
On the Convergence of Spectral Clustering on
Random Samples: the Normalized Case

Ulrike von Luxburg1, Olivier Bousquet1, and Mikhail Belkin2

1 Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract. Given a set of n randomly drawn sample points, spectral
clustering in its simplest form uses the second eigenvector of the graph
Laplacian matrix, constructed on the similarity graph between the sam-
ple points, to obtain a partition of the sample. We are interested in the
question how spectral clustering behaves for growing sample size n. In
case one uses the normalized graph Laplacian, we show that spectral clus-
tering usually converges to an intuitively appealing limit partition of the
data space. We argue that in case of the unnormalized graph Laplacian,
equally strong convergence results are difficult to obtain.

1 Introduction

Clustering is a widely used technique in machine learning. Given a set of data
points, one is interested in partitioning the data based on a certain similarity
among the data points. If we assume that the data is drawn from some underly-
ing probability distribution, which often seems to be the natural mathematical
framework, the goal becomes to partition the probability space into certain re-
gions with high similarity among points. In this setting the problem of clustering
is two-fold:

– Assuming that the underlying probability distribution is known, what is a
desirable clustering of the data space?

– Given finitely many data points sampled from an unknown probability dis-
tribution, how can we reconstruct that optimal partition empirically on the
finite sample?

Interestingly, while extensive literature exists on clustering and partitioning, to
the best of our knowledge very few algorithms have been analyzed or shown to
converge for increasing sample size. Some exceptions are the k-means algorithm
(cf. Pollard, 1981), the single linkage algorithm (cf. Hartigan, 1981), and the
clustering algorithm suggested by Niyogi and Karmarkar (2000). The goal of
this paper is to investigate the limit behavior of a class of spectral clustering
algorithms.



Spectral clustering is a popular technique going back to Donath and Hoffman
(1973) and Fiedler (1973). It has been used for load balancing (Van Driessche
and Roose, 1995), parallel computations (Hendrickson and Leland, 1995), and
VLSI design (Hagen and Kahng, 1992). Recently, Laplacian-based clustering al-
gorithms have found success in applications to image segmentation (cf. Shi and
Malik, 2000). Methods based on graph Laplacians have also been used for other
problems in machine learning, including semi-supervised learning (cf. Belkin and
Niyogi, to appear; Zhu et al., 2003). While theoretical properties of spectral clus-
tering have been studied (e.g., Guattery and Miller (1998), Weiss (1999), Kannan
et al. (2000), Meila and Shi (2001), also see Chung (1997) for a comprehensive
theoretical treatment of the spectral graph theory), we do not know of any re-
sults discussing the convergence of spectral clustering or the spectra of graph
Laplacians for increasing sample size. However for kernel matrices, the conver-
gence of the eigenvalues and eigenvectors has already attracted some attention
(cf. Williams and Seeger, 2000; Shawe-Taylor et al., 2002; Bengio et al., 2003).

2 Background and notations

Let (X ,dist) be a metric space, B the Borel σ-algebra on X , P a probability
measure on (X ,B), and L2(P ) := L2(X ,B, P ) the space of square-integrable
functions. Let k : X×X → IR a measurable, symmetric, non-negative func-
tion that computes the similarity between points in X . For given sample points
X1, ..., Xn drawn iid according to the (unknown) distribution P we denote
the empirical distribution by Pn. We define the similarity matrix as Kn :=
(k(Xi, Xj))i,j=1,...,n and the degree matrix Dn as the diagonal matrix with diag-
onal entries di :=

∑n
j=1 k(Xi, Xj). The unnormalized discrete Laplacian matrix

is defined as Ln := Dn−Kn. For symmetric and non-negative k, Ln is a positive
semi-definite linear operator on IRn. Let a = (a1, ..., an) the second eigenvec-
tor of Ln. Here, “second eigenvector” refers to the eigenvector belonging to the
second smallest eigenvalue, where the eigenvalues λ1 ≤ λ2... ≤ λn are counted
with multiplicity. In a nutshell, spectral clustering in its simples form partitions
the sample points (Xi)i into two (or several) groups by thresholding the second
eigenvector of Ln: point Xi belongs to cluster 1 if ai > b, and to cluster 2 oth-
erwise, where b ∈ IR is some appropriate constant. An intuitive explanation of
why this works is discussed in Section 4.
Often, spectral clustering is also performed with a normalized version of the
matrix Ln. Two common ways of normalizing are L′n := D

