, which can be
as expensive as O(|Tx|C). Fortunately, by first sorting the
triplets and the triplet classifiers, a far more reasonable com-
plexity of O(|Tx| log(|Tx|) + C log(C)) can be achieved.

3 Theoretical Analysis
In this section we show that our approach is theoretically well
founded. First we prove that the triplet classifiers with non-
zero weights are weak learners: they are slightly better than
random predictors (Theorem 1). Building upon this result we
show that, as the number of iterations increases, the training
error of the strong classifier learned by TripletBoost is de-
creased (Theorem 2). Then, to ensure that TripletBoost does
not over-fit, we derive a generalization bound showing that,
given a sufficient amount of training examples, the test error
is bounded (Theorem 3). Finally, we derive a lower bound on
the number of triplets necessary to ensure that TripletBoost
does not learn a random predictor (Theorem 4).

3.1 Triplet Classifiers and Weak Learners
We start this theoretical analysis by showing that the strategy
to choose the predicted labels of triplet classifiers described in
Equation (2) is optimal: it ensures that their error is minimal
on the training set (compared to any other labelling strategy).
We also show that the triplet classifiers are never worse than
random predictors and in fact, that only those triplets classi-
fiers that are weak classifiers (strictly better than random clas-
sifiers) are affected a non-zero weight. This is summarized in
the next theorem.
Theorem 1 (Triplet classifiers and weak learners). LetWc

be an empirical distribution over S ×Y and hc be the corre-
sponding triplet classifier chosen as described in Section 2.2.
It holds that:

1. the error of hc on Wc is at most the error of a random
predictor and is minimal compared to other labelling
strategies,



2. the weight αc of the classifier is non-zero if and only if,
hc is a weak classifier, that is is strictly better than a
random predictor.

Proof. Given in Perrot and von Luxburg [2018].

3.2 Boosting Guarantees
From a theoretical point of view the boosting framework has
been extensively investigated and it has been shown that most
AdaBoost-based methods decrease the training error at each
iteration [Freund and Schapire, 1997]. Another question that
has attracted a lot of attention is the problem of generaliza-
tion. It is known that when the training error has been min-
imized, AdaBoost-based methods often do not over-fit and
it might even be beneficial to further increase the number of
weak learners. A popular explanation is the margin theory
which says that as the number of iterations increases, the con-
fidence of the algorithm in its predictions increases and thus,
the test accuracy is improved [Schapire et al., 1998, Breiman,
1999, Wang et al., 2011, Gao and Zhou, 2013]. TripletBoost
is based on AdaBoost.MO [Schapire and Freund, 2012], and
thus it inherits the theoretical guarantees presented above. In
this section, we provide two theorems which show that (i)
TripletBoost reduces the training error as the number of iter-
ations increases, and (ii) it generalizes well to new examples.

The following theorem shows that, as the number of itera-
tions increases, TripletBoost decreases the training error.

Theorem 2 (Reduction of the training error). Let S be a
set of n examples and T be a set of m triplets (obtained as
described in Section 2). Let H(·) be the classifier obtained
after C iterations of TripletBoost (Algorithm 1) using S and
T as input. It holds that:

P
(x,y)∈S

[H(x) 6= y] ≤ |Y|
2

C∏
c=1

Zc

with Zc = (1 − Wc,+ − Wc,−) + (Wc,+) ·
√

Wc,−+
1
n

Wc,++ 1
n

+

(Wc,−) ·
√

Wc,++ 1
n

Wc,−+
1
n

≤ 1.

Proof. This result, inherited from AdaBoost.MO, is proven
in Perrot and von Luxburg [2018].

The next theorem shows that the true error of a classifier
learned by TripletBoost can be bounded by a quantity related
to the confidence of the classifier on the training examples,
with respect to a margin, plus a term which decreases as the
number of examples increases. The confidence of the classi-
fier on the training examples is also bounded and decreases
for sufficiently small margins.

