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Advancing Research on Unconscious Priming: When Can Scientists Claim
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Current literature holds that many cognitive functions can be performed outside consciousness.
Evidence for this view comes from unconscious priming. In a typical experiment, visual stimuli are
masked such that participants are close to chance performance when directly asked to which of two cat-
egories the stimuli belong. This close-to-zero sensitivity is seen as evidence that participants cannot con-
sciously report the category of the masked stimuli. Nevertheless, the category of the masked stimuli can
indirectly affect responses to other stimuli (e.g., reaction times or brain activity)—an effect called pri-
ming. The priming effect is seen as evidence for a higher sensitivity to the masked stimuli in the indirect
responses as compared with the direct responses. Such an apparent difference in sensitivities is taken as
evidence that processing occurred unconsciously. But we show that this “standard reasoning of uncon-
scious priming” is flawed: Sensitivities are not properly compared, creating the wrong impression of a
difference in sensitivities even if there is none. We describe the appropriate way to determine sensitiv-
ities, replicate the behavioral part of a landmark study, develop methods to estimate sensitivities from
reported summary statistics of published studies, and use these methods to reanalyze 15 highly influen-
tial studies. Results show that the interpretations of many studies need to be changed and that a commu-
nity effort is required to reassess the vast literature on unconscious priming. This process will allow
scientists to learn more about the true boundary conditions of unconscious priming, thereby advancing
the scientific understanding of consciousness.
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theory
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Research on consciousness and its cerebral substrates has far-
reaching implications and received substantial attention in recent
years (Michel et al., 2019). A driving factor comes from reports
that masked stimuli that are not consciously perceived can never-
theless affect behavioral responses and brain activity (Kouider &
Dehaene, 2007; Van den Bussche et al., 2009). The exciting claim
here is that unconscious processing might be more than a mere

residue of conscious processing and may be performed by differ-
ent neuronal processes than conscious processing. Such results
impact current theories about the functional role of consciousness
(Dehaene et al., 2017; Hassin, 2013; Kouider & Dehaene, 2007;
Sklar et al., 2012; Van den Bussche et al., 2009), might suggest
parallel neuronal routes for unconscious versus conscious process-
ing (Morris et al., 1999), and might support theories of superior
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unconscious processing (Custers & Aarts, 2010; Dijksterhuis et
al., 2006; ten Brinke et al., 2016).
Here, we scrutinize one of the most frequently used approaches

in this field. We show that the standard reasoning in the dissocia-
tion paradigm (Hannula et al., 2005; Holender, 1986; Schmidt &
Vorberg, 2006; Simons et al., 2007) is flawed for mathematical
reasons. It fails to provide meaningful interpretation of the data,
and needs to be replaced by an appropriate analysis. Because
many studies have used the standard reasoning, a large body of lit-
erature needs reassessment. This has the potential to drastically
change our views on unconscious processing and its neuronal
underpinnings. The fallacy we expose affects a wide range of
research areas because the standard reasoning has been employed
on such diverse topics as, for example, unconscious processing of
semantic meaning (Dehaene et al., 1998), motivation (Pessiglione
et al., 2007), emotion (Morris et al., 1998), cognitive control (van
Gaal et al., 2010), and detection of lies (ten Brinke et al., 2014).
To assess how seriously the literature is affected, we proceeded

in three strands: (a) We replicated the behavioral part of a land-
mark study (Dehaene et al., 1998) and showed that the appropriate
analysis of the data does not support unconscious priming (in con-
trast to the claims of the original study). (b) We developed statisti-
cal methods to reanalyze published studies based on the reported t
and F statistics (because access to the full trial-by-trial data is of-
ten lacking). We validated this approach by showing that our rean-
alysis of the published data of Dehaene et al. (1998) is consistent
with the results of our replication. (c) We used our methods to
reanalyze 15 highly influential studies (with a total of 3,277 cita-
tions in Web of Science). Even though all these studies used the
standard reasoning to infer unconscious processing, their data tell
a different story.

The Standard Reasoning of Unconscious Priming

As a typical example for a study using the standard reasoning,
consider the study by ten Brinke et al. (2014) who reported that
humans can detect liars better unconsciously than consciously:
“[T]he unconscious mind identifies and processes cues to decep-
tion . . . more efficiently and effectively than the conscious mind”
(p. 1104). In the following, we will describe the specifics of this
study as well as the general aspects that are typical for studies
using the standard reasoning.
Participants of ten Brinke et al. (2014) first watched videos of

suspects who were either lying or telling the truth. Then partici-
pants performed two tasks: The direct and the indirect task. These
tasks were supposed to measure conscious and unconscious lie
detection, respectively.
In the direct task, participants judged which suspects had been

lying or telling the truth. Participants performed poorly with an accu-
racy of only 49.62%-correct (with chance level being 50%), which
was taken by ten Brinke et al. (2014) as evidence that participants
could not consciously detect liars with more than a poor sensitivity.
In the same way, studies using the standard reasoning typically let
participants directly discriminate stimuli belonging to one of two cat-
egories (see Figure 1). Participants’ performance—measured by the
proportion of correct responses or by the sensitivity index, d0, from
signal detection theory (Green & Swets, 1988)—is typically found to
be close to chance level. This result is then taken as evidence that
conscious discrimination of the presented stimuli is poor at best.

In the indirect task of ten Brinke et al. (2014), participants cate-
gorized target–words, such as “deceitful” or “honest,” into two
categories: lying or truth–telling. Before each target–word, a
masked picture of one of the suspects was briefly presented in
order to affect (or “prime”) the responses to the target words
(therefore those masked stimuli are often called the “primes”). ten
Brinke et al. (2014) found that participants’ reaction times (RTs)
to the target words were faster when the primes were congruent
with the targets (e.g., the picture of a lying suspect before a lie–re-
lated word) than when the primes were incongruent with the tar-
gets. That is, ten Brinke et al. (2014) found a congruency effect
between primes and targets in the indirect task. In the same way,
studies using the standard reasoning typically employ an indirect
task attempting to find such congruency effects (see Figure 1).
These congruency effects could be on RTs (as in the case ten
Brinke et al., 2014), but also on other behavioral responses (e.g.,
skin conductance) or neurophysiological measures (e.g., in EEG
or fMRI).

Taken together, ten Brinke et al. (2014) found the typical pat-
tern of results for the unconscious priming paradigm: (a) a poor
accuracy, or sensitivity in the direct task and (b) a clear congru-
ency effect in the indirect task. Based on this pattern, they con-
cluded that participants’ indirect task revealed more accurate lie
detection than the direct task: “[I]ndirect measures of deception
detection are significantly more accurate than direct measures”
(p. 1098; Abstract). In the same way, studies using the standard
reasoning infer from such a pattern of results better sensitivity for
the primes in the indirect task than in the direct task (see Figure
2). We dubbed this situation the indirect task advantage, or ITA. It
is important to note that the claim of an ITA is, in this phase of the
reasoning, independent of any considerations about conscious or
unconscious processing. We call this descriptive phase of the
standard reasoning Step 1.

In Step 2 of the standard reasoning, ten Brinke et al. (2014)
used the presumed ITA to conclude superior unconscious process-
ing: “[A]lthough humans cannot consciously discriminate liars
from truth tellers, they do have a sense, on some less-conscious
level, of when someone is lying” (p. 1103). The authors thereby
followed the typical assumption that direct and indirect tasks mea-
sure conscious and unconscious processing, respectively. Based
on the supposed ITA from Step 1, these assumptions lead to the
typical conclusion that participants processed the category of the
masked stimuli better unconsciously than they can consciously
report.

The standard reasoning is summarized for example by Dell’Ac-
qua and Grainger (1999): “The present work follows the tradition
of providing evidence for a dissociation between direct and indi-
rect effects of unconsciously presented stimuli (Draine & Green-
wald, 1998; Greenwald et al., 1995). More specifically, null
effects are sought in direct measures (i.e., where subjects respond
directly to the unconsciously presented stimuli) accompanied by
non-null indirect effects (i.e., priming effects)” (p. B2). For further
description of the standard reasoning see also Merikle (1992) and
Simons et al. (2007). Even though some studies may not state an
ITA as explicitly as shown here, it is nevertheless necessarily
implied when claims about unconscious processing are made
because Step 1 is a necessary condition for Step 2.

But note that the standard reasoning infers better sensitivity in
the indirect task than in the direct task (i.e., an ITA) without ever
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calculating sensitivity (or accuracy) in the indirect task to compare
against that in the direct task. For example, ten Brinke et al.
(2014) only demonstrated a congruency effect on RTs. However,
if this congruency effect indicated accurate unconscious lie detec-
tion, we should be able to use the RT data to determine which of
the suspects were lying with a higher accuracy than in the direct
task. Otherwise the congruency effect does not truly provide evi-
dence for better accuracy in the indirect than in the direct task
(i.e., for an ITA).
Because ten Brinke et al. (2014) laudably followed an open-

data policy, Franz and von Luxburg (2015) were able to reana-
lyze how much evidence the RT data truly provided for better
accuracy in the indirect than in the direct task. To assess this,
they determined statistically optimal classifiers, used the RT of
each trial in the indirect task to classify (“predict” in the no-
menclature of statistical learning) which of the suspects were
lying, and found the accuracy in the indirect task to be only at

50.6%-correct (SEM = .3%; see below for more details on the
methods used). This value is very similar to—and not signifi-
cantly different from—the accuracy in the direct task (which
was 49.62%-correct; SEM = 1.4%). Therefore, ten Brinke et
al.’s (2014) inference in Step 1 was flawed: Their data did not
provide evidence for better accuracy in the indirect than in the
direct task. In our words, there was no evidence for an ITA.
Because the existence of an ITA in Step 1 is a necessary condi-
tion for Step 2 of the standard reasoning, inferences about
unconscious processing were not warranted.

In the following section, we show in detail why claiming an ITA
based on the standard reasoning is flawed. Note, that our critique
focuses on how an ITA is established in Step 1 and is therefore in-
dependent of any assumptions about conscious versus unconscious
processing, which are relevant only in Step 2 and for which differ-
ent, sometimes contentious approaches exist (e.g., Eriksen, 1960;
Erdelyi, 1986; Holender, 1986; Reingold & Merikle, 1988, 1990;

Figure 1
Typical Study Design to Infer an Indirect Task Advantage (ITA)

Note. (a) Example study: The study of Dehaene et al. (1998) is a prototypical example for
unconscious priming with number stimuli. In each trial, a masked prime stimulus is presented
for a short duration followed by a well visible target stimulus. In the direct task, participants
discriminated the primes and performance was close to chance level. In the indirect task, par-
ticipants discriminated the target stimuli by deciding whether they were smaller or larger than
the number 5. Reaction times (RTs) were faster and lateralization of brain activity was larger
when prime and target stimuli were congruent (both smaller or both larger than 5) than when
they were incongruent (one larger one smaller). Dehaene et al. (1998) followed the standard
reasoning to infer a higher sensitivity for the primes in the indirect task than in the direct task
(i.e., an ITA) and conclude that the primes were processed in the absence of conscious aware-
ness. (b) General design: In general, prime and target stimuli each come from one of two cat-
egories, A or B. In the direct task, participants discriminate the prime (e.g., guess whether it
is from Category A or B) with a poor sensitivity. In the indirect task, the same stimuli are
presented and participants now discriminate the target. In this task, the prime is shown to
influence responses resulting in faster RTs for congruent (A–A, or B–B) than incongruent tri-
als (incongruent: A–B, or B–A). From this pattern of results, the standard reasoning infers an
ITA (cf. Figure 2).
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Schmidt & Vorberg, 2006). We avoid these discussions by focusing
on an empirical investigation of Step 1 which makes our critique
very general.

The Standard Reasoning Is Flawed and Fails to Provide
Evidence for an ITA

The standard reasoning is intuitively very appealing, which
seems to be one reason for its popularity. The colloquial ver-
sion of the arguments to infer an ITA in Step 1 goes like this:
“Participants have a very hard time to discriminate the masked
stimuli in the direct task. They are very close to zero sensitivity
and usually not significantly above chance. Nevertheless we
find clear and highly significant congruency effects in the indi-
rect task. Therefore, it seems obvious, that the indirect task
responses are more sensitive to the masked stimuli than the
direct task responses.”

However, this intuition is misguided. To see this, consider what
happens if we increased the number of observations (number of
participants or trials). The poor sensitivity in the direct task (Figure
2a) will only be measured more precisely but will still be poor. In
contrast, the congruency effect in the indirect task (Figure 2b)
becomes clearer because it is based on the difference between con-
gruent and incongruent condition means: With more observations,
the variability of the two means becomes smaller, such that the dif-
ference between them becomes clearer. Therefore, a clear congru-
ency effect can be generated by a good underlying sensitivity
(corresponding to, say, d0 = 5 or 99% correct) but it can also be
generated by a very poor sensitivity (say, d0 = 0.05 or 51% correct).
In cases where the sensitivity of the indirect task is as poor as in the
direct task, there is no ITA and further interpretations about uncon-
scious processing are unwarranted. Not recognizing this is the main
fallacy of the standard reasoning. We demonstrate this problem by
using a toy example.

Figure 2
Standard Reasoning to Infer an Indirect Task Advantage (ITA)

Note. (a) In the direct task, the standard reasoning infers from close-to-chance performance
that there was poor sensitivity for the primes, if any at all. (b) In the indirect task, the stand-
ard reasoning infers from a clear congruency effect that sensitivity was relatively good.
Based on this pattern of results the standard reasoning makes two inference steps: In Step 1,
it incorrectly infers that participants’ responses in the indirect task were more sensitive to the
primes than responses in the direct task (ITA). In Step 2, it attributes this difference to uncon-
scious processing. However, already Step 1 of this reasoning is flawed because a clear con-
gruency effect does not necessarily indicate good sensitivity. It could be caused by a
sensitivity as poor as (or even worse than) the sensitivity in the direct task! Because Step 1 is
independent of any (sometimes contentious) assumptions about conscious versus unconscious
processing, our critique is also independent of any such assumptions.
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Toy Example With BabyWeights

To illustrate the problem of the standard reasoning, consider an
example in which responses in the direct and indirect tasks are
based on the exact same underlying sensitivity. Nevertheless, the
standard reasoning would erroneously infer that responses in the
indirect task were more sensitive than responses in the direct task
(i.e., an ITA). Consider participants measured the birth weights of
newborn girls (Category A) and boys (Category B), such that they
only knew the weight of the babies but not the biological sex. This
would be all the information participants had in both, direct and
indirect, tasks.

In the direct task, participants would use this weight information
to guess whether a baby is a girl or a boy (newborn girls weigh a little
less than boys). Due to the large overlap between the weight distribu-
tions (Figure 3a), participants would be correct in only approxi-
mately 55% of the cases even when using an ideal decision criterion.
This corresponds to a poor performance that is close-to-chance level
(50%). Following the standard reasoning, an experimenter would
correctly infer a poor sensitivity in this direct task (Figure 2a).

In the indirect task, participants would simply report the
numerically measured weight of the babies. The experimenter
would average those responses across groups of baby girls and

Figure 3
Toy-Example Demonstrating Fallacy of Standard Reasoning

Note. We show that even when responses in the direct and indirect tasks are based on the
exact same information the standard reasoning would nevertheless infer an indirect task
advantage (ITA): a higher sensitivity in the indirect as compared with the direct task.
Consider participants of a hypothetical experiment measured the birth weight of babies but
did not know the babies’ sex. (a) In the direct task, participants used the weight of an indi-
vidual baby to guess whether it is a girl or a boy. The weight distributions overlap heavily
such that sensitivity would be poor (d'true = 0.25; corresponding to 55% correct). (b) In the
indirect task, participants responded by simply stating the measured weights. The experi-
menter would average those responses across many trials (e.g., across 3,000 girls and 3,000
boys). The resulting group means are much less variable than the individual weights such
that the experimenter would obtain a clear difference between the two group means (this
corresponds to a clear congruency effect in the priming paradigm). Based on this result, the
standard reasoning would erroneously infer that participants had relatively good sensitivity
about whether a baby was a girl or a boy in the indirect task—better than in the direct task.
That is, the standard reasoning would infer an ITA even though the exact same information
created the responses in both tasks. Weight–data based on Janssen et al. (2007).
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boys and would calculate the difference of the mean responses to
those two groups. With increasing group sizes, the experimenter
would eventually find a clear difference (corresponding to the
clear congruency effect in the priming paradigm). Figure 3b
shows this for 3,000 observations in each group, which is a typi-
cal number of observations in the indirect task (e.g., when 10
participants perform 300 trials in each condition, the number of
observations per condition is 10 3 300 = 3,000). Following the
standard reasoning, the experimenter would incorrectly infer a
good sensitivity in this indirect task (Figure 2b).
Here is the catch: The standard reasoning would incorrectly

interpret this pattern of results as evidence for better sensitivity in
the indirect task than in the direct task (i.e., for an ITA). However,
this inference is wrong because participants gave responses in
both tasks based on exactly the same information: In both tasks
they knew only the weight of the babies. The illusion of an ITA is
generated by the different data-analysis strategies of the experi-
menter in the two tasks and by the fact that the experimenter never
attempted to estimate the sensitivity in the indirect task.