−1/2
n LnD

−1/2
n or

L′′n := D−1
n Ln. The eigenvalues and eigenvectors of both matrices are closely

related. Define the normalized similarity matrices H ′
n := D

−1/2
n KnD

−1/2
n and

H ′′
n := D−1

n Kn. It can be seen by multiplying the eigenvalue equation L′nv = λv

from left with D
−1/2
n that v ∈ IRn is eigenvector of L′n with eigenvalue λ iff

D
−1/2
n v is eigenvector of L′′n with eigenvalue λ. Furthermore, rearranging the

eigenvalue equations for L′n and L′′n shows that v ∈ IRn is an eigenvector of L′n
with eigenvalue λ iff v is eigenvector of H ′

n with eigenvalue (1 − λ), and that
v ∈ IRn is an eigenvector of L′′n with eigenvalue λ iff v is eigenvector of H ′′

n



with eigenvalue (1− λ). Thus, properties about the spectrum of one of the ma-
trices L′n, L′′n, H ′

n, or H ′′
n can be reformulated for the three other matrices as well.

In the following we want to recall some definitions and facts from pertur-
bation theory for bounded operators. The standard reference for general per-
turbation theory is Kato (1966), for perturbation theory in Hilbert spaces we
also recommend Birman and Solomjak (1987) and Weidmann (1980), and Bha-
tia (1997) for finite-dimensional perturbation theory. We denote by σ(T ) the
spectrum of a linear operator T . Its essential and discrete spectra are denoted
by σess(T ) and σd(T ), respectively.

Proposition 1 (Spectral and perturbation theory).

1. Spectrum of a compact operator: Let T a compact operator on a Banach
space. Then σ(T ) is at most countable and has at most one limit point,
namely 0. If 0 6= λ ∈ σ(T ), then λ is an isolated eigenvalue with finite
multiplicity. The spectral projection corresponding to λ coincides with the
projection on the corresponding eigenspace.

2. Spectrum of a multiplication operator: For a bounded function g ∈
L∞(P ) consider the multiplication operator Mg : L2(P ) → L2(P ), f 7→ gf .
Mg is a bounded linear operator whose spectrum coincides with the essential
range of the multiplier g.

3. Perturbation of symmetric matrices: Let A and B be two symmet-
ric matrices in IRn×n, and denote by ‖ · ‖ an operator norm on IRn×n.
Then the Hausdorff distance d(σ(A), σ(B)) between the two spectra satis-
fies d(σ(A), σ(B)) ≤ ‖A − B‖. Let µ1 > ... > µk be the eigenvalues of A
counted without multiplicity and Pr1, ...,Prk the projections on the corre-
sponding eigenspaces. For 1 ≤ r ≤ k define the numbers

γr(A) := min{|µi − µj |; 1 ≤ i < j ≤ r + 1}.

Assume that ‖B‖ ≤ ε. Then for all 1 ≤ l ≤ r we have

‖Prl(A + B)− Prl(A)‖ ≤ 4
‖B‖

γr(A)

(cf. Section VI.3 of Bhatia, 1997, Lemma A.1.(iii) of Koltchinskii, 1998,
and Lemma 5.2. of Koltchinskii and Giné, 2000).

4. Perturbation of bounded operators: Let (Tn)n and T be bounded opera-
tors on a Banach space E with Tn → T in operator norm, and λ an isolated
eigenvalue of T with finite multiplicity. Then, for n large enough, there exist
isolated eigenvalues λn ∈ σ(Tn) such that λn → λ, and the corresponding
spectral projections converge in operator norm. The other way round, for a
converging sequence λn ∈ σ(Tn) of isolated eigenvalues with finite multiplic-
ity, there exists an isolated eigenvalue λ ∈ σ(T ) with finite multiplicity such
that λn → λ and the corresponding spectral projections converge in operator
norm (cf. Theorems 3.16 and 2.23 in Kato, 1966).



5. Perturbation of the essential spectrum: Let A be a bounded and V a
compact operator on some Banach space. Then σess(A + V ) = σess(A) (cf.
Th. 5.35 in Kato, 1966, and Th. 9.1.3 in Birman and Solomjak, 1987).

Finally we will need the following definition. A set F of real-valued functions on
X is called a P -Glivenko-Cantelli class if

sup
f∈F

|
∫

fdPn −
∫

fdP | → 0 P -a.s.