Theorem 3 (Generalization guarantees). Let DS be a dis-
tribution over X × Y , let S be a set of n examples drawn
i.i.d. from DS , and let T be a set of m triplets (obtained as
described in Section 2). Let H(·) be the classifier obtained
after C iterations of TripletBoost (Algorithm 1) using S and
T as input. Let H be a set of triplet classifiers as defined in

Section 2.1. Then, given a margin parameter θ >
√

log |H|
16|Y|2n

and a measure of the confidence of H(·) in its predictions
θH(x, y), with probability at least 1− δ, we have that

P
(x,y)∼DS

[H(x) 6= y] ≤ P
(x,y)∈S

[θH(x, y) ≤ θ]

+O


√√√√ log

(
1
δ

)
n

+ log

(
|Y|2 nθ2
log |H|

)
log |H|
nθ2


Furthermore we have that

P
(x,y)∈S

[θH(x, y) ≤ θ] ≤ |Y|
2

C∏
c=1

Zc

√√√√(Wc,+ + 1
n

Wc,− + 1
n

)θ
.

Proof. This result, inherited from AdaBoost.MO, is proven
in Perrot and von Luxburg [2018].

At a first glance it seems that this bound does not depend
on m, the number of available triplets. However, this depen-
dency is implicit: m impacts the probability that the train-
ing examples are well classified with a large margin θ. If the
number of triplets is small, the probability that the training ex-
amples are well classified with a given margin is small. This
probability increases when the number of triplets increases
(as illustrated in Perrot and von Luxburg [2018]).

To prove a bound that explicitly depends on m would be of
significant interest. However this is a difficult problem, as it
requires to use an explicit measure of complexity for general
metric spaces, which is beyond the scope of this paper.

3.3 Lower Bound on the Number of Triplets
In this section we investigate the minimum number of triplets
that are necessary to ensure that our algorithm performs well.
Ideally, we would like to obtain a lower bound on the num-
ber of triplets that are necessary to achieve a given accuracy.
In this paper we take a first step in this direction by deriv-
ing a bound on the number of triplets that are necessary to
ensure that the learned classifier does not abstain on any un-
seen example. Theorems 4 and 5 show that it abstains with
high probability if it is learned using too few triplets or if it
combines too few triplet classifiers.
Theorem 4 (Lower bound on the probability that a strong
classifier abstains). Let n ≥ 2 be the number of training ex-
amples, p = 2nk

n3 with k ∈
[
0, 3− log(2)

log(n)

)
be the probability

that a triplet is available in the triplet set T and C = nβ

2 with

β ∈
[
0, 1 + log (n−1)

log (n)

]
be the number of classifiers combined

in the learned classifier. Let A be any algorithm learning a
classifier H(·) = arg maxy∈Y

(∑C
c=1 αcIy∈hc(·)

)
that com-

bines several triplet classifiers using some weights αc ∈ R.
Assume that triplet classifiers that abstain on all the training
examples have a weight of 0 (that is if hc(xi) = ϑ for all the
examples (xi, yi) ∈ S then αc = 0). Then the probability
that H abstains on a test example is bounded as follows:

P
(x,y)∼DS

[H(x) = ϑ] ≥
(

1− p+ p (1− p)n
)C

. (6)

Proof. Given in Perrot and von Luxburg [2018].



(a) Moons, Metric: Euclidean, Noise
Level: 0%

(b) Moons, Metric: Euclidean, Pro-
portion of Triplets: 10%

(c) Iris, Proportion of Triplets: 10%,
Noise Level: 0%

Figure 2: Moons is a small scale dataset with 500 examples and 2 dimensions. We fix the triplets metric to the Euclidean distance. In
Figure 2a we consider the noise free setting and we vary the proportion of available triplets from 1 to 10% of all the triplets. In Figure 2b we
fix this proportion to 10% and we vary the noise level from 0 to 20%. Iris is a small scale dataset with 150 examples and 4 dimensions. In
Figure 2c we fix the proportion of available triplets to 10%, the noise level to 0% and we vary the metric considered to generate the triplets.