Further Details on the Standard Reasoning

We have shown that the standard reasoning is flawed because it
infers an ITA in Step 1 even when there is none. The problem is
that the standard reasoning calculates two very different things in
the direct and indirect tasks: In the direct task, it calculates how
well each stimulus can be classified on a trial-by-trial level. In the
indirect task, it assesses whether there is a difference in mean
responses. These are two very different things and it is a priori to be
expected that the sensitivity in single trials can be poor while mean
responses can nevertheless be clearly separated between the two cat-
egories given enough trials. Amore appropriate analysis to determine
whether there is an ITA would need to estimate sensitivities in both
tasks and compare them. Before we present such an analysis, we
want to first discuss some details of the standard reasoning.

True Zero-Sensitivity in the Direct Task

Consider that the true sensitivity in the direct task were known to
be exactly zero and that there were at the same time a clear congru-
ency effect in the indirect task. This ideal situation is typically
sought—but typically not fully achieved—in the dissociation para-
digm (Hannula et al., 2005; Schmidt & Vorberg, 2006; Simons et
al., 2007). In this case (and only in this case), the standard reason-
ing would be justified in claiming that responses in the indirect task
were somehow more sensitive than responses in the direct task.
This is so, because a positive (larger than zero) sensitivity—even if
it is minute—is required to produce a congruency effect and there-
fore the indirect task sensitivity must be larger than zero. However,
there are a number of problems with this scenario: (a) It is unrealis-
tic. Typically, studies either find some small, residual sensitivity in
the direct task or they do not find a congruency effect (Zerweck et
al., 2021). (b) One cannot be certain of a true zero sensitivity.
Instead, sensitivity in the direct task always needs to be measured
(and is therefore affected by measurement error). Thus, we would
still need to establish that the sensitivity in the indirect task is
indeed larger than that in the direct task (e.g., by a significance test
on the difference). (c) The sensitivity in the indirect task could still
be so low, that it would be close–enough to the zero sensitivity of

the direct task to not allow for strong conclusions (e.g., consider a
sensitivity that corresponded to 50% correct in the direct task and
to 51% correct in the indirect task).

Significance Testing Versus Bayesian Methods

Until now, we purposefully did not talk about statistical signif-
icance testing because we wanted to focus on the main fallacy of
the standard reasoning. Because significance testing and its
applications have been heavily—and often rightfully—criticized
since the very inception of the concept (Boring, 1919; Cumming,
2014; Dienes, 2011; Morrison & Henkel, 1970); it might be
tempting to attribute the main fallacy of the standard reasoning
also to significance testing. However, the problem of the stand-
ard reasoning is not so much that the statistical tools were wrong,
but that the wrong statistical question is asked for the indirect
task: The standard reasoning asks whether there is a true differ-
ence in means between congruent and incongruent conditions.
However, the correct question to ask would be what the sensitiv-
ity in the indirect task is and whether this sensitivity is higher
than in the direct task (such that an ITA can be concluded).
Therefore, it would not help to simply replace the frequentist sig-
nificance testing by Bayesian methods. Because researchers are
interested in establishing an ITA (i.e., a difference in sensitiv-
ities) it does not suffice to evaluate both tasks in isolation. We
must test directly for a difference in sensitivities between the
two tasks. Failure to do so can lead to serious errors no matter
whether we used significance testing (cf. Appendix B of Franz &
Gegenfurtner, 2008 and Nieuwenhuis et al., 2011) or Bayesian
methods (cf. Supplement F and Palfi & Dienes, 2020).

Direct Task is Typically Underpowered

An additional problem in the application of the standard rea-
soning arises from the widespread use of seriously underpowered
direct tasks (Buchner & Wippich, 2000; Vadillo et al., 2016;
Vadillo et al., 2020). When the direct task is sampled with fewer
participants and trials than the indirect task (as is often the case),
a nonsignificant direct task result may not indicate that the true
sensitivity is close to or exactly zero but rather that statistical
power is low. Moreover, participants are required to give binary
responses in the direct task in contrast to the continuous meas-
ures in the indirect task (e.g., RTs). Because participants have
some continuous sense (confidence) about their responses
(Rausch et al., 2018; Zehetleitner & Rausch, 2013), the binary
response format forces them to discard this information (Cohen,
1983), which further decreases the statistical power in the direct
task. Therefore, even if the same sensitivity underlies responses
in both tasks, it is a priori to be expected that the direct task pro-
duces less often significant results than the indirect task.

Appropriate Analysis: Calculate Sensitivities and Test
for a Difference

We have shown that the standard reasoning is flawed and that
researchers must compare sensitivities of both tasks if they want to
infer an ITA. In this section, we describe more appropriate analy-
ses. First, we assume that trial–by–trial data are available (this
analysis was used by Franz & von Luxburg, 2015). Then we
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describe our newly developed method to reanalyze studies when
only summary statistics are available. For detailed mathematical
derivations see the online supplementary materials.
In deriving our methods, we unavoidably were confronted

with degrees of freedom when choosing the details of our anal-
ysis strategy. In these cases, we chose strategies that favored
finding an ITA. That is, we followed a benefit-of-the-doubt
approach, thereby increasing the chances of confirming an ITA.
We adopted this approach because we are criticizing a large
body of literature. Therefore, it seemed necessary and reasona-
ble to adopt such a liberal bias in confirming ITAs (and thereby
being conservative in our critique) at this stage of the scientific
discussion. It is understandable that researchers who have spent
years using the standard reasoning might be reluctant to accept
our arguments if our methods were too restrictive. This
approach makes our arguments even stronger when we never-
theless do not find evidence for ITAs.

Sensitivity ComparisonWhen Trial-By-Trial Data Are
Available

The appropriate method directly compares sensitivities in the
direct and indirect tasks. Different than the standard reasoning, the
appropriate analysis equates analysis steps for both tasks such that the
calculated statistics are comparable. Then, a test of the difference
between the two tasks is applied. Similar approaches have been used
in previous—albeit very few—studies (Dulaney & Eriksen, 1959;
Franz & von Luxburg, 2015; Klotz & Neumann, 1999; Kunst-Wilson
& Zajonc, 1980; Schmidt, 2002) in accordance with the long standing
(but often ignored) request for both tasks to be measured using the
“same metric” (Reingold &Merikle, 1988).
In both tasks, we compute d 0 using signal detection theory

(Green & Swets, 1988) and then test for a difference between
them. In the direct task, participants typically classify the
primes in each trial and a d 0 value is often already reported by
the studies using the standard reasoning. In the indirect task,
however, the standard reasoning computes a congruency effect
on continuous measures (e.g., RTs or brain activity as measured
by EEG or fMRI). For a proper comparison, we have to trans-
form these continuous measures into classifications (predic-
tions) for each trial. There are different ways to achieve this.
We suggest to use the optimal classifier for the given setup.
This gives the indirect task the best possible performance and
increases the chances of finding an ITA following the benefit-
of-the-doubt approach.
Which classifier is best? We have shown that under typical con-

ditions with equal number of congruent and incongruent trials, the
median-split classifier is optimal (Franz & von Luxburg, 2015; see
our Supplement B for details and proof). The classification pro-
ceeds as follows: For each participant, we determine the median
RT and classify (“predict” in the nomenclature of statistical learn-
ing) all trials with smaller RTs as congruent, and trials with larger
RTs as incongruent. Then, we compare these classifications to the
true labels (congruent/incongruent) evaluating for each trial
whether the classification was correct or not, and we then compute
a d0 value as in the direct task. Finally, we compare the d0 values
of the direct and indirect task and test for a difference.
Some details: (a) Instead of computing d0 values, the analysis

could also be based on % correct values. Assuming a neutral

observer predicting both categories equally often in the direct task,
both approaches produce the same results and we later report both
measures to foster intuition. (b) Dichotomization of the continu-
ous, indirect measures will result in a loss of information (Cohen,
1983). However, the direct task also requires participants to give
binary responses. Converting indirect task responses into a binary
response format using our median split approach only equates this
dichotomization to make responses in both tasks comparable. (c)
We classify the trials of the indirect task according to the labels
congruent/incongruent and not according to the prime Category A/
B, as is typically asked in the direct task. This is so because studies
typically find a congruency effect between prime and target (and
not a mere effect of the prime being in Category A or B). For a
comparison to the direct task, we would ideally transform the con-
gruency classification into a classification of the prime category
(A vs. B). For simplicity, we assume an optimal transformation
here (without errors). This is plausible, because the target stimuli
are typically fully visible to the participants, such that errors are
rare. Again, our approach increases the chances of finding an ITA
following the benefit-of-the-doubt approach.

Sensitivity ComparisonWhen Only Summary Statistics
Are Available

Because the standard reasoning to infer an ITA is flawed, many
already published studies on unconscious priming need reassess-
ment. However, the appropriate analysis as described in the previ-
ous section would require full trial-by-trial data. Unfortunately,
trial-by-trial data can be difficult or impossible to obtain for pub-
lished studies (Wicherts et al., 2006). For the older—but neverthe-
less influential—studies, those data might not even exist anymore.
Therefore, we developed an approach that allows to estimate the
results of the appropriate analysis without access to trial-by-trial
data and solely based on the typically reported statistics from the
standard reasoning. Here, we sketch the central approach of this
analysis; details are given in Supplement C.

The overall aim of this reanalysis is, again, to estimate sensitiv-
ities for the direct and indirect tasks (i.e., to either calculate d0

from signal detection theory or % correct assuming a neutral ob-
server). The direct task typically already provides d0 or % correct
values. In the indirect task, studies typically report t or F values
from a repeated measures design for the congruency effect. In this
design, we show how F values can be translated to t values. We
then derive an estimator for the underlying sensitivity that takes
the form of a constant cN,K,q2 multiplied onto the reported t value.
This constant will include the number of participants N and trials
K from the indirect task because t values become larger the more
observations are made. Additionally, because this reanalysis can
only use the reported statistics, one free parameter needs to be esti-
mated: the ratio of between- versus within-subject variances,
which we denote by q2. We estimated this parameter based on (a)
our own replication experiment, (b) a literature review, and (c)
extensive simulations (see Supplement D). By assuming the larg-
est plausible value for q2, we again maximize the estimated sensi-
tivity, d0, in the indirect task and therefore increase the likelihood
of confirming an ITA. Here, we again follow the benefit-of-the-
doubt approach.
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Replication of a Landmark Study Finds No ITA

We are now equipped with the appropriate tools that allow us
to analyze typical settings and tasks that have been investigated
in the context of unconscious priming. In this section, we will
focus on one highly influential study on unconscious semantic
priming of numbers (Dehaene et al., 1998). We will first
describe the study and how its conclusions depend crucially on
the flawed standard reasoning. Then, we will describe a replica-
tion experiment of the behavioral part of this study and analyze
the trial-by-trial data. In the next section, we will then reanalyze
the published results of this and other studies (15 in total).
Overall, we will conclude that the results of our replication are
similar to those of the original study. Both, our replication and
our reanalysis of the original study, give reason to seriously
doubt the existence of an ITA, questioning the authors’ inter-
pretation in the original study.
Dehaene et al. (1998) were interested in the question of

whether the semantic meaning of numbers can be processed
outside conscious awareness. They employed a prototypical pri-
ming experiment with stimuli shown in Figure 1a and applied
the standard reasoning: In the direct task, participants discrimi-
nated features of masked numbers and performed poorly (d 0 =
.2; corresponding to 54% correct). In the indirect task, partici-
pants were again presented with the masked numbers (now
serving as primes), but decided whether subsequent target num-
bers were smaller or larger than five. Participants responded
approximately 24 ms faster when prime and target were congru-
ent (both larger or smaller than five) than when they were
incongruent (one smaller and one larger than five). Similar con-
gruency effects were found for brain activity in EEG and fMRI
(i.e., larger lateralization of brain activity in congruent than
incongruent trials).
Dehaene et al. (1998) interpreted these results according to

the standard reasoning: In Step 1, they inferred an ITA. That is,
higher sensitivity in the indirect task than in the direct task:
“[participants] could neither reliably report [the prime’s] pres-
ence or absence nor discriminate it from a nonsense string [. . .]
Nevertheless, we show here that the prime is processed to a
high cognitive level” (p. 597). In Step 2, they argued that “the
prime was unconsciously processed” (p. 597) because partici-
pants were at chance performance in the direct task. Overall,
they concluded: “By showing that a large amount of cerebral
processing, including perception, semantic categorization and
task execution, can be performed in the absence of conscious-
ness, our results narrow down the search for its cerebral sub-
strates” (p. 599). In short, Dehaene et al. (1998) employed a
prototypical version of the standard reasoning to infer an ITA
and unconscious processing exactly as described above. To
assess the validity of these claims, we first replicate the behav-
ioral part of that study, later we will reanalyze the published
data.

Disclosures

Data, Materials, and Online Resources

The experimental material, data, and the scripts for the analyses
reported in this article have been made available on the Open Science

Framework (OSF), at https://osf.io/kp59h; Meyen et al., 2021. We
also provide an online tool to apply our reanalysis to other data at
http://www.ecogsci.cs.uni-tuebingen.de/ITAcalculator/.

Reporting

We report how we determined our sample size, all data exclu-
sions, and all measures in the study.

Method

Twenty-four volunteers participated in our study (13 female,
five left-handed, age range: 19–27 years; M = 21.5, SD = 1.9). All
had normal or corrected-to-normal vision, signed written informed
consent and were naive to the purpose of the experiment. In the
original study by Dehaene et al. (1998), six and seven participants
took part in the first and second direct task, respectively, and 12
participants took part in the indirect task.

We took great care to make stimuli and timings as similar as
possible to those of the original study. Each trial consisted of:
fixation cross (417 ms), forward mask (67 ms), prime (42 ms),
backward mask (67 ms), and target (200 ms). In the original
study, those values were: forward mask (71 ms), prime (43 ms),
backward mask (71 ms), and target (200 ms; cf. Figure 1a).
Slight differences in timing are due to slightly different refresh
rates of the monitors used. The prime duration of 43 ms was cho-
sen by the original authors because it was the longest duration
that produced nonsignificant results in the direct tasks. Primes
and targets were numbers (1, 4, 6, or 9) that were either pre-
sented as digit (e.g., “1”) or word (e.g., “EINS”; German for
“ONE”). The original study used the same numbers in English, a
follow–up used French (Kouider & Dehaene, 2009). As in the
original study, primes and targets could be congruent (both
smaller or both larger than five) or incongruent (one smaller, one
larger). Masks were composed of seven randomly drawn charac-
ters from {a–z, A–Z} mirroring the original study’s masks. Par-
ticipants were seated in front of a monitor (VIEWPixx/3D,
VPixx Technologies Inc., Montreal, Canada), effective refresh
rate 120 Hz at a viewing distance of approximately 60 cm in a
sound- and light-protected cabin. In the original study, the moni-
tor was a cathode-ray tube (CRT) with a refresh rate of 70 Hz.
Stimuli were presented centrally as white text (69 cd/m2; charac-
ter height: 1°; width: .5° visual angle; font: Helvetica) on a black
background (.1 cd/m2). These luminance values were not speci-
fied in the original study so that we chose the most plausible set-
tings for our experiment.