3 Convergence of the normalized Laplacian

The goal of this section is to prove that the first eigenvectors of the normalized
Laplacian converge to the eigenfunctions of some limit operator on L2(P ).

3.1 Definition of the integral operators

Let d(x) :=
∫

k(x, y)dP (y) the “true degree function” on X , and dn(x) :=∫
k(x, y)dPn(y) the empirical degree function. To ensure that 1/d is a bounded

function we assume that there exists some constant l such that d(x) > l > 0 for
all x ∈ X . We define the normalized similarity functions

hn(x, y) := k(x, y)/
√

dn(x)dn(y)

h(x, y) := k(x, y)/
√

d(x)d(y) (1)

and the operators

Tn : L2(Pn) → L2(Pn), Tnf(x) =
∫

h(x, y)f(y)dPn(y)

T ′n : L2(Pn) → L2(Pn), T ′nf(x) =
∫

hn(x, y)f(y)dPn(y)

T : L2(P ) → L2(P ), T f(x) =
∫

h(x, y)f(y)dP (y). (2)

If k is bounded and d > l > 0, then all three operators are bounded, compact
integral operators. Note that the scaling factors 1/n which are hidden in dn

and Pn cancel. Hence, because of the isomorphism between L2(Pn) and IRn,
the eigenvalues and eigenvectors of T ′n can be identified with the ones of the
empirical similarity matrix H ′

n, and the eigenvectors and values of Tn with those
of the matrix Hn := (h(Xi, Xj))ij .

Our goal in the following will be to show that the eigenvectors of H ′
n converge

to those of the integral operator T . The first step will consist in proving that
the operators Tn and T ′n converge to each other in operator norm. By perturba-
tion theory results this will allow us to conclude that their spectra also become
similar. The second step is to show that the eigenvalues and eigenvectors of Tn

converge to those of T . This step uses results obtained in Koltchinskii (1998).
Both steps together then will show that the first eigenvectors of the normalized
Laplacian matrix converge to the first eigenfunctions of the limit operator T ,
and hence that spectral clustering converges.



3.2 Tn and T ′
n converge to each other

Proposition 2 (dn converges to d uniformly on the sample). Let k :
X×X → IR be bounded. Then maxi=1,...,n |dn(Xi)− d(Xi)| → 0 a.s. for n →∞.

Proof. With M := ‖k‖∞ < ∞ we have

max
i=1,...,n

|dn(Xi)− d(Xi)| = max
i=1,...,n

| 1
n

n∑
j=1

k(Xi, Xj)− EXk(Xi, X)|

≤ 2M

n
+

n− 1
n

max
i
| 1
n− 1

∑
j 6=i

k(Xi, Xj)− EXk(Xi, X)|.

For fixed x ∈ X , the Hoeffding inequality yields

P
(
| 1
n− 1

∑
j 6=i

k(x,Xj)− EXk(x,X)| > ε
)
≤ exp(−M(n− 1)ε2).

The same is true conditionally on Xi if we replace x by Xi, because the random
variable Xi is independent of Xj for j 6= i. Applying the union bound and taking
expectations over Xi leads to

P
(

max
i=1,...,n

| 1
n− 1

∑
j 6=i

k(Xi, Xj)− EXk(Xi, X)| > ε
)

≤
n∑

i=1

P

(
| 1
n− 1

∑
j 6=i

k(Xi, Xj)− EXk(Xi, X)| > ε

∣∣∣∣ Xi

)
≤ n exp(−M(n− 1)ε2).

This shows the convergence of maxi=1,...,n |dn(Xi) − d(Xi)| → 0 in probability.
As the deviations decrease exponentially, the Borel-Cantelli lemma shows that
this convergence also holds almost surely. ,

Proposition 3 (‖T ′
n−Tn‖L2(Pn) converges to 0). Let k a bounded similarity

function. Assume that there exist constants u > l > 0 such that u ≥ d(x) ≥ l > 0
for all x ∈ X . Then ‖Tn − T ′n‖L2(Pn) → 0 a.s. and ‖Hn −H ′

n‖n → 0 a.s., where
‖ · ‖n denotes the row sum norm for n×n-matrices.