To understand the implications of this theorem we consider
a concrete example.
Example 1. Assume that we build a linear combination of all
possible triplet classifiers, that is C = n(n−1)

2 . Then we have

lim
n→+∞

P
(x,y)∼DS

[H(x) = ϑ]≥

1 if k < 3
2 ,

exp(−2) if k = 3
2 ,

0 if 3
2 < k,

(7)

where k is the parameter that controls the probability p that a
particular triplet is available in the triplets set T . The bottom
line is that when k < 3

2 , that is when we do not have at least
Ω(n
√
n) random triplets, the learned classifier abstains on

all the examples.

Proof. Given in Perrot and von Luxburg [2018].

Theorem 4 shows that when p andC are too small, then the
strong classifier abstains with high probability. However, the
theorem does not guarantee that the strong classifier does not
abstain when p and C are large. The next theorem takes care
of this other direction under slightly stronger assumptions on
the weights learned by the algorithm.
Theorem 5 (Exact bound on the probability that a strong
classifier abstains). In Theorem 4, further assume that each
triplet classifier that does not abstain on at least one training
example has a weight different from 0 (if for at least one ex-
ample (xi, yi) ∈ S we have that hc(xi) 6= ϑ then αc 6= 0).
Then equality holds in Equation (6).

Proof. Given in Perrot and von Luxburg [2018].

Theorem 5 implies that equality holds in Example 1, thus
when C = n(n−1)

2 we need at least k > 3
2 , that is at least

Ω(n
√
n) random triplets, to obtain a classifier that never ab-

stains. In Perrot and von Luxburg [2018] we extend Exam-
ple 1 and we study the limit as n → ∞ for general values of
C and p. We also provide a graphical illustration of the bound
and a discussion on how this lower bound compares to exist-
ing results [Ailon, 2012, Jamieson and Nowak, 2011, Jain et
al., 2016].

4 Experiments
We propose an empirical evaluation of TripletBoost. We con-
sider six datasets of varying scales and four baselines.
Baselines. First, we consider an embedding approach. We
use tSTE [Van Der Maaten and Weinberger, 2012] to embed
the triplets in a Euclidean space and we use the 1-nearest
neighbour algorithm for classification. We also would like
to compare to alternative approaches able to learn directly
from triplets (without embedding as a first step). However,
to the best of our knowledge, TripletBoost is the only method
able to do classification using only passively obtained triplets.
The only option is to choose competing methods that have
access to more information (providing them an unfair ad-
vantage). We settled for a method that uses actively chosen
triplets to build a comparison-tree to retrieve nearest neigh-
bours (CompTree) [Haghiri et al., 2017]. Finally, to put the
results obtained in the triplet setting in perspective, we con-
sider two methods that use the original Euclidean represen-
tations of the data, the 1-nearest neighbour algorithm (1NN)
and AdaBoost.SAMME (SAMME) [Hastie et al., 2009].
Implementation details. For tSTE we used the implemen-
tation distributed on the authors’ website and we set the em-
bedding dimension to the original dimension of the data. This
method was only considered for small datasets with less than
103 examples as it does not scale well to bigger datasets (Fig-
ure 3c). For CompTree we used our own implementation and
the leaf size of the comparison tree is set to 1 as this is the
only value for which this method can handle noise. For 1NN
and SAMME we used sk-learn [Pedregosa et al., 2011]. The
number of boosting iterations for SAMME is set to 103. Fi-
nally for TripletBoost we set the number of iterations to 106.
Datasets and performance measure. We consider six
datasets: Iris, Moons, Gisette, Cod-rna, MNIST, and kM-
NIST. For each dataset we generate some triplets as in Equa-
tion (1) using three metrics: the Euclidean, Cosine, and City-
block distances (See Perrot and von Luxburg [2018] for de-
tails). Given a set of n examples there are n2(n−1)/2 possible
triplets. We consider three different regimes where 1%, 5% or
10% of them are available, and we consider three noise levels