In the direct task, participants classified whether the prime was
smaller or larger than five. We used this particular task because
the original authors argued in a subsequent study that it is “better
matched with the [indirect] task” (Naccache & Dehaene, 2001, p.
227). In the original study by Dehaene et al. (1998), two direct
tasks were used, that produced similar results: In their first direct
task, the prime stimulus was omitted in some trials and partici-
pants had to discriminate their presence versus absence. In the sec-
ond direct task, the prime stimuli were replaced by random letter
strings and participants had to discriminate between numbers ver-
sus random strings.

In the indirect task, participants decided as quickly as possible
whether the target was smaller or larger than five; as was the case
in the original study. Each participant performed 256 trials per
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task, preceded by 16 practice trials in each task. In contrast, in the
original study, participants performed only 96 and 112 trials in
the first and second direct tasks, respectively, and 512 trials in the
indirect task.
We repeated indirect task trials with RTs that were too slow

(.1 s) or too fast (,100 ms). The original study also rejected
too slow trials (.1 s) but was more restrictive in terms of fast tri-
als: They rejected with RT ,250 ms. However, we only found
eight out of 6,144 trials in our data to be above 100 ms but below
250 ms so that we obtained very similar results when applying
their criterion. The indirect task was performed before the direct
task (as is common practice in this paradigm) to prevent partici-
pants attending to the prime in the indirect task. In the original
study, the direct and indirect tasks were performed by different
groups.
The number of participants and trials were chosen to pro-

duce a statistical power of above 95% to find a difference
between sensitivities and confirm an ITA if it is there (see
Supplement A). For this power estimation, we assumed a true
sensitivity of d 0

true, direct = 0 in the direct task versus
d 0

true, indirect = .25 in the indirect task (values based on our
reanalysis of Dehaene et al., 1998; see below). To our knowl-
edge, the original study did not perform a power analysis. A
post hoc power analysis revealed that the original study had a
statistical power of only 46% to find an ITA using the appro-
priate analysis (again, assuming d 0

true, direct = 0 and d 0
true, indi-

rect = .25). This low power is due to a small number of direct
task participants and trials.

Results and Discussion

Our analysis proceeded in two strands: First, we perform the tra-
ditional analysis which forms the basis for the standard reasoning.
Second, we perform the appropriate analysis.

Standard Reasoning

The direct task sensitivity was d 0 = .26 (SD = .27), t(23) =
4.68, p , .001, corresponding to an accuracy in prime identifica-
tion of M = 54.87% correct (SD = 4.9), t(23) = 4.82, p , .001.
This is exactly in the range of sensitivities reported in the origi-
nal study’s direct tasks (d 0 = .3 in the first and d 0 = .2 in the sec-
ond direct task). For a graphical depiction of these results,
compare the bars corresponding to the direct tasks in Figures 4a
and 4b.

Note that, in contrast to the original study, our direct task sensi-
tivity is significantly above zero. This is so, because we sampled
much more participants and trials than in the original study. There-
fore, we had much higher statistical power. To simulate the lower
power of the original study, we discarded data from participants
and trials to match the same number of observations as in the orig-
inal study: We kept only the first N = 7 participants and the first
112 trials of each participant. This leads to a nonsignificant result,
d0 = .31 (SD = .39), t(6) = 2.06, p = .085, as was the case in the
original study. Therefore, it is plausible that it was the low statisti-
cal power in the original study (and not the sensitivity being
exactly at zero) that was the reason for the nonsignificant result in
the direct task of the original study.

Figure 4
Sensitivities in the Dehaene et al. (1998) Setting

Note. (a) Results of our replication study, based on our full trial-by-trial data. (b) Results of our reanalysis approach based on the published statistics
from Dehaene et al. (1998). (c) Reanalysis results from digitizing Figure 2b from Dehaene et al. (1998) showing histograms of indirect task’s RT data.
For the comparison, we used the same direct task results herein (c) as we used in (b). Comparing (a–c) we see that our replication closely matches the
results of the original study. (d) Difference in sensitivities between direct and indirect tasks: There is no significant difference in sensitivities in our rep-
lication study or in our reanalyses of Dehaene et al. (1998). That is, there is no evidence for an ITA. The reanalysis result from (b) is also shown in the
large summary in Figure 5. Error bars indicate 95% confidence intervals.
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In the indirect task, the congruent condition yielded faster RTs
(M = 445 ms, SD = 42) than the incongruent condition (M = 457
ms, SD = 37), resulting in a clear and highly significant congru-
ency effect of M = 12 ms (SD = 11.8), t(23) = 4.95, p , .001. That
is, we found a highly significant congruency effect on RTs, as did
the original study.
There is one potential caveat here: The congruency effect in the

original study was larger than that in our replication (24 ms vs. 12
ms, respectively). However, we will show that sensitivities in our
replication and our reanalysis of the original study are very con-
sistent, see Figures 4a and 4b. This can be explained by larger
trial-by-trial variability in the original study counteracting the
larger RT effect: The original study, despite using 512 trials per
participant, observed SD = 13.5 while we observed SD = 11.8 in
our replication with only 256 trials per participant. Generally,
more trials per participant should make individual RT effects more
precisely measured. Thus, the standard deviation in the original
study should be smaller than in our replication. But the opposite is
the case! This can be explained by a larger trial-by-trial variance
in the original study. Larger effect and larger variability in the orig-
inal study cancel out such that sensitivities are in fact quite compa-
rable to our replication, see below. Further research employing
systematic variation of stimulus parameters can further clarify this
situation. For example, we are currently determining the role of an
ITA in the particular setting of Dehaene et al. (1998) in a more
extensive study, see Zerweck et al. (2021).
In summary, we found a similar pattern of results as in the origi-

nal study: A very poor direct task performance and a clear congru-
ency effect in the indirect task. Based on this pattern of results
many researchers would have applied the standard reasoning and
inferred an ITA.

Sensitivity Comparison

The appropriate analysis compares sensitivities in direct and
indirect tasks. We have already described in the last section that
the direct task in our experiment yielded a sensitivity of d0 = .26
(SD = .27), corresponding to an accuracy of M = 54.87% correct.
For the indirect task, we obtained a sensitivity of d0 = .25 (SD =
.15), corresponding to an accuracy of M = 54.93% correct (SD =
3.03).
Inspection of Figure 4a shows that these sensitivities in direct

and indirect tasks are very similar, see their difference plot in Fig-
ure 4d. We found virtually no difference between these sensitiv-
ities, M = �.01 (SD = .34), t(23) = �.2, p = .844. That is, there is
no indication for an ITA.
In conclusion, our results are similar to the typical pattern of

results found by Dehaene et al. (1998) and many researchers
would have inferred an ITA. However, the appropriate analysis
yields no evidence for an ITA: The sensitivities in both tasks are
essentially identical.

Reanalysis of 15 Influential Studies Finds Hardly
Any ITA

After having demonstrated that the problems of the widely used
standard reasoning are indeed serious, we now apply our approach

to a sample of 15 highly relevant studies in the field of uncon-
scious priming.

Method

Selection Criteria for Reanalyzed Studies

We focused on studies that applied the standard reasoning and
claimed an ITA. First, we selected eight studies by hand that are
particularly relevant. These studies and their number of citations
in Web of Science (Clarivate Analytics, Philadelphia, PA, USA)
are: Finkbeiner and Palermo (2009, 56 citations); Finkbeiner
(2011, 13 citations); Mattler (2003, 76 citations); Pessiglione et al.
(2007, 352 citations); Sumner (2008, 34 citations); van Gaal et al.
(2010, 154 citations); Wang et al. (2017, zero citations); Wójcik et
al. (2019, one citation),

Second, we searched for English articles in Web of Science with
the topic “unconscious priming.” We selected all studies with more
than 150 citations that applied the standard reasoning and claimed an
ITA. This resulted in seven additional studies: Damian (2001, 178
citations); Dehaene et al. (1998, 662 citations); Dehaene et al. (2001,
770 citations); Kiefer (2002, 237 citations); Kunde et al. (2003, 217
citations); Naccache and Dehaene (2001, 214 citations); Naccache et
al. (2002, 313 citations). Overall, these 15 studies received a total of
3,277 citations. See Supplement E for details on these studies.

Details of Analysis When Only Summary Statistics Are
Available

Our reanalysis method estimates and compares sensitivities for
direct and indirect tasks. Here, we sketch some technical details of
the analysis. A detailed account with mathematical derivations is
given in Supplement C. We denote the estimated sensitivities in
the direct and indirect tasks by d0estimated,direct and d0estimated, indirect,
respectively. For the direct task, the typically reported statistics
are average d0 or % correct values. Therefore, our estimate is sim-
ply the measured sensitivity,

d0estimated;direct ¼ d0 ;

or a well-known conversion of % correct values to d0 values
assuming neutral observers (Green & Swets, 1988),

d0estimated;direct ¼ 2U �1 % correctð Þ;
where U �1 is the inverse of the normal cumulative density
function.

In the indirect task, statistics for the congruency effect are typi-
cally reported by t values from a paired t test or F values from a
repeated–measures ANOVA. In this setting, F values can be trans-
lated into t values by jtj = HF . From a t value, we estimate the
sensitivity by

d0estimated;indirect ¼ t � cN;K;q2 with cN;K;q2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4=K

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N � 1

r
C N�1

2

� �
C N�2

2

� � :
where C is the gamma distribution. The constant cN,K,q2 corrects
for the fact that t values increase with increasing number of partic-
ipants (N) , increasing number of trials (K), and that they depend

10 MEYEN, ZERWECK, AMADO, VON LUXBURG, AND FRANZ

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/xge0001065.supp
https://doi.org/10.1037/xge0001065.supp


on the ratio of between- and within-subject variance, which we
denote by q2.
The parameter q2 is the only free parameter we need to estimate

for our approach. It is reasonable to assume that this ratio is at
most q2 = .0225 given our replication study, a literature review
(see Supplement D) and extensive simulations (see Supplement
A). Assuming the largest plausible value for q2, increases the like-
lihood of finding an ITA thereby following the benefit-of-the-
doubt approach.
From the estimated sensitivities, we compute the difference

d0difference ¼ d0difference; indirect � d0estimated;direct

and construct a 95% confidence interval using the corresponding
standard errors (derived in Supplement C). This allows to test for
an ITA: If the confidence interval lies above 0 (that is, it has the
form [a, b] with a . 0), the reported result is significant and an
ITA is confirmed, otherwise there is not sufficient evidence to
claim an ITA.
We demonstrate in Appendix that confidence intervals based on

our reanalysis method are quite comparable with those based on
the trial-by-trial analysis. For the study of ten Brinke et al. (2014),
the trial-by-trial analysis versus our reanalysis method using sum-
mary statistics produced 95% CI [�.07, .23] and [�.11, .25],
respectively (Figure A1). In our replication, the two methods pro-
duced 95% CI [�.15, .12] and [�.20, .06], respectively (Figure
A2). Thus, our reanalysis method produces consistent results with
the analysis based on trial-by-trial data.

Results and Discussion

We first describe our reanalysis in detail for the study of
Dehaene et al. (1998) and then use the same methods for all the
other studies.

Reanalysis of Dehaene et al. (1998)

As discussed in our replication, the study reported two direct
tasks with sensitivities of d0 = .2 and d0 = .3, respectively. We
used the results of the first task, because it had the smaller sensitiv-
ity, thereby, increasing the chances of our reanalysis to confirm an
ITA and following the benefit-of-the-doubt approach.
In this direct task, N = 7 participants were sampled in K = 112

trials and a sensitivity of d0 = .2 was reported, see light gray bar in
Figure 4b. From these values, our reanalysis method estimates the
standard error to be SE = .11.
In the indirect task, the study reported on average a congruency

effect of 24 ms with a standard deviation of 13.5 ms in a sample of
N = 12 participants sampled in K = 512 trials each. This equals a t
value of t = 24 ms/(13.5 ms/H12) = 6.12 from which our reanaly-
sis method estimates the sensitivity to be
d0estimated, indirect = t · cN,K,q2 = .29 (SE = .09), see dark gray bar in

Figure 4b. Taken together, the sensitivities in both tasks are very
similar with no clear difference between them, d0difference = .09,
SE = .14, see Figure 4d. The confidence interval for the difference
includes zero, 95% CI [�.18, .35], thereby indicating that the sen-
sitivity difference did not deviate significantly from zero. That is,
there is no evidence for an ITA.
We were able to reanalyze the results from Dehaene et al.

(1998) in an additional way. They depicted summary histograms

of RTs in their Figure 2b visualizing that congruent and incongru-
ent RT distributions are similar in shape but only shifted because
incongruent RTs were slower than congruent RTs. Despite the
shift, RT distributions largely overlap. We digitized the histogram
and split RTs along the median as described in the appropriate
analysis section. From this, we estimated the indirect task sensitiv-
ity to be d0 = .23 (SE = .03). Again, we find no difference to their
first direct task’s sensitivity (d0 = .2, SE = .11) because zero is
included in the confidence interval of the difference, 95% CI
[�.19, .25], see Figure 4c and 4d. Note that this approach deviated
from our appropriate analysis in that it does not compute the me-
dian for each individual participant but uses a grand median across
participants because the published histogram pools all partici-
pants’ RT data. This approach ignores between-subjects variance
leading to a slight underestimation of the indirect task’s sensitiv-
ity. Nevertheless, this additional reanalysis provides converging
evidence complementing our previous results.

The results from our reanalysis of the original study (Figure 4b
and 4c) and the results from our replication experiment (Figure
4a) are very consistent. Estimates for the sensitivities are very sta-
ble. This corroborates the validity of our reanalysis approach as
well as of our replication experiment (see Supplement A for fur-
ther validation of our reanalysis approach).

To summarize, both, our reanalysis of Dehaene et al. (1998) as
well as our replication of the behavioral responses, suggest that
there is no ITA in the behavioral part of that study. This demon-
strates the fundamental flaw of the standard reasoning and sug-
gests that similar problems might exist in other studies.

Reanalysis of All 15 Studies

We now apply our reanalysis in a similar way to all other stud-
ies. For this, we present the data in a more compact fashion in Fig-
ure 5. For example, what we showed in Figures 4b and 4d for the
study of Dehaene et al. (1998) now corresponds to the Lines 7 and
8 in Figure 5, showing the sensitivities for each task in Figure 5a
and the difference of sensitivities in Figure 5b.

When evaluating this figure, it is important to be aware that we
used our benefit-of-the-doubt approach. For example, Dehaene et
al. (1998) had two direct tasks, resulting in d0 = .2 and d0 = .3,
respectively. As described above, we used the smaller of those val-
ues, thereby increasing the chances of finding an ITA, which
makes our arguments stronger if we nevertheless do not find an
ITA (cf. General Discussion).

Inspecting the figure shows that in most studies the sensitivities
of direct and indirect tasks have comparable sensitivities, such that
the differences are small and not significantly different from zero.
This is the case for 35 of the 44 differences between direct and
indirect tasks (Figure 5b). This is in stark contrast to the fact that
all studies claimed ITAs in all these cases.