Proof. By the Cauchy-Schwartz inequality,

‖Tn − T ′n‖2
L2(Pn) = sup

‖f‖L2(Pn)≤1

∫ (∫
(hn(x, y)− h(x, y))f(y)dPn(y)

)2

dPn(x)

≤ sup
‖f‖L2(Pn)≤1

∫ ∫
(hn(x, y)− h(x, y))2dPn(y)

∫
f2(y)dPn(y) dPn(x)

≤
∫ ∫

(hn(x, y)− h(x, y))2dPn(y)dPn(x)

≤ max
i,j=1,...,n

|hn(Xi, Xj)− h(Xi, Xj)|2



By Proposition 2 we know that for each ε > 0 there exists some N such that for
all n > N , |dn(x)− d(x)| ≤ ε for all x ∈ {X1, ..., Xn}. Then

|dn(x)dn(y)−d(x)d(y)| ≤ |dn(x)dn(y)−d(x)dn(y)|+|d(x)dn(y)−d(x)d(y)| ≤ 2uε,

which implies that |
√

dn(x)dn(y)−
√

d(x)d(y)| ≤
√

2uε. This finally leads to∣∣∣∣∣ 1√
dn(x)dn(y)

− 1√
d(x)d(y)

∣∣∣∣∣ =

∣∣∣∣∣
√

dn(x)dn(y)−
√

d(x)d(y)√
dn(x)dn(y)

√
d(x)d(y)

∣∣∣∣∣ ≤
√

2uε

l(l − 2uε)

for all x, y ∈ {X1, ..., Xn}. This shows that ‖Tn − T ′n‖ converges to 0 almost
surely. The statement for ‖Hn −H ′

n‖ follows by a similar argument. ,

3.3 Convergence of Tn to T

Now we want to deal with the convergence of Tn to T . By the law of large num-
bers it is clear that Tnf(x) → Tf(x) for all x ∈ X and f ∈ F . But this pointwise
convergence is not enough to allow any conclusion about the convergence of the
eigenvalues, let alone the eigenfunctions of the involved operators. On the other
hand, the best convergence statement we can possibly think of would be conver-
gence of Tn to T in operator norm. Here we have the problem that the operators
Tn and T are not defined on the same spaces. One way to handle this is to relate
the operators Tn, which are currently defined on L2(Pn), to some operators Sn

on the space L2(P ) such that their spectra are preserved. Then we would have
to prove that Sn converges to T in operator norm. We believe that such a state-
ment cannot be true in general. Intuitively, the reason for this is the following.
Convergence in operator norm means uniform convergence on the unit ball of
L2(P ). Independent of the exact definition of Sn, the convergence of Sn to T in
operator norm is closely related to the problem

sup
‖f‖≤1

‖
∫

k(x, y)f(y)dPn(y)−
∫

k(x, y)f(y)dP (y) ‖ !→ 0.

This statement would be true if the class G := {k(x, ·)f(·); x ∈ X , ‖f‖ ≤ 1} was
a P -Glivenko-Cantelli class, which is false in general. This can be made plausible
by considering the special case k ≡ 1. Then the condition would be that the unit
ball of L2(P ) is a Glivenko-Cantelli class, which is clearly not the case for large
enough X . As a consequence, we cannot hope to achieve uniform convergence
over the unit ball of L2(P ).

A way out of this problem might be not to consider uniform convergence
on the whole unit ball, but on a smaller subset of it. Something of a similar
flavor has been proved in Koltchinskii (1998). To state his results we first have
to introduce some more notation. For a function f : X → IR denote its restric-
tion to the sample points by f̃ . Let h : X×X → IR a symmetric, measurable
similarity function such that E(h2(X, Y )) < ∞. This condition implies that the



integral operator T with kernel h is a Hilbert-Schmidt operator. Let (λi)i∈I its
eigenvalues and (Φi)i∈I a corresponding set of orthonormal eigenfunctions. To
measure the distance between two countable sets A = (ai)i∈N, B = (bi)i∈N, we
introduce the minimal matching distance δ(A,B) := infπ

∑∞
i=1 ai − bπ(i), where

the infimum is taken over the set of all permutations π of N. A more general
version of the following theorem has been proved in Koltchinskii (1998).