(a) Gisette, Metric: Euclidean, Noise
Level: 0%

(b) Gisette, Metric: Euclidean, Pro-
portion of Triplets: 5%

(c) Moons, Metric: Euclidean, Propor-
tion of Triplets: 10%, Noise Level: 10%

Figure 3: The Gisette dataset has 7000 examples and 5000 dimensions. In Figure 3a we consider the noise free setting and we vary the
proportion of triplets available from 1 to 10% of all the triplets. In Figure 3b we fix the proportion of available triplets to 5% and we vary the
noise level from 0 to 20%. Figure 3c presents the training time of the triplet-based methods with training samples of increasing sizes on the
Moons dataset. The proportion of triplets and the noise level were both set to 10%. The results were obtained on a single core @3.40GHz.

where 0%, 10% or 20% of them are incorrect. We measure
performances in terms of test accuracy (higher is better). For
all the experiments we report the mean and standard devia-
tion of 10 repetitions. Since the results are mostly consistent
across the datasets we present some representative ones here
and defer the others to Perrot and von Luxburg [2018].

Small scale regime. We first consider the datasets with less
than 103 training examples (Figure 2). In this setting our
method does not perform well when the number of triplets
is too small, but gets closer to the baselines when the num-
ber of triplets increases (Figure 2a). This behaviour can be
easily explained: when only 1% of the triplets are available,
the triplet classifiers abstain on all but 3 or 4 examples on av-
erage and thus their performance evaluations are not reliable.
Consequently their weights cannot be chosen in a satisfactory
manner. This problem vanishes when the number of triplets
increases. With increasing noise levels (Figure 2b) one can
notice that TripletBoost is more robust than CompTree. In-
deed, CompTree generates a comparison-tree based on in-
dividual triplet queries, and the greedy decisions in the tree
building procedure can easily be misleading in the presence
of noise. Finally, our approach is less sensitive than tSTE to
changes in the metric that generated the triplets (Figure 2c).
Indeed, tSTE assumes that this metric is the Euclidean dis-
tance while our approach does not make any assumptions.

Large scale regime. On larger datasets (Figure 3), our
method does not reach the accuracy of 1NN and SAMME,
who exploit a significant amount of extra information. Still,
it performs quite well and is competitive with CompTree,
the method that uses active rather than passive queries. The
ordinal embedding methods cannot compete in this regime,
as they are too slow to even finish (Figure 3c). Once again
TripletBoost is quite resistant to noise (Figure 3b).

5 Conclusion
In this paper we proposed TripletBoost to address the prob-
lem of comparison-based classification. It is particularly de-
signed for situations where triplets cannot be queried actively,

and we have to live with whatever set of triplets we get. We do
not make any geometric assumptions on the underlying space.
From a theoretical point of view we have shown that Triplet-
Boost is well founded and we proved guarantees on both the
training error and the generalization error of the learned clas-
sifier. Furthermore we derived a new lower bound showing
that to avoid learning a random predictor, at least Ω(n

√
n)

triplets are needed. In practice we have shown that, given a
sufficient amount of triplets, our method is competitive with
state of the art methods and that it is quite resistant to noise.

To the best of our knowledge, TripletBoost is the first al-
gorithm that is able to handle large scale datasets using only
passively obtained triplets. This means that the comparison-
based setting could be considered for problems which were,
until now, out of reach. As an illustration, consider a platform
where users can watch, comment and rate movies. It is rea-
sonable to assume that triplets of the form movie mi is closer
tomj than tomk can be automatically obtained using the rat-
ings of the users, their comments, or their interactions. In this
scenario, active learning methods are not applicable since the
users might be reluctant to answer solicitations. Similarly,
embedding methods are too slow to handle large numbers of
movies or users. However, we can use TripletBoost to solve
problems such as predicting the genres of the movies. As
a proof of concept we considered the 1m movielens dataset
[Harper and Konstan, 2016]. It contains 1 million ratings
from 6040 users on 3706 movies. We used the users’ ratings
to obtain some triplets about the movies and TripletBoost to
learn a classifier able to predict the genres of a new movie
(details are given in Perrot and von Luxburg [2018]). Given
a new movie, in ∼83% of the cases the genre predicted as the
most likely one is correct and, on average, the 5 genres pre-
dicted as the most likely ones cover ∼92% of the true genres.
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