Only in eight of the 44 differences there is a significant differ-
ence in the direction of an ITA, such that the indirect task has
higher sensitivity than the direct task. These results are, however,
intermixed with inverted differences in the same studies. For
example, although Kunde et al. (2003) have two significant differ-
ences in the direction of an ITA, there are five differences point-
ing in the opposite direction within the same study (albeit those
are not significantly different from zero).
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Figure 5
Reanalysis of Influential Studies Reporting Indirect Task Advantages (ITAs)
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Finally, the largest of all differences is even inverted: In Experi-
ment 1 of Naccache and Dehaene et al. (2001) there is a signifi-
cantly higher sensitivity in the direct task than in the indirect task,
just the opposite of an ITA.
To summarize, our reanalysis found significant ITAs in only

eight out of 44 instances, which are spread across five different
studies (Finkbeiner & Palermo, 2009; Kunde et al., 2003; Nacc-
ache et al., 2002; Sumner, 2008; Wang et al., 2017). Note that for
multiple hypothesis testing, one would expect at least some false
positive results. These results are intermixed with 35 inconclusive
results and even an opposite result where the direct task showed
significantly higher sensitivity than the indirect task (Naccache &
Dehaene et al., 2001). Inspecting Figure 5 shows that there is no
consistent evidence for an ITA in any of the reanalyzed studies.
Not a single study showed significant ITAs in all conditions, albeit
all studies claimed ITAs for all reanalyzed conditions.
Let us stress that our goal was not to investigate whether there

exists a “general” ITA across all studies with their vastly different
stimuli, experimental setups, tasks, and scientific questions. There-
fore, we did not perform a meta-analysis or correct for multiple
testing. This had several reasons. First, our reanalysis favored find-
ing an ITA by using our benefit-of-the-doubt approach. Second,
there are additional methodological issues in the reanalyzed stud-
ies that introduce further biases, and for which we cannot correct
in our reanalysis (see General Discussion). Considering these two
biases toward finding an ITA, a meta-analysis could misleadingly
produce the impression that there is a slight ITA present across all
reanalyzed studies. An ITA might exist but perhaps only for some
particular stimuli and setups. Given that the evidence for an ITA
in each individual study is now in question, the research goal
should be to differentiate under which conditions a reliable ITA
can be obtained and under which conditions this is not possible. A
meta-analysis would not serve this differentiating purpose.
In summary, reanalyzing the results from studies on uncon-

scious priming shows that there is little to no evidence for ITAs in
those studies despite them claiming ITAs for all conditions. Sensi-
tivities in the indirect tasks are not consistently larger than sensi-
tivities in the direct task as one would expect, given that
unconscious processing was inferred using the standard reasoning
that necessarily implies ITAs. This demonstrates how seriously
the literature on unconscious priming is affected by the flaws of
the standard reasoning.

General Discussion

Many studies on consciousness that investigate a wide range of
cognitive functions are based on the flawed standard reasoning.

The main fallacy occurs when the standard reasoning infers an
ITA. That is, a higher sensitivity for masked stimuli in the indirect
task as compared with the direct task. In an earlier reanalysis of
ten Brinke et al. (2014) by Franz and von Luxburg (2015), in our
replication of the behavioral part of Dehaene et al (1998), and in
our reanalysis of 15 highly influential studies we found that none
of these studies can overall truly claim evidence for an ITA. To
the contrary, responses in the indirect task often show a similar
sensitivity as compared with the direct task. This casts serious
doubt on the evidence for unconscious processing that exceeds
conscious reportability in these studies.

The fallacy of the standard reasoning has serious consequen-
ces for the trustworthiness of the scientific literature on con-
sciousness. It also takes away from the appeal of many claims in
the field: For example, it would be an interesting result if lie
detection and semantic meaning of numbers could be processed
outside of awareness. But such strong claims require substantive
empirical evidence, which we did not find because the reana-
lyzed studies employed the flawed standard reasoning. The
appropriate analysis yields results that may be considered as less
exciting because—under scrutiny—participants’ responses did
not seem to be affected by processing beyond what they can con-
sciously report.

Besides theoretical issues, there are also additional methodolog-
ical problems that can systematically bias the results and lead to
claims of an ITA even if the true underlying sensitivities in the
direct and the indirect task are perfectly equal.

First, a common practice is to exclude participants with a good
direct task sensitivity. The researchers’ motivation here is to avoid
including the subset of participants who are consciously aware of
the masked stimuli. However, this practice bears the problem of
regression to the mean (Barnett et al., 2005; Schmidt, 2015;
Shanks, 2017). Thus, this practice is biased toward finding a
smaller sensitivity in the direct task and thus biased toward find-
ing an ITA even if there is none. Several studies in our reanalysis
have this problem (Finkbeiner, 2011; Mattler, 2003; Pessiglione et
al., 2007; Sumner, 2008; van Gaal et al., 2010). This can explain
why these studies produced some of the largest differences in our
reanalysis in Figure 5.

Second, in some experimental procedures participants have to
respond to the target stimulus (indirect task) first and only then
respond to the masked stimulus (direct task) all within the same
trial (see Finkbeiner & Palermo, 2009; Peremen & Lamy, 2014).
Because the cognitive impact of a masked stimulus decays quickly
after 300 ms (Mattler, 2005; Wolfe, 1999), this procedure makes
the direct task more difficult. Participants have to memorize the
masked stimulus while performing the indirect task until they can

Figure 5 (opposite) Note. The 15 studies used the standard reasoning to infer an ITA in 44 conditions. (a) We reanalyzed the sensitivities and, to fos-
ter intuition, we also show %-correct values assuming a neutral observer. (b) We reanalyzed the difference in sensitivities: In each group of bars from (a),
the indirect task is compared with the corresponding direct task yielding the differences shown in (b). Only if a confidence interval (error bars) around
the difference lies to the right and does not contain 0, there is evidence for an ITA. Only in very few cases (eight out of 44), there is evidence for an ITA,
while in most cases (35 out of 44) there is no evidence. There is even one case with a significant opposite result, an advantage of the direct task (DTA).
Not a single study provides consistent evidence for ITAs across its experiments and conditions in which it claimed ITAs. Moreover, these results are
obtained under most favorable conditions for finding an ITA: Our reanalysis overestimates the indirect task sensitivities and therefore the evidence for an
ITA due to our conservative choice of analysis strategies. Additionally, some of the reanalyzed studies apply problematic methodology that further biases
the results towards finding an ITA even if there is none, see Discussion. This pattern of results casts serious doubts on the existence of ITAs in most, if
not all, of the studies. Error bars represent 95%-confidence intervals.
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give a direct task response. This may decrease the direct task sen-
sitivity due to the additional difficulty, which can produce mis-
leading ITA results. It is somewhat impressive that, even under
these favorable circumstances, none of these reanalyzed studies
provide consistent evidence for an ITA.
Nevertheless, our results do not necessarily rule out the possibil-

ity that ITAs exist in some cases. But the existence of an ITA may
depend on the particular task and stimuli used. It might not be as
ubiquitous as previously thought. Albeit the long standing request
to use the same metric for both tasks (Reingold & Merikle, 1988)
has often been ignored, there are some studies that provide evi-
dence for an ITA using the appropriate analysis. For example, the
setting of Schmidt (2002)—color stimuli served as primes and tar-
gets—found a distinct ITA result. Another example is the study by
Kunst-Wilson and Zajonc (1980) using geometric shapes (but see
also de Zilva et al., 2013; Seamon et al., 1983).
Therefore, we do not claim that there are no instances in which

an ITA exists. Such a claim would be far beyond the scope of a
single scientific study. But we do claim that one of the most prev-
alent methods in the wide research area of unconscious priming is
fundamentally flawed. This flaw affects and potentially invalidates
interpretations of many studies. As a consequence, the field has to
reassess the situation of ITAs by applying the appropriate analysis
to substantiate or refute previously made claims.
In deriving our appropriate methods, we have chosen strategies

that favored finding an ITA. That is, we have followed the benefit-
of-the-doubt approach to increase the chances of confirming an
ITA. From such an approach, one would have expected clear evi-
dence for an ITA in each of the reanalyzed studies. But because
we nevertheless did not find consistent evidence for ITAs, having
followed the benefit-of-the-doubt approach makes our arguments
even stronger.
However, in future research, we hope that the benefit-of-the-

doubt approach will no longer be necessary because it has a draw-
back: It would be inappropriate to simply revert the reasoning and
use our liberal method to establish evidence for an ITA. To pro-
vide convincing evidence for an ITA, we would need a more bal-
anced approach, one that might have not convinced researchers in
the current situation (because they might have rejected it for being
too conservative in terms of finding an ITA). For example, we
used a clearly fail-safe estimate for q2 in our reanalysis, that was
chosen to be larger than all reported values on which this estimate
is based. A more balanced approach would use a smaller estimate,
which would reduce the chances to find an ITA, see our additional
reanalyses in Supplement D for a figure like Figure 5 but with a
more balanced estimate of q2. Of course, trial-by-trial data should
be used whenever possible.
To summarize, what we suggest is a research program: Given

the tremendous interest in unconscious priming and the far-reach-
ing inferences based on studies using the standard reasoning,
researchers should reinvestigate the most relevant cases of claimed
ITAs and clarify to which degree the claims in those studies are
truly warranted. In those cases where an ITA is properly estab-
lished, researchers can then start to draw further reaching conclu-
sions about conscious versus unconscious processing (Eriksen,
1960; Erdelyi, 1986; Holender, 1986; Reingold & Merikle, 1988;
Schmidt & Vorberg, 2006). An ITA is only a prerequisite but not
a sufficient condition for the inferences that are typically drawn
about unconscious processing.

In short, the literature needs a serious and concerted reassess-
ment that would go well beyond the scope of a single study and
will also require—in critical cases—the collection of new data. In
many cases where superior unconscious processing already
seemed an established fact (e.g., Hassin, 2013), we expect that this
view needs to be revised. In other cases, researchers might still be
able to establish such a relationship—which will then be even
more interesting and foster the theoretical understanding of when
exactly conscious processing is vital for a cognitive function and
when it is not.

Context

Unconscious processing has been investigated for a long time.
A common notion is that more information is processed uncon-
sciously than consciously accessible. A main body of evidence for
this comes from unconscious priming, where a standard reasoning
is used to provide evidence for unconscious processing that
exceeds consciously reportable processing. We show that the
standard reasoning is flawed for statistical reasons. We intro-
duce an analysis that is more appropriate. Using this analysis,
we find that interpretations about unconscious processing break
down. That is, even though the standard reasoning produced the
notion that participants process more information uncon-
sciously than they can consciously report, we show that there is
inconsistent evidence for this in many studies. This lack of sup-
posed evidence for superior unconscious processing has far-
reaching consequences: It questions the idea that conscious
processing is not necessary for many cognitive processes. We
call for a community effort to apply the appropriate analysis and
differentiate between situations in which processing can occur with-
out being consciously reportable, that is, unconsciously.
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Appendix

Validation of Reanalysis Method

We demonstrate in two studies that the appropriate analysis
based on the full trial-by-trial data is well approximated by our
reanalysis based only on the typically reported statistics (e.g., a
t value for the congruency effect in the indirect task). We com-
pare the appropriate analysis using the full, trial-by-trial data
on one hand and our reanalysis method based on only the
reported summary statistics on the other hand. We apply both
approaches to the original data from ten Brinke et al. (2014, see
Figure A1) and to our replication of Dehaene et al. (1998, see
Figure A2). Results from the two analyses are very comparable
confirming the validity of our reanalysis.
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Figure A1
Appropriate Analysis Applied to ten Brinke et al. (2014) Using
the Full, Trial-by-Trial Data in (a) and Using Our Reanalysis
Method in (b)

Note. Our reanalysis using only the typically reported statistics pro-
duced approximately the same results as the trial-by-trial analysis. In both
cases, there is no evidence for an indirect task advantage. Error bars indi-
cate 95% confidence intervals.

Figure A2
Appropriate Analysis Applied to Our Replication of Dehaene et
al. (1998) Using the Full, Trial-by-Trial Data in (a) and Using
Our Reanalysis Method in (b)

Note. Our reanalysis using only the typically reported statistics pro-
duced approximately the same results as the trial-by-trial analysis. In both
cases, there is no evidence for an indirect task advantage. Note that the
indirect task sensitivity in our reanalysis is smaller than in the trial-by-
trial analysis. This is not a contradiction to our claim that in expectation
the indirect task sensitivity is overestimated by our reanalysis. Estimates
of individual studies can vary as indicated by the error bars indicating
95% confidence intervals.
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B Validation of Reanalysis Method via Simulations

We conducted multiple simulations to validate that our reanalysis method appropriately controls for statistical errors (type I
and type II). Each simulation was repeated 10, 000 times. In each run, we generated a trial-by-trial data set with a direct and
an indirect task according to the standard repeated measures model outlined in Appendix D. We simulated N participants with
sensitivities, d′true,i, independently and randomly drawn from normal distributions with expected value d′true and variance q2 (see
Appendix E for why q2 is the variance of individual true sensitivities). Note that we sampled d′true,i for each participant inde-
pendently in the direct and indirect task to avoid making additional assumptions on their correlation between tasks. Applying
Signal Detection Theory, each of these individual sensitivities implies two normal distributions separated by d′true,i standard
deviations. From these normal distributions, we sampled a total of K trials for each participant, K/2 in each condition. We
did this twice, once for each task. In the direct task, we compared each response to the true median: If the response lied on
the same side as the normal distribution it was sampled from, the simulated binary decision by the participant in this trial
was correct, otherwise it was wrong. In the indirect task, we simply treated the drawn responses as the indirect measures
(e.g., RTs). We then applied the traditional analysis used in the standard reasoning and the appropriate analyses, first based on
the full, trial-by-trial analysis and second our reanalysis based on typically reported summary statistics. We obtained similar
results with log-normal distributions and only report normal distribution results for brevity.

In each simulation, we varied N, K, d′true and q2. If not declared otherwise, the same q2 was used for data simulation and
reanalysis. Only in simulations 5 and 6, we varied the true q2 with which the data was simulated and used a different q2 for
our reanalysis in order to see how getting this parameter wrong would affect our results.

Simulations 1-3 demonstrate that the standard reasoning applied to the traditional analysis miserably fails when applied to
the study of Dehaene et al. (1998). Simulation 4 shows that our replication has sufficient statistical power to find an ITA if it
was there. Simulations 5 and 6 show how our reanalysis would be affected, if the true q2 was different than what we assumed.
We then summarize additional 108 simulations showing that our estimators, even though they use simplifying approximations,
are approximately unbiased.

Simulations

Simulation 1: Controlling type I errors. We used the same number of participants in the direct (N = 7) vs. indirect
(N = 12) task as well as the same number of trials per condition (direct K = 112 vs. indirect K = 512) as the original study
of Dehaene et al. (1998). Assuming no ITA, we set sensitivities in both tasks to be equal (direct d′true = 0.25 vs. indirect
d′true = 0.25). We assumed q2 = 0.0225 for this simulation.

Even though the same sensitivity underlies both tasks, the direct task fails to reach significance half of the time (51.2%)
while the indirect task is almost always significant (99.5%). This is not surprising and shows how seriously underpowered the
direct task was due to fewer samples, N and K. When applying the standard reasoning, a scientist would erroneously conclude
an ITA from a non-significant direct task result and a significant indirect task effect in 48.6% of the experiments. In other
words: The widely used standard reasoning would infer an ITA half of the time even though there is no ITA present!

Since there is no ITA present, our reanalysis should find an ITA only as often as prespecified by the significance level
α = 5%. Indeed, we find a difference between the two tasks only in 4.7% of the runs. This demonstrates that our reanalysis
approach controls appropriately for type I errors.

Simulation 2: Controlling for type II errors with an underpowered direct task. We use the same settings as in
Simulation 1 except that we now assume there exists an ITA (direct d′true = 0 vs. indirect d′true = 0.25). Since there is an
ITA present, a high statistical power is desired to detect it and avoid type II errors. Typically, a power above 1 − β = 80%
is desired. However, our reanalysis found the ITA in only 46.2% of the runs. Using the full trial-by-trial data to test for a
difference (instead of only using the reported t value from the indirect task) also produced a test power of only 45.9%. There is
simply not enough data in the direct task to provide sufficient evidence for an ITA. The problem with lacking statistical power
is not located in our reanalysis because the analysis based on the trial-by-trial data also has a low statistical power. Instead,
the problem is the low sample size in the direct task.

Simulation 3: Controlling for type II errors with sufficient samples in the direct task. We repeated Simulation 2 but
increased the number of participants and trials in the direct task to match the ones of the indirect task (N = 12 and K = 512).
This is most sensible when testing for a difference because a balanced design maximizes statistical power. Here, our reanalysis
method detects the ITA in 78.3% of the runs, which is close to the desired 80%. Using the full trial-by-trial data provides a
power of 84.2%. This demonstrates that our reanalysis method provides sufficient power given sufficient samples.

Simulation 4: Statistical power in our replication. We repeated Simulation 3 but used the same number of participants
and samples as in our replication study, N = 24 and K = 256 in both tasks. There, we have the same amount of observations
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as Dehaene et al. (1998) (double the participants, half the trials). Here, our reanalysis detects the ITA in 96.5% of the runs.
The analysis using trial-by-trial data instead of only a t value achieves 97.0%. The increase in statistical power compared
to Simulation 3 comes from sampling more participants which is more efficient than sampling more trials given a fixed total
number of observations (Rouder & Haaf, 2018).