Theorem 4 (Koltchinskii). Let (X ,B, P ) an arbitrary probability space, h :
X×X → IR a symmetric, measurable function such that E(h2(X, Y )) < ∞ and
E(|h(X, X)|) < ∞, and Tn and T the integral operators as defined in equation
(2). Let (Φi)i∈I the eigenfunctions of T , and let λ 6= 0 the r-th largest eigen-
value of T (counted without multiplicity). Denote by Pr and Prn the projections
on the eigenspaces corresponding to the r-th largest eigenvalues of T and Tn,
respectively. Then:

1. δ(σ(Tn), σ(T )) → 0 a.s.
2. Suppose that G is a class of measurable functions on X with a square-

integrable envelope G with ‖G‖L2(P ) ≤ 1, i.e. |g(x)| ≤ G(x) for all g ∈ G.
Moreover, suppose that for all i ∈ I, the set GΦi := {gΦi; g ∈ G} is a
P -Glivenko Cantelli class. Then

sup
f,g∈G

∣∣∣〈Prn f̃ , g̃〉L2(Pn) − 〈Pr f, g〉L2(P )

∣∣∣ → 0 a.s. for n →∞.

Coming back to the discussion from above, we can see that this theorem also
does not state convergence of the spectral projections uniformly on the whole
unit ball of L2(P ), but only on some subset G of it. The problem that the op-
erators Tn and T are not defined on the same space has been circumvented by
considering bilinear forms instead of the operators themselves.

3.4 Convergence of the second eigenvectors

Now we have collected all ingredients to discuss the convergence of the second
largest eigenvalue and eigenvector of the normalized Laplacian. To talk about
convergence of eigenvectors only makes sense if the eigenspaces of the corre-
sponding eigenvalues are one-dimensional. Otherwise there exist many different
eigenvectors for the same eigenvalue. So multiplicity one is the assumption we
make in our main result. In order to compare an eigenvector of the discrete op-
erator T ′n and the corresponding eigenfunction of T , we can only measure how
distinct they are on the points of the sample, that is by the L2(Pn)-distance.
However, as eigenvectors are only unique up to changing their orientations we
will compare them only up to a change of sign.

Theorem 5 (Convergence of normalized spectral clustering). Let
(X ,B, P ) a probability space, k : X×X → IR a symmetric, bounded, measurable
function, and (Xi)i∈IN a sequence of data points drawn iid from X according to



P . Assume that the degree function satisfies d(x) > l > 0 for all x ∈ X and some
constant l ∈ IR. Denote by λ 6= 0 the second largest eigenvalue of T (counted
with multiplicity), and assume that it has multiplicity one. Let Φ be the corre-
sponding eigenfunction, and Pr the projection on Φ. Let λn, Φn and Prn the
same quantities for Tn, and λ′n, Φ′n and Pr′n the same for T ′n. Then there exists
a sequence of signs (an)n with an ∈ {−1,+1} such that ‖anΦ′n − Φ̃‖L2(Pn) → 0
almost surely.

Proof. The boundedness of k and d(x) > l > 0 imply that the normalized
similarity function h is bounded. Hence, the operators T , Tn and T ′n are com-
pact operators. By Proposition 1.1, their non-zero eigenvalues are isolated in
their spectra, and their spectral projections correspond to the projections on
the eigenspaces. Moreover, the boundedness of h implies E(h2(X, Y )) < ∞ and
E|h(X, X)| < ∞. Theorem 4 shows λn → λ for n →∞, and choosing F = {Φ}
we get

〈Φn, Φ̃〉2 = 〈〈Φn, Φ̃〉Φn, Φ̃〉 = 〈Prn Φ̃, Φ̃〉 → 〈PrΦ,Φ〉 = 〈Φ,Φ〉 = 1.

The eigenfunctions Φ and Φn are normalized to 1 in their respective spaces. By
the law of large numbers, we also have ‖Φ̃‖L2(Pn) → 1 a.s. Hence, 〈Φn, Φ̃〉 → 1
or −1 implies the L2(Pn)-convergence of Φn to Φ up to a change of sign.

Now we have to compare λ′n to λn and Φ′n to Φn. In Proposition 3 we showed
that ‖T ′n − Tn‖ → 0 a.s., which according to Proposition 1.3 implies the conver-
gence of λ′n − λn to zero. Theorem 4 implies the convergence of λn − λ to zero.
For the convergence of the eigenfunctions, recall the definition of γr in Propo-
sition 1.3. As the eigenvalues of T are isolated we have γ2(T ) > 0, and by the
convergence of the eigenvalues we also get |γ2(T ′n) − γ2(T )| → 0. Hence, γ(T ′n)
is bounded away from 0 simultaneously for all large n. Moreover, we know by
Proposition 3 that ‖T ′n−Tn‖ → 0 a.s. Proposition 1.3 now shows the convergence
of the spectral projections ‖Pr′n −Prn ‖ → 0 a.s. This implies in particular that

sup
‖v‖≤1

〈v, (Prn−Pr′n)v〉 → 0 and thus sup
‖v‖≤1

|〈v, Φn〉2 − 〈v, Φ′n〉2| → 0.