Simulation 5: Overestimating parameter q2. We repeated Simulation 3, the balanced Dehaene et al. (1998) setting with
an ITA, but generated the data with q2 = 0.01. We still use q2 = 0.0225 for the reanalysis, thus, we overestimate the true q2.
Our reanalysis now successfully detects the ITA in 99.6% of the runs and so does the appropriate analysis with 99.2%. We
detect more ITAs here than in Simulation 3 because we make our reanalysis more liberal by choosing a larger q2.

Simulation 6: Underestimating parameter q2. Repeating Simulation 5, we now simulated the data with q2 = 0.09 and
kept the parameter of our reanalysis at q2 = 0.0225, that is, we now underestimate the true q2. Individual sensitivities vary a lot
now. Even though the mean true direct task sensitivity is d′true = 0 (50%-correct), due to a large standard deviation of q = 0.3,
95% of participants’ true sensitivities range between -0.6 (38%-correct) and 0.6 (62%-correct). The assumption q = 0.3 poses
a problem from a theoretical perspective because some participants can discriminate the masked stimuli relatively well (above
60%-correct). In this case, our reanalysis is more conservative and detects an ITA in only 62.2% of the runs. However, the
analysis based on the trial-by-trial data also only achieves a power of 69.2% due to the large variability: Even in this case, our
reanalysis would not be too conservative.

Additional Simulations. We conducted additional simulations, one for each combination of the following parameters:
N ∈ {5, 10, 20}, K ∈ {100, 200, 400}, d′true = {0, 0.1, 0.2, 0.5}, and q2 ∈ {0.01, 0.0225, 0.09}. In all these simulations, the
average, absolute deviation between true and estimated sensitivities was small, |d′true − d′estimated| ≤ 0.01. A deviation of 0.01 in
terms of sensitivity translates into a deviation as small as 0.2%-correct, which can be considered negligible in this setting—and
deviations in simulations with N ≥ 10 are substantially smaller.

We computed the standard deviation of d′estimated (denoted by S D[d′estimated]) across the 10,000 simulations of each parameter
combination. We compared this with the estimated standard error, S E. For this purpose, we squared S E of each run, averaged
the values and took the square root of the average, which is the standard procedure to average standard errors. For the direct
task, the difference between actual variability and our estimates was again |S D[d′estimated] − S E| ≤ 0.01. For the indirect task,
the same was true when N ≥ 10. However, for very small sample sizes (N = 5) our reanalysis deviated to some degree but
the absolute difference between actual standard deviation and our estimates still was |S D[d′estimated] − S E| ≤ 0.05. Since all
reanalyzed studies use sample sizes of N ≥ 10 in the indirect task, our reanalysis produced approximately unbiased estimates.
Overall, our reanalysis approximates the appropriate analysis sufficiently well in the context we applied it to.

C Optimality of Median Classifier

In the appropriate analysis to infer an ITA, one needs to transform continuous measurements of the indirect task (e.g., RTs)
into a binary classification response. In this step it is important to use the best possible classifier, in order to achieve the highest
d′ or %-correct values and thereby increase the chance to establish an ITA. Depending on the type of measurement that is taken
in the indirect task (e.g., RT, brain activity, grip force, etc.), this best classifier can have different forms. In many cases, the
median classifier is a suitable choice. For example with RT data (as in our replication based on Dehaene et al., 1998), the
classifier computes for each participant the median RT across all trials and classifies a trial as congruent if the RT is faster than
the median and as incongruent if the RT is slower. Below, we prove that the median classifier is optimal in this setting. The
proof requires two assumptions:

(1) The indirect measure follows a normal or log-normal distribution with an additive shift between congruent and in-
congruent conditions. In our case, this assumption is justified because it is well known that RT distributions are well
approximated by log-normal distributions (Ulrich & Miller, 1993; Palmer, Horowitz, Torralba, & Wolfe, 2011).

(2) An equal number of observations need to be drawn in both conditions, which is satisfied by the typical experimental
design.

Note, that Franz and von Luxburg (2015) also applied nonparametric machine learning classifiers with similar results.
General form of the optimal classifier. Consider a classification task where the input is a real-valued number x (e.g.,

a reaction time, RT), and the classifier is supposed to predict one of two labels y (e.g., ’congruent’ or ’incongruent’; for
simplicity we use labels 1 and 2 in the following). Following the standard setup in statistical decision theory (Bishop, 2006,
section 1.5) we assume that the input data X and the output data Y are drawn according to some fixed (but unknown) probability
distribution P. This distribution can be described uniquely by the class-conditional distributions P(X |Y = 1) and P(X |Y = 2)
and the class priors π1 = P(Y = 1) and π2 = P(Y = 2). A classifier is a function f : IR → {1, 2} that assigns a label y to each
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input x. The classifier that has the smallest probability of error is called the Bayes classifier. In case the classes have equal
weight, that is π1 = π2, the Bayes classifier has a particularly simple form: It classifies an input point x by the class that has
the higher class-conditional density at this point. Formally, this classifier is given by

fopt(x) :=

1 if P(X = x |Y = 1) > P(X = x |Y = 2)
2 otherwise.

(1)

Optimal classifier for normal and log-normal distributions. We now consider the special case where the class-
conditionals follow a particular distribution. Let us start with the normally distributed case. We assume that both class-
conditionals are normal distributions with means µ1, µ2 and equal variance σ2, and we denote their corresponding proba-
bility density functions (PDFs) by ϕµ1,σ and ϕµ2,σ. Under the additional assumption that both classes have equal weights
π1 = π2 = 0.5, the cumulative distribution function (CDF) of the input (marginal distribution of X) is given as

Ω(x) := 0.5 ·
(
Φ(

x − µ1

σ
) + Φ(

x − µ2

σ
)
)
, (2)

where Φ denotes the CDF of the standard normal distribution. For t ∈ IR, we introduce the step function classifier with
threshold t by

ft(x) :=

1 if x ≤ t
2 otherwise.

(3)

In the special case where the threshold t coincides with the median of the marginal distribution of X, we call the resulting step
function classifier the median classifier.

Proposition (Median classifier is optimal for normal model) If the input distribution is given by Equation (2), then the op-
timal classifier fopt coincides with the median classifier.

Proof. Because both classes have the same weight of 0.5, the Bayes classifier is given by fopt as in Equation (1). For any choice
of µ1, µ2 and σ, the class-conditional PDFs ϕµ1,σ and ϕµ2,σ intersect exactly once, namely at t∗ = (µ1 + µ2)/2. By definition of
fopt, the optimal classifier fopt is then the step function classifier with threshold t∗. We now compute the value of the CDF at
t∗:

Ω(t∗) = 0.5 ·
(
Φ(

t∗ − µ1

σ
) + Φ(

t∗ − µ2

σ
)
)

= 0.5 ·
(
Φ(
µ2 − µ1

2σ
) + Φ(

µ1 − µ2

2σ
)
)

= 0.5 ·
(
Φ(
µ2 − µ1

2
) + (1 − Φ(

µ2 − µ1

2
)
)

= 0.5.

Here, the second last equality comes from the fact that the normal distribution is symmetric about 0. This calculation shows
that the optimal threshold t∗ indeed coincides with the median of the input distribution, which is what we wanted to prove. �

It is easy to see that this proof can be generalized to more general types of symmetric probability distributions. It is,
however, even possible to prove an analogous statement for log-normal distributions, which are not symmetric themselves.
We introduce the notation λµ,σ for the PDF of a log-normal distribution, and Λµ,σ for the corresponding CDF. These functions
are defined as

λµ,σ(x) :=
1

xσ
√

2π
exp

(
−

(log x − µ)2

2σ2

)
and Λµ,σ(x) := Φ

( log x − µ
σ

)
.

Consider the case where the class-conditional distributions are log-normal distributions with same scale parameter σ but
different location parameters µ1 and µ2, and assume that both classes have the same weights π1 = π2 = 0.5. Then the PDF and
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CDF of the input distribution (marginal distribution of X) are given as

g(x) = 0.5 · ( λµ1,σ(x) + λµ2,σ(x) )
G(x) = 0.5 · ( Λµ1,σ(x) + Λµ2,σ(x) ). (4)

Proposition (Median classifier is optimal for log-normal model) If the input distribution is given by Equation (4), then the
optimal classifier fopt coincides with the median classifier.

Proof. The proof is analogous to the previous one. For any choice of µ1, µ2 and σ, the densities λµ1,σ and λµ2,σ intersect exactly
once. To see this, we solve the equation λµ1,σ(t∗) = λµ2,σ(t∗), which leads to the unique solution t∗ = exp((µ1 + µ2)/2). The
input CDF at this value can be computed as

G(t∗) = 0.5
(
Λµ1,σ(t∗) + Λµ2,σ(t∗)

)
= 0.5

(
Φ(
µ2 − µ1

2σ
) + Φ(

µ1 − µ2

2σ
)
)

= 0.5.

The last step follows as above by the symmetry of the normal cdf. �

D Estimating Sensitivities From Typically Reported Results

We use typically reported results from studies on unconscious priming to estimate the direct and indirect task sensitivities,
d′estimated,direct and d′estimated,indirect. First, we recapitulate the basic model assumptions of a standard repeated measures ANOVA
and introduce the notation. We then derive estimators for the sensitivity and standard error in both tasks using only the typically
reported results. Finally, we compute the difference between direct vs. indirect task sensitivities and construct a confidence
interval around that difference in order to test for an ITA.

Model assumptions

Our reanalysis of both tasks is based on the standard model of repeated measures ANOVA and paired t test (Winer, Brown,
& Michels, 1991; Maxwell & Delaney, 2000; Rouder & Haaf, 2018) as employed in all reanalyzed studies. In this model N
participants perform M trials in each condition. In the specific setting we consider, there are only 2 conditions. In the direct
task, this corresponds to trials where the masked stimulus is from either of two categories, A vs. B. In the indirect task, the
two conditions are typically congruent (A-A, B-B) vs. incongruent (A-B, B-A). In each trial of a given task, Yi jk denotes the
response from participant i (1, ...,N) in condition j (1 or 2) in trial k (1, ...,M), where we assume a balanced design such that
the total number of trials K is split evenly into the two conditions for M = K/2 trials per condition.

In the indirect task, responses Yi jk are the indirect measures (e.g., RTs). In the direct task, it is plausible to assume that
responses Yi jk represent participants’ internal evidence about the masked stimuli (some neural activity indicating whether the
participant saw a masked stimulus from category A or from B). Based on this noisy internal evidence, participants make an
internal classification and guess in each trial to which category the stimulus belonged.

The standard model decomposes participants’ responses Yi jk into five components:

Yi jk = µ + pi + c j + (p × c)i j + εi jk.

To facilitate understanding, we now describe the model for the example of congruency effects on RTs in the indirect task;
but the same notation applies to other indirect measures and to the direct task as well. RTs have a grand mean µ. Some
participants have faster RTs than others which is captured in participants’ effects pi. The congruency condition has an effect
c j on RTs. While c1 is negative leading to faster RTs in congruent trials, c2 is positive reflecting slower RTs in the incongruent
conditions. Participants differ in the extent to which the congruency conditions affect them captured in (p × c)i j so that some
participants have a larger congruency effect than others. The variability in the individual effects is captured by this term’s
variance, Var[(p× c)i j] = σ2

p×c. Additionally, there is trial-by-trial noise εi jk from neuromuscular noise and measurement error
leading to different responses in each trial. This trial-by-trial measurement error is assumed by the standard models to have a
constant variance (homogeneity) across participants and conditions, Var[εi jk] = σ2

ε . The congruency effect c j is a fixed effect
while participant and interaction effects (pi and (p × c)i j) are random effects because they depend on the drawn sample of
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participants. Random effects and trial-by-trial noise are assumed to be normally distributed with an expected value of zero and
their corresponding variance.

Raw effects and sensitivities. Each participant i has an individual expected congruency effect, ∆i, which theoretically
would be obtained by sampling infinitely many trials. The expected RT difference across participants is denoted by ∆.

∆i = (c2 + (p × c)i2) − (c1 + (p × c)i1)

∆ = c2 − c1

In a typical experiment, the individual congruency effects are estimated by the observed mean difference between conditions.
For the i-th participant, this estimate is ∆̂i and averaged across participants this is ∆̂.

∆̂i = Ȳi2· − Ȳi1· =
1
M

M∑
k=1

Yi2k −
1
M

M∑
k=1

Yi1k

∆̂ =
1
N

N∑
i=1

∆̂i

A participant’s true sensitivity d′true,i is the normalized effect—normalized by the trial-by-trial error standard deviation σε .
This quantity indicates, similar to a signal to noise ratio, how well a participant’s RTs are separable and therefore to which
degree the masked stimuli were processed, cf. Figure 3a. The expectation across participants is the true sensitivity d′true
indicating how well the RTs of a prototypical participant are separated.

d′true,i =
∆i

σε

d′true =
∆

σε
.

In the direct task, d′true is typically measured by the sensitivity index d′ averaged across participants. Participants’ indi-
vidual d′i are calculated from hit rate, HR (%-correct guesses for masked stimuli from category A), and false alarm rate, FA
(%-incorrect guesses for masked stimuli from category B), where Φ−1 is the inverse cumulative density function of the normal
distribution.

d′i = Φ−1(HR) − Φ−1(FA)

d′ =
1
N

∑
i

d′i .

Note that the empirical literature often uses the notation d′ without a clear distinction between estimated vs. true value and
individual vs. average effects. Because we need to be more precise in our derivations: We denote the true value of an individual
participant by d′true,i and the sensitivity index, which is an estimate for the true value, by d′i . We denote the true sensitivity
across participants by d′true. In the direct task, this is estimated by the average across d′i values denoted by d′. We will also
label this averaged estimate d′estimated,indirect.

Two variance sources: true effect (between-) vs. trial-by-trial error (within-subject) variance. Participants differ in
their true congruency effect. The variance of these true inter-individual differences can be derived from the model variances
using the standard assumptions (1) (p× c)i j ∼ N(0, σ2

p×c), (2) Var[c1] = Var[c2] = 0, and (3) (p× c)i1 = −(p× c)i2. We denote
this true effect variance as σ2

effect:

σ2
effect = Var[∆i] = Var[[c2 + (p × c)i2] − [c1 + (p × c)i1]]

= Var[(p × c)i2 − (p × c)i1] = Var[2(p × c)i2]

= 4σ2
p×c.

The variance of the actually observed congruency effects is conceptually different from the variance of the true effects. We
denote the variance of the observed congruency effects as σ2

∆̂i
. The observed congruency effects vary more because they are
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not only affected by true inter-individual difference but also by trial-by-trial measurement errors:

σ2
∆̂i

= Var[∆̂i]

= Var
[
Ȳi2· − Ȳi1·

]
= Var

 1
M

 M∑
k=1

µ + pi + c2 + (p × c)i2 + εi2k


−

1
M

 M∑
k=1

µ + pi + c1 + (p × c)i1 + εi1k


= Var

[c2 + (p × c)i2] − [c1 + (p × c)i1] +
1
M

 M∑
k=1

εi2k

 − 1
M

 M∑
k=1

εi1k


= Var

∆i +
1
M

 M∑
k=1

εi2k

 − 1
M

 M∑
k=1

εi1k


= Var[∆i] + Var

 1
M

M∑
k=1

εi2k

 + Var

 1
M

M∑
k=1

εi1k


= σ2

effect +
2
M
σ2
ε

= σ2
effect +

4
K
σ2
ε .

This has an implication for the variance of average congruency effects, ∆̂ = 1
N

∑
i ∆̂i. These observed, average congruency

effects vary due to two variance sources, the true inter-individual differences and trial-by-trial measurement error.

∆̂ ∼ N

∆, σ2
effect + 4

Kσ
2
ε

N

 .
We will later have to estimate σ2

ε from a given σ2
∆̂i

. To achieve this, we must disentangle σ2
effect and σ2

ε . We do so by

defining the ratio q2 between these two sources of variance:

q2 =
σ2

effect

σ2
ε

.

This parameter tells us how much of the observed variability comes from true differences vs. noise. If q2 = 0 then all
participants would have the same true congruency effect and observed differences are only due to trial-by-trial error. If q2

is large then there is relatively small trial-by-trial error variance and observed differences between participants stem from
reliable, true differences between participants. Crucially, note that q2 is also the variance of true, individual sensitivities. Thus,
the square root of this ratio, q, is the standard deviation of true, individual sensitivities.