Since |a2− b2| = |a− b||a+ b|, we get the convergence of Φn to Φ up to a change
of sign on the sample, as stated in the theorem. This completes the proof. ,

Let us briefly discuss the assumptions of Theorem 5. The symmetry of k
is a standard requirement in spectral clustering as it ensures that all eigenval-
ues of the Laplacian are real-valued. The assumption that the degree function
is bounded away from 0 prevents the normalized Laplacian from getting un-
bounded, which is also desirable in practice. This condition will often be triv-
ially satisfied as the second standard assumption of spectral clustering is the
non-negativity of k (as it ensures that the eigenvalues of the Laplacian are non-
negative). An important assumption in Theorem 5 which is not automatically
satisfied is that the second eigenvalue has multiplicity one. But note that if this
assumption is not satisfied, spectral clustering will produce more or less arbitrary



results anyway, as the second eigenvector is no longer unique. It then depends on
the actual implementation of the algorithm which of the infinitely many eigen-
vectors corresponding to the second eigenvalue is picked, and the result will often
be unsatisfactory. Finally, note that even though Theorem 5 is stated in terms of
the second eigenvalue and eigenvector, analogous statements are true for higher
eigenvalues, and also for spectral projections on finite dimensional eigenspaces
with dimension larger than 1.

To summarize, all assumptions in Theorem 5 are already important for suc-
cessful applications of spectral clustering on a finite sample. Theorem 5 now
shows that with no additional assumptions, the convergence of normalized spec-
tral clustering to a limit clustering on the whole data space is guaranteed.

4 Interpretation of the limit partition

Now we want to investigate whether the limit clustering partitions the data
space X in a desirable way. In this section it will be more convenient to consider
the normalized similarity matrix H ′′

n instead of H ′
n as it is a stochastic matrix.

Hence we consider the normalized similarity function g(x, y) := k(x, y)/d(x), its
empirical version gn(x, y) := k(x, y)/dn(x), and the integral operators

R′′
n : L2(Pn) → L2(Pn), R′′

nf(x) =
∫

gn(x, y)f(y)dPn(y)

R : L2(P ) → L2(P ), Rf(x) =
∫

g(x, y)f(y)dP (y).

The spectrum of R′′
n coincides with the spectrum of H ′′

n , and by the one-to-one
relationships between the spectra of H ′′

n and H ′
n (cf. Section 2), the convergence

stated in Theorem 5 for T ′n and T holds analogously for the operators R′′
n and R.

Let us take a step back and reflect what we would like to achieve with spectral
clustering. The overall goal in clustering is to find a partition of X into two (or
more) disjoint sets X1 and X2 such that the similarity between points from
the same set is high while the similarity between points from different sets is
low. Assuming that such a partition exists, how does the operator R look like?
Let X = X1 ∪ X2 be a partition of the space X into two disjoint, measurable
sets such that P (X̄1 ∩ X̄2) = 0. As σ-algebra on Xi we use the restrictions
Bi := {B∩Xi; B ∈ B} of the Borel σ-algebra B on X . Define the measures Pi as
the restrictions of P to Bi. Now we can identify the space L2(X ,B, P ) with the
direct sum L2(X1,B1, P1)⊕L2(X2,B2, P2). Each function f ∈ L2(X ) corresponds
to a tuple (f1, f2) ∈ L2(X1)⊕ L2(X2), where fi : Xi → IR is the restriction of f

to Xi. The operator R can be identified with the matrix
(

R11 R12

R21 R22

)
acting on

L2(X1,B1, P1) ⊕ L2(X2,B2, P2). We denote by di the restriction of d to Xi and
by gij the restriction of g to Xi×Xj . With these notations, the operators Rij for



i, j = 1, 2 are defined as

Rij : L2(Xj) → L2(Xi), Rijfj(x) =
∫

gij(x, y)fj(y)dPj(y).

Now assume that our space is ideally clustered, that is the similarity function
satisfies k(x1, x2) = 0 for all x1∈X1 and x2∈X2, and k(xi, x

′
i) > 0 for xi, x

′
i ∈ X1

or xi, x
′
i ∈ X2. Then the operator R has the form

(
R11 0
0 R22

)
. It has eigenvalue

1 with multiplicity 2, and the corresponding eigenspace is spanned by the vec-
tors (1,0) and (0,1). Hence, all eigenfunctions corresponding to eigenvalue 1 are
piecewise constant on the sets X1,X2, and the eigenfunction orthogonal to the
function (1,1) has opposite sign on both sets. Thresholding the second eigen-
function will recover the true clustering X1∪X2. When we interpret the function
g as a Markov transition kernel, the operator R describes a Markov diffusion
process on X . We see that the clustering constructed by its second eigenfunction
partitions the space into two sets such that diffusion takes place within the sets,
but not between them.

The same reasoning also applies to the finite sample case, cf. Meila and Shi
(2001), Weiss (1999), and Ng et al. (2001). We split the finite sample space
{X1, ..., Xn} into the two sets Xi,n := {X1, ..., Xn} ∩ Xi, and define

Rij,n : L2(Xj,n) → L2(Xi,n), Rij,nfj(x) =
∫

gij,n(x, y)fj(y)dPj,n(y).

According to Meila and Shi (2001), spectral clustering tries to find a partition
such that the probability of staying within the same cluster is large while the
probability of going from one cluster into another one is low (Meila and Shi,
2001). So both in the finite sample case and in the limit case a similar interpre-
tation applies. This shows in particular that the limit clustering accomplishes
the goal of clustering to partition the space into sets such that the within simi-
larity is large and the between similarity is low.

In practice, the operator R will usually be irreducible, i.e. there will exist no
partition such that the operators R12 and R21 vanish. Then the goal will be to
find a partition such that the norms of R12 and R21 are as small as possible,
while the norms of Rii should be reasonably large. If we find such a partition,

then the operators
(

R11 R12

R21 R22

)
and

(
R11 0
0 R22

)
are close in operator norm and

according to perturbation theory have a similar spectrum. Then the partition
constructed by R will be approximately the same as the one constructed by(

R11 0
0 R22

)
, which is the partition X1 ∪ X2.

The convergence results in Section 3 show that the first eigenspaces of Rn

converge to the first eigenspaces of the limit operator R. This statement can be
further strengthened by proving that each of the four operators Rij,n converges



to its limit operator Rij compactly, which can be done by methods from von
Luxburg et al.. As a consequence, also the eigenvalues and eigenspaces of the
single operators Rij,n converge. This statement is even sharper than the con-
vergence statement of Rn to R. It shows that for any fixed partition of X , the
structure of the operator Rn is preserved when taking the limit. This means that
a partition that has been constructed on the finite sample such that the diffu-
sion between the two sets is small also keeps this property when we take the limit.

5 Convergence of the unnormalized Laplacian

So far we always considered the normalized Laplacian matrix. The reason is
that this case is inherently simpler to treat than the unnormalized case. In the
unnormalized case, we have to study the operators

Unf(x) :=
∫

k(x, y)(f(x)− f(y))dPn(y) = dn(x)f(x)−
∫

k(x, y)f(y)dPn(y)

Uf(x) :=
∫

k(x, y)(f(x)− f(y))dP (y) = d(x)f(x)−
∫

k(x, y)f(y)dP (y).

It is clear that Un is the operator corresponding to the unnormalized Laplacian
1
nLn, and U is its pointwise limit operator for n → ∞. In von Luxburg et al.
we show that under mild assumptions, Un converges to U compactly. Compact
convergence is a type of convergence which is a bit weaker than operator norm
convergence, but still strong enough to ensure the convergence of eigenvalues
and spectral projections (Chatelin, 1983). But there is a big problem related
to the structure of the operators Un and U . Both consist of a difference of two
operators, a bounded multiplication operator and a compact integral operator.
This is bad news, as multiplication operators are never compact. To the con-
trary, the spectrum of a multiplication operator consists of the whole range of
the multiplier function (cf. Proposition 1.2). Hence, the spectrum of U consists
of an essential spectrum which coincides with the range of the degree function,
and possibly some discrete spectrum of isolated eigenvalues (cf. Proposition 1.5).