Var[d′true,i] = Var
[

∆i

σε

]
=
σ2

effect

σ2
ε

= q2 corresponding to S D[d′true,i] = q

We derive a reasonable value to use for our setting in Appendix E, which is q2 = 0.0225. This means that we will assume
that participants’ sensitivities d′true,i vary around some true value d′true with a standard deviation of q = 0.15.

Relationship between sensitivity and accuracy. As we have already mentioned, some published studies report d′ values,
whereas other studies report %-correct values in the direct task. Because we would like to be able to work with either of them,
we now discuss the relationship that can transform %-correct values into d′ values and vice versa.

Recall that d′true,i denotes the true sensitivity of participant i, and let us introduce the notation πi for the true probability of
a correct classification of a masked stimulus by participant i. We now make the assumption of a neutral criterion in the direct
task, that is, participants are not inclined to guess one category of the masked stimuli (A or B) more often than the other. Under
this assumption, the true relationship is d′true,i = 2Φ−1(πi) where Φ−1 is the inverse cumulative normal distribution (Macmillan
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& Creelman, 2004). To simplify our later analysis, we now introduce the linear approximation h(x) = 5(x − 0.5) ≈ 2Φ−1(x).
This approximation works remarkably well in the regime of sensitivities being close to zero:

given πi, we approximate d′true,i ≈ h(πi) = 5(πi − 0.5)

given d′true,i, we approximate πi ≈ h−1(d′true,i) =
1
5

d′true,i + 0.5

For example, an accuracy of 54%-correct is approximately translated into the sensitivity d′true,i ≈ 5 · (0.54 − 0.5) = 0.2. This
is very close to the exact translation, d′true,i = 2Φ−1(πi) = 0.201. Table S1 shows that this approximation provides a very tight
fit in the range of πi ∈ [0.4; 0.6] or, equivalently, d′true,i ∈ [−0.5; 0.5]. Larger values, that is, an accuracy above 60%-correct,
would be at odds with the experimental setting in which direct task performance is assumed to be close to chance (d′true,i close
to 0 and πi close to 0.5).

Table S1
Relation between the true accuracy (first column), the approximation of the sensitivity (second column) and the true sensitivity
(third column). Note, that for πi in the range of [0.5, 0.6] and Di in the range of [0, 0.5] (first six rows in the table) there is a
very tight fit between h(πi) and d′true,i. Negative values of d′true,i follow symmetrically.

πi h(πi) d′true,i
0.50 0.000 0.000
0.52 0.100 0.100
0.54 0.200 0.201
0.56 0.300 0.302
0.58 0.400 0.404
0.60 0.500 0.507
0.62 0.600 0.611
0.64 0.700 0.717
0.66 0.800 0.825
0.68 0.900 0.935
0.70 1.000 1.049

Estimated sensitivity, d′estimated,direct, from mean sensitivity index d′

We want to estimate the sensitivity and corresponding standard error from the typically reported direct task results. Usually,
the average across individual sensitivity indices is reported as d′. This sensitivity index is already an estimate of the true
sensitivity and we take it as it is (Macmillan & Creelman, 2004),

d′estimated,direct = d′. (5)

The standard error of d′ is composed of two variances, one due to systematic variation between individuals’ true sensitivities
(d′true,i) and the other due to non-systematic measurement error (εd′i ). We use two simplifications: (a) We neglect dependencies
between them because the variance of random error Var[εd′i ] does not change substantially for different sensitivity values in
the relevant range, Ddir

i ∈ [−0.5, 0.5]; (b) We apply the approximation function h that relates d′i to π̂i. This allows us to use the
variance of the binomially distributed accuracies π̂i from K trials, Var[επ̂i ] = πi(1− πi)/K, and relate them back to the variance
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of d′i , which leads to Var[εd′i ] ≈ 52 Var[επ̂i ].

S Edirect =
√

Var [d′]

=

√√
Var

 1
N

∑
i

d′i

 =
1
√

N

√
Var[d′i ] =

1
√

N

√
Var[d′true,i + εd′i ]

(a)
≈

1
√

N

√
Var[d′true,i] + Var[εd′i ]

(b)
≈

1
√

N

√
Var[d′true,i] + 52 Var[επ̂i ]

=
1
√

N︸︷︷︸
average

√√√√√√√√ q2︸︷︷︸
between subject variance

+ 52

(
1
5 d′ + 0.5

) (
1 −

(
1
5 d′ + 0.5

))
K︸                                ︷︷                                ︸

non-systematic error of π̂i

. (6)

Without simplifications (a) and (b), one could construct an exact estimator. Exact calculations from Miller (1996) show that d′

slightly overestimates the true sensitivity d′true but that this bias is so small that the estimator can be considered approximately
unbiased when typical sample sizes as in our context are used. On the other hand, our simplifications allow us to find a
closed form solution that is simple to compute. Our estimators are well aligned with the true values, which we have shown by
validating simulations in Appendix B.

Estimated sensitivity, d′estimated,direct, from mean accuracy π̂

Instead of d′, some studies report the average classification accuracy π̂ (%-correct) for the direct task. We estimate the
sensitivity d′estimated,direct from the mean accuracy π̂ by a plug-in estimator (Macmillan & Creelman, 2004),

d′estimated,direct = 2Φ−1(π̂) ≈ 5 · (π̂ − 0.5) (7)

where Φ−1 is the inverse cumulative normal distribution. Exploiting the linearity of approximation h in (*), we can derive that
this estimator is approximately unbiased:

E[d′estimated,direct] = E[2Φ−1(π̂)] ≈ E[h(π̂)]
(∗)
= h[E(π̂)] = h(π) ≈ 2Φ−1(π) = d′true.

Next, the standard error can be derived in the same fashion as for reported d′ values so that we obtain:

S Edirect =
1
√

N

√
q2 + 52 π̂ (1 − π̂)

K
. (8)

Estimated sensitivity, d′estimated,indirect, from t and F values

Now let us move to estimating sensitivities from t values in the indirect task. We will show that an unbiased estimator is
obtained from multiplying the t value by the constant cN,K,q2 :

d′estimated,indirect = t · cN,K,q2 with cN,K,q2 =

√
q2 + 4

K

N

√
2

N − 1

Γ
(

N−1
2

)
Γ
(

N−2
2

) , (9)

where Γ is the gamma distribution.
We start by considering how the t value in our setting is computed from the observed congruency effect:

t =
∆̂

σ̂∆̂i

√
N

We know that ∆̂ ∼ N
(
∆, (σ2

effect + 4
Kσ

2
ε )/N

)
from above. Now we introduce independent random variables Z ∼ N (0, 1) and
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V ∼ χ2 (N − 1) and rearrange t:

t =
Z

√(
σ2

effect + 4
Kσ

2
ε

)
/N + ∆√(

σ2
effect + 4

Kσ
2
ε

)√
V

N−1

√
N

=

Z + ∆

√
N(

σ2
effect + 4

Kσ
2
ε

) 
√

N − 1
√

V
.

We now use σ2
effect = q2σ2

ε (also from above) to isolate σ2
ε and obtain d′true.

t =

Z + ∆

√
N(

q2σ2
ε + 4

Kσ
2
ε

) 
√

N − 1
√

V

=

Z +
∆

σε

√ N
q2 + 4

K


√

N − 1
√

V

=

Z + d′true

√ N
q2 + 4

K


√

N − 1
√

V

As a result, t follows a t distribution with degrees of freedom d f = N − 1 and non-centrality parameter δ = d′true

√
N

q2+ 4
K

. From

Hogben, Pinkham, and Wilk (1961) and Hedges (1981), we know the expected t value to be

E[t] = δ

√
N − 1

2
Γ( N−2

2 )

Γ( N−1
2 )

= d′true ·

√
N

q2 + 4
K

√
N − 1

2
Γ( N−2

2 )

Γ( N−1
2 )

= d′true · c
−1
N,K,q2 .

In consequence, an unbiased estimator of d′true is d′estimated, indirect = t · cN,K,q2 .

As for the expected value, the variance of t values is also given by the properties of a non-central t distribution. Multiplying
this variance by the constant cN,K,q2 yields the variance of our estimated sensitivity d′estimated, indirect. Since this depends on the
non-centrality parameter, we use the plugin estimator

δ̂ = d′estimated, indirect

√
N
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K

= t · cN,K,q2

√
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q2 + 4
K

= t ·

√
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Γ
(

N−1
2

)
Γ
(

N−2
2

)
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The standard error being its positive square root follows accordingly:

S Edirect =

√
Var[cN,K,q2 · t] = cN,K,q2

√
Var[t]

= cN,K,q2

√√√√√
1 + δ̂2

N − 3
−
δ̂2(N − 1)Γ

(
N−2

2

)2

2Γ
(

N−1
2

)2

= cN,K,q2

√√√1 +
2t2

N − 1

Γ( N−1
2 )

Γ( N−2
2 )

2 (N − 1
N − 3

)
− t2 (10)

With this, we can estimate the sensitivity and its standard error from a given t value in a repeated measures design.
Note that this approach can be applied identically to reported F values instead of t values. The reason is that in repeated

measures ANOVA settings with two conditions the equality |t| =
√

F holds. The main argument can be derived in the following
equations using the standard definitions for the explained (SSE) and residual summed squares (SSR), see Winer et al. (1991);
Maxwell and Delaney (2000):

t2 =

(
∆̂

σ̂∆̂i

·
√

N
)2

=
4 · N · (∆̂/2)2

1
N−1

∑N
i=1

(
∆̂i − ∆̂

)2 =
2 · N · (∆̂/2)2

1
N−1

∑N
i=1

(
∆̂i−∆̂

2

)2

=
2 · N · (∆̂/2)2

2
∑N

i=1

(
∆̂i−∆̂

2

)2
/(2N − 2)

=
SSE/d fE
SSR/d fR

= F.

Finally, note that this reanalysis for the indirect task can be extended to unbalanced settings in which the total number of
trials K is not equally distributed to the two conditions for M = K/2 trials per condition but instead to M1 and M2 trials per
condition j = 1 and j = 2, respectively. In these situations, one can analogously show that ∆̂ ∼ N

(
∆, (σ2

effect + M1+M2
M1 M2

σ2
ε )/N

)
.

Following the same steps as above, one would obtain an alternative constant that now depends on the split M1 versus M2
instead of only K.

cN,M1,M2,q2 =

√
q2 + M1+M2

M1 M2

N

√
2

N − 1

Γ
(

N−1
2

)
Γ
(

N−2
2

) .
As a sanity check, set M1 = M2 = K/2 and find cN,M1,M2,q2 = cN,K,q2 .

Confidence intervals for the difference in sensitivities

Based on the previous estimators, we now need to test for a significant difference between sensitivities in direct vs. indirect
tasks. For this purpose we construct a 95% confidence interval around the difference d′difference while taking the standard error
S Edifference of the estimated difference into account:

d′difference = d′estimated,indirect − d′estimated,direct (11)

S Edifference =
√

(S Edirect)2 + (S Eindirect)2 (12)

95% CI =
[
d′difference ± z0.975 · S Edifference

]
, (13)

where z0.975 = 1.96 is the 97.5% quantile of the normal distribution. If zero is included in the confidence interval,
0 ∈ 95% CI, then there is not sufficient evidence for an ITA because the observed difference can be explained by measurement
error in a situation where the true direct and indirect task sensitivities are equal. Only if the confidence interval lies above
zero, that is 95% CI = [a, b] and a > 0, there is evidence for the presence of an ITA.

Note that in this test we use quantiles zα of the normal distribution and not quantiles of the t distribution. Using the t
distribution would require to estimate the degrees of freedom, which is unnecessarily complicated for our approach. We use
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the quantiles of the normal distribution which leads to a more liberal test increasing the likelihood of confirming an ITA and
following the benefit-of-the-doubt approach (see General Discussion).

E Estimating the Ratio q2 of Between- vs. Within-Subject Variance

As we have seen in the reanalysis of direct and indirect task sensitivities, we need to know one parameter: q2, a ratio of
systematic vs. noise variance. This is not an artifact of our reanalysis but unavoidable.

What Does the Parameter q2 Mean?

To see what this parameter means and why we need to estimate it, consider estimating the indirect task sensitivity
d′estimated,indirect from t values. A t value is computed by dividing an observed effect by its standard error, t = x̄/S E. In
the indirect task, x̄ may be the average congruency effect and S E the estimated standard error of congruency effects across
participants. This standard error is influenced by two sources of variability: variance due to inter-individual differences in true
congruency effects across participants (σ2

effect) and variance due to trial-by-trial measurement error (σ2
ε ). We want to isolate

the latter variance, σ2
ε , because we want to estimate the underlying sensitivity d′true = ∆/σε from the t value. Thus, we need to

distinguish the two sources of variability. We do so by defining the ratio q2:

q2 =
σ2

effect

σ2
ε

.

Note that this parameter is equal to the variance of individual true sensitivities, q2 = Var[d′true,i], see Supplement D.
Therefore, it might be more intuitive to consider the un-squared parameter, which is the standard deviation of participants’
true sensitivities, q = SD[d′true,i].

Literature Review to Determine q2 (Following Benefit-Of-The-Doubt Approach)

To estimate q2, we consider multiple studies that either provide estimates or make explicit assumptions. All these studies
yield a specific value, see our summary in Table S2, columns q2 and q. For our reanalysis, we will use the largest plausible
value, q2 = 0.0225. Thus, we follow the benefit-of-the-doubt approach giving a previously established ITA the best chance to
be confirmed in our reanalysis.

Table S2
We repeated our reanalysis of the indirect task sensitivity from Dehaene et al. (1998) (last column) based on the q2 values from
different studies. Larger values of q2 increase the estimated, indirect task sensitivity. We took the largest plausible value our
reanalysis method.

Study q2 q
Reanalysis of Dehaene et al. (1998)

d′estimated, indirect

ten Brinke et al. (2014) 0.0020 0.04 0.16
Our example study 0.0074 0.09 0.20
Rouder & Haaf (2018) 0.0087 0.09 0.21
Miller & Ulrich (2013) 0.0121 0.11 0.23
Jensen (2002) 0.0142 0.12 0.25
Ribeiro et al. (2016) 0.0214 0.15 0.28
Our assumption 0.0225 0.15 0.29

First, we estimated q2 from the data of ten Brinke et al. (2014). This yielded σ̂2
effect = (6.5 ms)2 and σ̂2

ε = (144 ms)2, which
translates into an estimated ratio of q̂2 = (6.5 ms)2/(144 ms)2 = 0.0020.

Our replication based on Dehaene et al. (1998) produced estimates for the variances of σ̂2
effect = (6.7 ms)2 and σ̂2

ε = (78 ms)2

translating into an estimated ratio of q̂2 = 0.0074.
Similarly, Rouder and Haaf (2018, p. 21) discuss the relation between the two sources of variance in psychophysics. Their

formulas are identical to ours when changing the notation from σ2
effect to σ2

β and σ2
ε to σ2. They argue that reasonable values

are σeffect = 28 ms and σε = 300, which leads to q2 = σ2
effect/σ

2
ε = 0.0087.

Other studies did not discuss the ratio between the two variances, σ2
effect and σ2

ε , but only the trial-by-trial error variability
σ2
ε . We can combine this with Dehaene et al. (1998) reporting the observed standard deviation of RT effects to be 13.5 ms.
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This variability is constituted by σ̂2
∆̂i

= σ̂2
effect + 4

K σ̂
2
ε = (13.5 ms)2. By knowing σ̂2

ε and the number of trials, K, we can

rearrange the formula and estimate σ̂2
effect and thereupon q̂2.

Miller and Ulrich (2013, p. 846, in their Table 3) suggested σε = 96 ms in a binary forced-choice task (without masked
stimuli): Their error term Ek with variance Var[Ek] = 91.5 corresponds to the mean noise across 100 trials, see their Table 15.
From this, we obtained σε =

√
Var[Ek] · 100 = 96 ms, as noted above. Combining this with Dehaene et al.’s results yields

σeffect = 10.5 ms and thereupon q2 = 0.0121.
Jensen (1992, p. 877, Table 7 for task “Hick SS 2”) reported an average estimate of σ̂ε = 91 ms measured in N = 863 nine

to twelve year olds yielding q2 = 0.014. Ribeiro, Paiva, and Castelo-Branco (2016) report σ̂ε = 79 ms in a speeded binary
choice task without priming suggesting q2 = 0.021. Even though the specific tasks and populations from these last two studies
do not match Dehaene et al.’s setting exactly, it is plausible that variances are by and large comparable.

Given this range of parameter values, we use a value that is larger than any q2 value reported in these studies:

q2 = 0.0225 corresponding to q = S D[d′true,i] = 0.15.

By choosing this upper bound on q2, we follow the benefit-of-the-doubt approach because large values of q2 favor the
ITA hypothesis in our reanalysis attributing more variance to σ2

effect and less to σ2
ε . This, in turn, increases our estimate of

d′true = ∆/σε . For example, see how larger values of q2 increase the estimated indirect task sensitivity from Dehaene et al.
(1998) in the last column of Table S2. Hence, overestimating q2 leads to an overestimation of the indirect task sensitivity
increasing the chances of confirming an ITA.

How Would our Reanalysis Look Like With a Different q2?

We have repeated our literature reanalysis from Figure 5 with different parameter values. In Figure S1, we show a more
realistic reanalysis with q2 = 0.01. Here, the picture resembles a null effect. In contrast, we show an overly optimistic
reanalysis with q2 = 0.09 in Figure S2, in which an ITA starts to emerge for many studies. However, even in this case there is
no conclusive evidence for an ITA in most studies because confidence intervals for the sensitivity difference still include 0.

Note that, when assuming large q2 values as in Figure 5 and S2, one cannot take the reanalysis result as evidence for an ITA.
This is because large q2-values bias our reanalysis in favor of finding an ITA. Only when we nevertheless do not find an ITA,
these results can be meaningfully interpreted as evidence against an ITA. In order to establish evidence for an ITA, one would
have to use smaller values for q2 or, better yet, use the trial-by-trial data so that no assumption on q2 is necessary. Otherwise,
an apparent ITA result may only be due to the bias introduced by a large q2.

We provide an online tool to perform our reanalysis with different values of q2 at http://www.ecogsci.cs.uni
-tuebingen.de/ITAcalculator/. There, we suggest three different values for q2: To establish a lack of evidence for
an ITA, we suggest q2 = 0.0225 as in our reanalysis proper. This assumption rarely rejects evidence for an ITA if there is any.
On the other hand, to establish evidence for an ITA, we instead suggest q2 = 0.0025, which is more restrictive. Only when an
ITA is established with a relatively small q2 like this, we can be sure that it is a genuine ITA instead of being produced only
due to a lenient assumption on q2. Lastly, we suggest an intermediate value of q2 = 0.01, which is suitable for an exploratory
reanalysis. Note that depending on the exact experimental setup, different values of q2 may be appropriate.

Overall Summary Regarding our Choice of q2

Taken together, our replication, our simulations, and the literature review suggests that q2 is clearly below 0.0225. We
adopted this upper bound as our assumption because it increases the chances of finding an ITA, thereby, following the benefit-
of-the-doubt approach. We use this assumption to show that evidence for an ITA is missing in many studies. To establish
evidence for an ITA, the reanalysis would have to use smaller values to rule out the possibility that an ITA was only the
product of the overestimation bias coming from a too large q2.

Up to now, we have only discussed behavioral data (RTs) but we applied our reanalysis method also to EEG and fMRI
data. The justification for this is that the relative noise level is even larger in single-trial event related potentials (ERPs) and
blood-oxygen-level-dependent signals (BOLD signals) because they incorporate much more noise (Stahl, Gibbons, & Miller,
2010). Thus, the ratio between effect vs. noise variance in these measures will be even smaller, again, justifying our choice of
q2 = 0.0225.

http://www.ecogsci.cs.uni-tuebingen.de/ITAcalculator/
http://www.ecogsci.cs.uni-tuebingen.de/ITAcalculator/
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Figure S1. Reanalysis with q2 = 0.01. Same as Figure 5 assuming that the standard deviation of true sensitivities across participants is
SD[d′true,i] = q = 0.1. This assumption matches the results of our replication and is therefore more realistic but also more strict in dismissing
results of an indirect task advantage (ITA). Here, only 7 reanalyzed ITAs are confirmed while 3 results yield the opposite result of a larger
sensitivity in the direct task (direct task advantage [DTA]). Error bars represent 95%-confidence intervals.
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Figure S2. Reanalysis with q2 = 0.09. Same as Figure 5 assuming that the standard deviation of true sensitivities across participants is
SD[d′true,i] = q = 0.3. With this or even larger q2, reanalyzed sensitivities tend to become clearly larger in the indirect compared to the direct
task. However, this assumption is clearly unrealistic. First, in the direct task, this would mean that a substantial percentage of participants
had a true sensitivity of d′true,i = 0.5 or higher indicating that they could discriminate the masked stimuli better than 60%-correct. In the
indirect task, an unrealistic implication of this assumption is that, in the study of Dehaene et al. (1998), trial-by-trial reaction times (RTs)
would be estimated to vary with a standard deviation of only ±43 ms (within-subject variance σ2

ε = 432) even though RTs typically vary
more than ±80 ms from trial to trial, see Appendix E.
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F Details of Reanalyzed Studies

For each study, we give an overview of the study’s structure, indicate in a table which values we extracted and explain
our decisions for in- and exclusion of particular results. We only use results that follow the standard reasoning, claim an ITA
and fit into our reanalysis method. We include quotes from the reanalyzed studies indicating their adherence to the standard
reasoning. We use the following two abbreviations:

NR Not reanalyzable: Reported statistics do not match our reanalysis method. For example when the congruency factor has
more than two levels (congruent, incongruent, and neutral) or when there are additional between-subject factors.

NIE No indirect effect: The study attempted to find an ITA but failed due to a non-significant indirect task result. In such
cases, the studies usually abort the standard reasoning, such that these cases are not relevant for us.

We report the number N of participants, the total number of trials K, and the reported statistic of the original study. Addi-
tionally, we report the sensitivities and standard errors according to our reanalysis. These are the values from Figure 5a. We
then report the differences in sensitivities and their standard errors; here the difference is always taken between the current
row’s indirect task compared to the previously reported direct task. These results are presented in Figure 5b. We abbreviate
Experiment 1 by E1, etc.

We also mark studies that excluded participants with good direct-task performance by adding the label Regression to the
mean (see Discussion on why this is problematic). We still reanalyzed the reported results, although the exclusion introduced
a bias for which our reanalysis method does not correct. This bias is liberal and favors finding an ITA. Thus, we follow the
benefit-of-the-doubt approach.

15 Reanalyzed Studies

Damian (2001). The study reports four experiments but concludes an ITA only in Experiment 1 and 4. Experiments 2
and 3 were NIE.

Standard Reasoning: “Two control experiments investigated participants’ ability to consciously perceive the masked primes.
It was shown that performance was at chance level on both presence-absence judgments and on a number vs. random letter
string discrimination task when the temporal characteristics of a trial were identical to those of the main experiment. Thus,
the congruity effect described above must indeed have occurred outside of the participants’ awareness” (p. 1).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct (E1) 16 96 d′ = 0.064 0.06 ± 0.07
Indirect, RT (E1) 16 120 F(1, 15) = 6.15 0.14 ± 0.07 0.07 ± 0.10
Indirect, error rate (E1) 16 120 F(1, 15) = 13.8 0.21 ± 0.07 0.14 ± 0.10

Direct (E4) 16 96 d′ = 0.117 0.12 ± 0.07
Indirect, RT (E4) 16 120 F(1, 15) = 5.67 0.13 ± 0.07 0.02 ± 0.10
Indirect, ER (E4) 16 120 F(1, 15) = 5 0.13 ± 0.07 0.01 ± 0.10

Dehaene et al. (1998). The study reported two direct tasks and three indirect tasks. From the two direct tasks, we consider
only the second direct task (word vs. digit discrimination) because it fits the neutral criterion assumption and it also shows
lower sensitivity (d′ = 0.2 in the first and d′ = 0.3 in the second task). This way, we favor confirming the ITA hypothesis.
For the first indirect measure, we computed the t value from the given estimates for the congruency effect (M = 24 ms and
S D = 13.5). For the second indirect measure, the statistic (t(11) < 3) is taken from Figure 4, where the covert activation
reflects processing of the prime as opposed processing of the target in the overt activation. For the third indirect measure, we
only considered the congruency effect on fMRI the results are provided in Figure 5.

Standard Reasoning: “Under these conditions, even when subjects focused their attention on the prime, they could neither
reliably report its presence or absence nor discriminate it from a nonsense string (Table 1). Nevertheless, we show here that
the prime is processed to a high cognitive level [by demonstrating a priming effect].”

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct, word vs. digit 7 112 d′ = 0.2 0.20 ± 0.11
Indirect, RT 12 512 t(11) = 6.16 0.29 ± 0.09 0.09 ± 0.14
Indirect, EEG (LRP) 12 512 t(11) = 3 0.14 ± 0.06 −0.06 ± 0.12
Indirect, fMRI 9 128 F(1, 8) = 6.23 0.17 ± 0.10 −0.03 ± 0.14
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Dehaene et al. (2001). The study reports two experiments. In E1, multiple measures assessed the visibility of the masked
stimulus and we chose the reported binary forced-choice task (no stimulus vs. masked stimulus) because it is the most relevant
result. In this experiment, the ITA refers to the absence vs. presence of the masked stimuli. The fMRI results in E1 were NR.
In E2, the ITA referred to the congruency effect of repeated (congruent, either in same or in different case) vs. different words
(incongruent).

Standard Reasoning: “Behaviorally, participants again denied seeing the primes and were unable to select them in a two-
alternative forced-choice test [...]. However, case-independent repetition priming was observed in response times recorded
during imaging [...]” (p. 755) and “As this phenomenon depends only on the identity of the masked prime, specific information
about word identity must have been extracted and encoded unconsciously [...]” (p. 756).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct (E1) 27 36 52.9%-correct 0.15 ± 0.09
Indirect, EEG, P1 (E1) 12 300 t(11) = 2.04 0.10 ± 0.06 −0.04 ± 0.10
Indirect, EEG, N1 (E1) 12 300 F(1, 11) = 9.79 0.16 ± 0.07 0.01 ± 0.11

Direct (E2) 10 64 53.6%-correct 0.18 ± 0.11
Indirect, RT (E2) 10 480 F(1, 9) = 36 0.30 ± 0.10 0.12 ± 0.15
Indirect, fMRI, same-case (E2) 10 240 t(9) = 1.98 0.34 ± 0.11 0.16 ± 0.16
Indirect, fMRI, different-case (E2) 10 240 t(9) = 2.68 0.34 ± 0.11 0.16 ± 0.16

Finkbeiner and Palermo (2009). The study reported four experiments. Prime and target stimuli were presented in dif-
ferent locations to the participants. In half of the trials the prime location was cued (pc) and in the other half it was the target
location (tc). We excluded the target cued condition in E1 because it was NIE. In E3, multiple within-subject factors were
tested but since those do not change the reported F value of the congruency effect we could nevertheless reanalyze it. E4 did
not follow the standard reasoning.

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct, pc (E1) 40 80 d′ = 0.22 0.22 ± 0.05
Indirect, RT, pc (E1) 40 80 F(1, 39) = 33.94 0.24 ± 0.05 0.02 ± 0.07

Direct, pc (E2) 40 80 d′ = −0.06 −0.06 ± 0.05
Indirect, RT, pc (E2) 40 80 F(1, 39) = 8.5 0.12 ± 0.05 0.18 ± 0.07

Direct, tc (E2) 40 80 d′ = 0.07 0.07 ± 0.05
Indirect, RT, tc (E2) 40 80 F(1, 39) = 10.6 0.14 ± 0.05 0.07 ± 0.07

Direct (E3) 20 240 d′ = 0.05 0.05 ± 0.05
Indirect, RT (E3) 20 720 F(1, 19) = 31.37 0.20 ± 0.05 0.15 ± 0.07

Finkbeiner (2011, Regression to the mean). The study presented trials in two conditions, one with a short (40 ms) and
one with a long (50 ms) prime presentation duration. An ITA was concluded only for the short duration and with respect to
the semantic content (not color).

Standard Reasoning: “In contrast, 16 of the 21 subjects were judged to be at chance with the 40-ms primes. Following
Rouder et al. (2007), the RTs for the 17 subject-by-prime-duration combinations for which subliminality was confirmed were
entered into a paired-samples t test (two-tailed) to determine whether subliminal priming had occurred” (p. 1260).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct, 40 ms 21 120 d′ = 0.098 0.10 ± 0.06
Indirect, RT, 40 ms 21 80 t(20) = 2.5 0.14 ± 0.06 0.04 ± 0.09

Kiefer (2002). The study reported two experiments. E1 reported the indirect task results and E2 reported the direct task
results. In E1, indirect effects on RT, error rates and some EEG components were NR because the reported statistics combine
masked and unmasked conditions (for unmasked conditions, they claimed no ITA) except for the N400 component in EEG.
In E2, there were multiple direct tasks (see their Table 1). We chose the direct task on semantic judgment because the indirect
task’s congruency effect was an effect from semantic relatedness too.

Standard Reasoning: “Average d′ measures in all tasks and context conditions did not deviate significantly from zero
demonstrating that masked words were not identified” (p. 36).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct, semantic (E2) 24 80 d′ = 0.14 0.14 ± 0.06
Indirect, EEG, N400 (E1) 24 320 F(1, 23) = 5.48 0.09 ± 0.04 −0.05 ± 0.08



ADVANCING RESEARCH ON UNCONSCIOUS PRIMING 37

Kunde et al. (2003). The study reported four experiments. In E1, there were multiple direct task measures from which
we chose the one that fit our model assumptions of a neutral criterion (the identification rate is not comparable by our method).
Also in E1, we chose not to consider sub-analyses of the indirect effects because they are essentially repetitions of the same
comparison. In E2, we did not consider the non-target set condition and in E3 we did not consider the error rate analysis as
they were NIE. In E1-E3, trials with neutral primes were not considered for calculating the priming effect.

Standard Reasoning: “The identification rate for the prime numbers was 2.2% (the chance level is 6.25% as each prime
is presented four times in the 64 test trials). Thus, the primes were indeed unidentifiable, as is usually found under the
experimental conditions that we adopted (Damian, 2001; Dehaene et al., 1998; Koechlin et al., 1999; Naccache & Dehaene,
2001)” (p. 230).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct (E1) 12 64 d′ = 0.29 0.29 ± 0.10
Indirect, RT (E1) 12 1152 F(1, 11) = 25.17 0.22 ± 0.07 −0.07 ± 0.12

Direct (E2) 12 64 d′ = 0.33 0.33 ± 0.10
Indirect, RT, target set (E2) 12 288 F(1, 11) = 15.24 0.20 ± 0.07 −0.13 ± 0.12
Indirect, error rate, target set (E2) 12 288 F(1, 11) = 6.35 0.13 ± 0.06 −0.20 ± 0.12

Direct (E3) 12 64 d′ = −0.11 −0.11 ± 0.10
Indirect, RT, target set (E3) 12 144 F(1, 11) = 21.67 0.28 ± 0.09 0.39 ± 0.14
Indirect, RT, non-target set (E3) 12 144 F(1, 11) = 6.58 0.15 ± 0.08 0.26 ± 0.13

Direct (E4) 24 64 d′ = 0.22 0.22 ± 0.07
Indirect, RT (E4) 24 1152 F(1, 23) = 43.2 0.21 ± 0.05 −0.01 ± 0.08
Indirect, error rate (E4) 24 1152 F(1, 23) = 9.17 0.10 ± 0.04 −0.12 ± 0.08

Mattler (2003). The study reports five experiments. Only Experiments 3 and 5 are considered to be evidence for uncon-
scious priming. Experiment 3 suffers severely from regression to the mean and is therefore not reanalyzed.

Standard Reasoning: “We might assume that performance at chance level indexes absence of all conscious information.
This assumption was made in a number of studies (e.g., Dehaene et al., 1998; Klotz & Neumann, 1999; Neumann & Klotz,
1994; Vorberg et al., in press). In the present study, evidence for priming without awareness comes from Experiment 3 and
Experiment 5, in which participants showed substantial non-motor priming effects although they could not discriminate primes
better than chance” (p. 184)

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct (E5) 11 320 d′ = 0.28 0.28 ± 0.06
Indirect, RT (E5) 11 320 F(1, 10) = 18.5 0.22 ± 0.08 −0.06 ± 0.10

Naccache and Dehaene (2001). The study reports two experiments. For the direct tasks in both experiments, the authors
additionally conducted the Greenwald method (Greenwald, Draine, & Abrams, 1996; Draine & Greenwald, 1998) which,
however, has been criticized before (Dosher, 1998; Klauer, Greenwald, & Draine, 1998; Miller, 2000; Merikle & Reingold,
1998). Therefore, we only considered typical results as in all other studies. We considered only the main congruency effects
on RT and no further subanalyses because the reported direct task would not have been comparable. In both experiments,
an old and a new stimulus set were used. In E1, we only reanalyzed the RT effect based on the old stimulus set because the
direct task sensitivity was estimated only for the old set. In E2, we reanalyzed the RT effect for the mixed, both new and old,
stimulus set because the direct task sensitivity was estimated for this mixed set, too.

Standard Reasoning: “In this task, subjects performed at chance level, while priming effects were replicated. This study
provides strong evidence for the unconscious nature of our semantic priming effects” (p. 227).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct (E1) 18 32 d′ = 0.6 0.60 ± 0.11
Indirect, RT (E1) 18 384 F(1, 17) = 21.99 0.19 ± 0.06 −0.41 ± 0.12

Direct (E2) 18 64 d′ = 0.01 0.01 ± 0.08
Indirect, RT (E2) 18 384 F(1, 17) = 21.62 0.19 ± 0.06 0.18 ± 0.10

Naccache et al. (2002). The study reported three experiments. We did not consider the subanalyses for cued trials as the
standard reasoning only related to the congruency effects. Note that we only counted the number of “critical” trials which
were used in their analysis.
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Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct (E1) 12 240 d′ = −0.04 −0.04 ± 0.06
Indirect, RT (E1) 12 240 F(1, 11) = 7.88 0.15 ± 0.07 0.19 ± 0.09

Direct (E2) 12 240 d′ = −0.07 −0.07 ± 0.06
Indirect, RT (E1) 12 240 F(1, 11) = 7.32 0.14 ± 0.07 0.21 ± 0.09

Direct (E3) 12 240 d′ = 0.09 0.09 ± 0.06
Indirect, RT, early, valid (E3) 12 240 F(1, 11) = 9.23 0.16 ± 0.07 0.07 ± 0.09
Indirect, RT, late, valid (E3) 12 240 F(1, 11) = 3.97 0.11 ± 0.06 0.02 ± 0.09
Indirect, RT, late, invalid (E3) 12 240 F(1, 11) = 5.34 0.12 ± 0.07 0.03 ± 0.09

Pessiglione et al. (2007, Regression to the mean). The study deviated from the standard priming paradigm by just
showing masked stimuli (in this case, coins) and no target stimuli. Presentation duration was varied in three conditions. For
the separate conditions, participants were measured in one direct task and with three indirect measures. The appendix provided
the required information for our reanalysis. We digitized their Figure S2 to derive the t values for the two indirect measures
grip force and pallidal activation. The third indirect measure, skin conductance, was NIE. Even though these results were only
reported in the appendix, the study bases their interpretation on these results. Note, that N = 24 relates to 24 participant ×
stimulus duration conditions in which the direct task was non-significant at an individual level.

Standard Reasoning: “Based on the percentage of correct responses, the analysis could then be restricted to all situations
where subjects guess at chance level about stimulus identity (fig. S2) [by removing situations with significant direct task
results]. Even in these situations, pallidal activation and hand-grip force were significantly higher for pounds as compared to
pennies [...] ” (p. 906).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct, Semantic (E2) 24 60 d′ = 0.19 0.19 ± 0.07
Indirect, grip force 24 90 t(23) = 2.92 0.15 ± 0.06 −0.04 ± 0.09
Indirect, pallidal activation 24 90 t(23) = 3.41 0.17 ± 0.06 −0.02 ± 0.09

Sumner (2008, Regression to the mean). The study reported two experiments. Both, E1 and E2, had different mask
conditions (A vs. B). Only E1 provided indirect task results such that we could reanalyze both conditions separately. For
E2 we had to apply our reanalysis to both conditions aggregated. Therefore, we averaged over the given d′ values from
both conditions. We did not consider the subanalyses on the difference and interaction between the two masks but only the
congruency effects as they are taken for the standard reasoning.

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct, mask A (E1) 12 40 d′ = 0.14 0.14 ± 0.12
Indirect, RT, mask A (E1) 12 200 t(11) = 5.5 0.30 ± 0.10 0.16 ± 0.15

Direct, mask B (E1) 12 40 d′ = 0.11 0.11 ± 0.12
Indirect, RT, mask B (E1) 12 200 t(11) = 4.5 0.25 ± 0.09 0.14 ± 0.15

Direct, mask B (E2) 12 80 50.5%-correct 0.03 ± 0.09
Indirect, RT (E2) 12 400 t(11) = 7.4 0.36 ± 0.10 0.33 ± 0.14
Indirect, error rate (E2) 12 400 t(11) = 4 0.19 ± 0.07 0.17 ± 0.12

van Gaal et al. (2010, Regression to the mean). The study reported one experiment with one direct task and multiple
indirect measures. However, we only considered the indirect effect on RTs as the fMRI analyses were NR.

Standard Reasoning: “[...] a, Participants were unable to discriminate between trials with a strongly masked square or dia-
mond, as revealed by chance-level performance in a two-choice discrimination task administered after the main experiment. b,
Although strongly masked no-go signals could not be perceived consciously, they still triggered inhibitory control processes,
as revealed by significantly longer response times on these trials than on strongly masked go trials.” (in Figure 2, p. 4145).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct 20 48 d′ = 0.118 0.12 ± 0.09
Indirect, RT 20 240 t(19) = 6.24 0.27 ± 0.06 0.15 ± 0.11

Wang et al. (2017). The study reported two experiments. In E1, there were two outline conditions, line vs. rectangle.
The line condition yielded a negative congruency effect which we treated similar to a standard (positive) priming effect. The
rectangle condition was NIE. In E2, the rectangle condition with prime duration of 50 ms produced a large d′ so that no ITA
was claimed. Hence, we only considered the rectangle condition only for 33 ms. For the line condition, 33 ms and 50 ms trials
were analyzed together since there was no interaction effect.
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Standard Reasoning: “The results from the FC task indicated that similar prime visibility, equivalent to chance level, was
obtained in the two preposed object type conditions. This finding confirmed that primes were processed subliminally in the
primary task” (p. 425).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct (E1) 15 64 d′ = 0.02 0.02 ± 0.09
Indirect, RT, line (E1) 15 208 F(1, 14) = 6.86 0.13 ± 0.06 0.11 ± 0.11

Direct, 33 ms, rect. (E2) 15 32 d′ = 0.15 0.15 ± 0.12
Indirect, RT, 33 ms, rect. (E2) 15 208 F(1, 14) = 8.15 0.14 ± 0.06 −0.01 ± 0.14

Direct, 33 ms + 50 ms, line (E2) 15 64 d′ = −0.103 −0.10 ± 0.09
Indirect, RT, 33 ms + 50 ms, line (E2) 15 416 F(1, 14) = 11.47 0.15 ± 0.06 0.25 ± 0.11

Wójcik et al. (2019). The study reported one experiment with masked and unmasked conditions. We only considered
the masked condition for which an ITA was claimed but not the unmasked condition. In the direct task, we had to compute
average d′ from the openly accessible material. In the indirect task, EEG components were measured. For EEG preprocessing,
some trials had to be rejected leading to an average of 131 trials. We assumed that rejection rate was approximately equal in
the two indirect task conditions.

Standard Reasoning: “Analysis of the sensitivity measure d′ indicated that faces were not consciously identified in the
masked condition. A clear N2 posterior-contralateral (N2pc) component (a neural marker of attention shifts) was found in
both the masked and unmasked conditions, revealing that one’s own face automatically captures attention when processed
unconsciously” (in the abstract, p. 471).

Original data Our reanalysis (Figure 5)

N K Statistic d′estimated ± S E d′diff ± S Ediff

Direct, masked 18 160 d′ = 0.211 0.21 ± 0.06
Indirect, EEG, N2pc, masked 18 131 t(17) = 2.34 0.12 ± 0.06 −0.09 ± 0.08

G Cost of Dichotomization in Significance Testing and Bayesian Analyses

The main fallacy of the standard reasoning persists independently of which statistical methods are chosen (significance
testing or Bayesian analysis). It comes from evaluating the two tasks separately instead of using the appropriate analysis of
measuring a difference between direct vs. indirect task sensitivities. To see why problems occur in both methods, consider the
following simulation demonstrating the cost of dichotomization.

In multiple runs, we simulate one data set by sampling responses from N = 12 participants and K = 256 trials per partic-
ipant. Thus, we sample K/2 = 128 observations in each of two conditions based on two normal distributions that are shifted
by d′true = 0.15 standard deviations (corresponding to a true performance of 53%-correct; log-normal distributions produce
similar results). We analyze this one data set (a) as in the indirect task and (b) as in the direct task. We will show that both
methods, significance testing and Bayesian analysis, produce misleading results in favor of the indirect task even though the
exact same data is the basis for both tasks.

To mimic the RT effect from the indirect task, we tested the mean difference between two conditions against 0 (y axes in
Figure S3). To mimic the direct task, we conducted a median split and tested sensitivity d′ against 0 (x axes in Figure S3).
The assumption here is that participants have access to the same information in both tasks and were forced to give a binary
response (dichotomize) in the direct task so that the best they could do is to respond according to the optimal median split
criterion. To test against 0, we used a t test (see Figure S3a) and we computed Bayes Factor (Figure S3b) using the R package
provided by Morey, Rouder, Jamil, and Morey (2015)

Inspecting the results in Figure S3, we find that p values and Bayes Factors diverge from the red equality line indicating
more evidence for an effect in the indirect task analysis compared to the direct task analysis. This is so because a median
split dichotomization discards information (Cohen, 1983) producing larger p values and smaller Bayes Factors in the direct as
compared to the indirect task.

In 23% of the simulations, there is a non-significant direct task vs. a significant indirect task result (shaded area in Fig-
ure S3a). This pattern may mislead researchers into thinking that there is an effect in the indirect task but none in the direct
task. Note that this is a well–known error: One cannot take a non-significant result as evidence for the absence of an effect
without a power analysis (see for example Vadillo et al., 2020).

The pattern of results from Bayes Factors is misleading in an even more severe way. In 20% of the simulations, we find
Bayes Factors supporting the null hypothesis of no effect in the direct task (BF10 < 1) and simultaneously supporting the
alternative hypothesis in the indirect task (BF10 > 1; on the log scale these are values below and above 0, see shaded area in
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Figure S3. Cost of Dichotomization in significance testing and Bayesian analysis. Each point corresponds to one simulated data set.
We analyzed each data set as in the direct task (x axis) and indirect task (y axes). We find that p values in (a) as well as Bayes Factors in (b)
diverge from the red equality line indicating more evidence in the indirect task due to the loss of information from median splitting the data
in the direct task. Shaded regions indicate a misleading pattern of result: (a) a significant indirect task vs. a non-significant direct task result;
(b) a Bayes Factor supporting the null hypothesis in the direct task vs. a Bayes Factor supporting the alternative hypothesis in the indirect
task.

Figure S3b). We even found some simulations, in which there is substantial evidence for the null hypothesis in the direct task
(BF10 < 1/3) and substantial evidence for the alternative hypothesis in the indirect task (BF10 > 3). That is, if we ignored the
main fallacy of the standard reasoning and followed the Bayesian analysis naively, we would conclude a difference in the two
tasks even though the analyses in both tasks is based on the exact same data!

Analyzing the simulated data separately—computing mean difference in the indirect task and sensitivity in the direct task—
produces misleading patterns of results. This problem occurs independent of the statistical methods used, significance testing
or Bayes analysis, and even if the exact same data underlies both tasks. In a real experiment, direct and indirect tasks would
not be based on the exact same data but on two samples, which produces additional measurement error. But in our idealized
simulation here, there is no additional sampling error because both tasks are based on the same sample. Hence, no difference
between the two tasks should be found. Accordingly, the appropriate analysis based on the sensitivity comparison would find
exactly d′estimated, indirect − d′estimated, direct = 0 correctly identifying no difference between the two tasks and solving this problem.
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H Glossary

Table S3
Description of variables.

Variable Description
c j Condition effect, for example the congruent condition ( j = 1) produces faster RTs so that

c1 < 0 and c2 = 1 − c1 > 0.
cN,K,q2 Constant relating t values to the estimated sensitivity in the indirect task, d′true = cN,K,q2 · t. It

depends on N, M and q.
d′ Observed, average sensitivity index, estimates the true sensitivity d′true.
d′i Observed, individual sensitivity indices, estimates the true, individual sensitivities d′true,i.
d′true True sensitivity, d′true = ∆

σε
.

d′estimated Estimated sensitivity from the reported summary statistics in the direct (d′estimated,direct) or in-
direct task (d′estimated,indirect).

d′true,i Individual sensitivity, d′true,i = ∆i
σε

.
∆ The true difference between conditions, ∆ = c2 − c1.
∆̂ The observed, mean difference between conditions.
∆i True, individual effects, ∆i = c2 + (p × c)i2 − (c1 + (p × c)i1), for example the expected

congruency effect between conditions of participant i.
∆̂i The observed difference between conditions of participant i.
εi jk trial-by-trial error, noise due to measurement error or random neuronal fluctuations.
fopt(x) Optimal classifier taking indirect measures x (e.g., RTs) and predicting the condition (con-

gruent/incongruent).
ft(x) Threshold classifier predicting one condition for indirect measures x ≤ t (e.g., RTs) and the

other for x > t.
h Linear approximation used to translate between sensitivities and accuracies.
i Index for participant i ∈ {1, 2, ...,N}.
j Index for condition j ∈ {1, 2}, for example indicator for congruent ( j = 1) and incongruent

( j = 2) conditions.
K Total number of trials per particpant, K = 2M.
k Index for trial k ∈ {1, 2, ...,M}. Since there are two conditions, the number of observed trials

per participant is 2M = K.
M Number of trials per participant × condition. The total number of trials per participant is

2M = K.
µ Grand mean, for example the overall expected value of RTs.
N Number of participants.
Ω(x) Marginal, cumulative density distribution (CDF) over indirect measures x.
pi Participant effect, for example participants with a faster RTs than average have a negative pi

while slower participants have a positive pi.
(p × c)i j Interaction effect, for example some participants have different reaction time effects.
π True accuracy.
π̂ Observed, mean accuracy.
πi True accuracy of participant i. It can be translated into a sensitivity by d′true,i = 2Φ−1(πi)

where Φ is the cumulative normal distribution.
π̂i Observed, individual accuracy.

q2 Ratio between effect variance and trial-by-trial error variance, q2 =
σ2

effect

σ2
ε

. This is the variance
of true sensitivities across individuals, q2 = Var[d′true,i]. A reasonable value in our setting is
q2 = 0.0225 implying SD[d′true,i] = 0.15.
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Table S3
(continued).

Variable Description
S E Estimated standard error of the estimated sensitivity.
σ2

∆i
Variance of true individual effects, for example, to which degree participants vary in their
congruency effect.

σ2
∆̂i

True variance of observed individual effects, for example, variance of the observable congru-
ency effects.

σ̂2
∆̂i

Estimated variance of observed individual effects. This is what scientists get when computing
the variance on the observable congruency effects across participants.

σ2
p×c Variance of the interaction effect, (p × c)i j.

σ2
effect Variance of the effects ∆i, σ2

effect = 4σ2
p×c.

σ2
ε Variance of the trial-by-trial error, εi jk.

t t value, in our context it comes from paired-t-tests between the two conditions of the indirect
task.

Yi jk Response of participant i in condition j trial k from the direct (Ydir
i jk) or indirect task (Y indir

i jk ).
The standard repeated measures ANOVA model is Yi jk = µ + pi + c j + (p × c)i j + εi jk.
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