This has the consequence that although we know that Un converges to U in a
strong sense, we are not able to conclude anything about the convergence of the
second eigenvectors. The reason is that perturbation theory only allows to state
convergence results for isolated parts of the spectra. So we get that the essential
spectrum of Un converges to the essential spectrum of U . Moreover, if σ(U) has
a non-empty discrete spectrum, then we can also state convergence of the eigen-
values and eigenspaces belonging to the discrete spectrum. But unfortunately, it
is impossible to conclude anything about the convergence of eigenvalues that lie
inside the essential spectrum of U . In von Luxburg et al. we actually construct an
example of a space X and a similarity function k such that all non-zero eigenval-
ues of the unnormalized Laplacian indeed lie inside the essential spectrum of U .
Now we have the problem that given a finite sample, we cannot detect whether



the second eigenvalue of the limit operator will lie inside or outside the essential
spectrum of U , and hence we cannot guarantee that the second eigenvectors
of the unnormalized Laplacian matrices converge. All together this means that
although we have strong convergence results for Un, without further knowledge
we are not able to draw any useful conclusion concerning the second eigenvalues.

On the other hand, in case we can guarantee the convergence of unnormal-
ized spectral clustering (i.e., if the second eigenvalue is not inside the essential
spectrum), then the limit partition in the unnormalized case can be interpreted
similarly to the normalized case by taking into account the form of the operator
U on L2(X1,B1, P1)⊕L2(X2,B2, P2). Similar to above, it is composed of a matrix
of four operators (Uij)i,j=1,2 defined as

Uii : L2(Xi) → L2(Xi), Uiifi(x) = di(x)fi(x)−
∫

kii(x, y)fi(y)dPi(y)

Uij : L2(Xj) → L2(Xi), Uijfj(x) = −
∫

kij(x, y)fj(y)dPj(y) ( for i 6= j).

We see that the off-diagonal operators Uij for i 6= j only consist of integral opera-
tors, whereas the multiplication operators only appear in the diagonal operators
Uii. Thus the operators Uij for i 6= j can also be seen as diffusion operators, and
the same interpretation as in the normalized case is possible. If there exists a
partition such that k(x1, x2) = 0 for all x1 ∈ X1 and x2 ∈ X2, then the second
eigenfunction is constant on both parts, and thresholding this eigenfunction will
recover the “true” partition. Thus, also in the unnormalized case the goal of
spectral clustering is to find partitions such that the norms of the off-diagonal
operators is small and the norms of the diagonal operators are large. This holds
both in the discrete case and in the limit case, but only if the second eigenvalue
of U is not inside the range of the degree function.

To summarize, from a technical point of view the eigenvectors of the unnor-
malized Laplacian are more unpleasant to deal with than the normalized ones, as
the limit operator has a large essential spectrum in which the interesting eigen-
values could be contained. But if the second eigenvalue of the limit operator is
isolated, some kind of diffusion interpretation is still possible. This means that if
unnormalized spectral clustering converges, then it converges to a sensible limit
clustering.

6 Discussion

We showed in Theorem 5 that the second eigenvector of the normalized Lapla-
cian matrix converges to the second eigenfunction of some limit operator almost
surely. The assumptions in this theorem are usually satisfied in practical appli-
cations. This allows to conclude that in the normalized case, spectral clustering
converges to some limit partition of the whole space which only depends on the



similarity function k and the probability distribution P . We also gave an expla-
nation of how this partition looks like in terms of a diffusion process on the data
space. Intuitively, the limit partition accomplishes the objective of clustering,
namely to divide the space into sets such that the similarity within the sets is
large and the similarity between the sets is low.

The methods we used to prove the convergence in case of the normalized
Laplacian fail in the unnormalized case. The reason is that the limit operator
in the unnormalized case is not compact and has a large essential spectrum.
Convergence of the second eigenvector in the unnormalized case can be proved
with different methods using collectively compact convergence of linear opera-
tors, but only under strong assumptions on the spectrum of the limit operator
which are not always satisfied in practice (cf. von Luxburg et al.). However,
if these assumptions are satisfied, then the limit clustering partitions the data
space in a reasonable way. In practice, the fact that the unnormalized case seems
much more difficult than the normalized case might serve as an indication that
the normalized case of spectral clustering should be preferred.

The observations in Section 4 allow to make some more suggestions for the
practical application of spectral clustering. According to the diffusion interpreta-
tion, it seems possible to to construct a criterion to evaluate the goodness of the
partition achieved by spectral clustering. For a good partition, the off-diagonal
operators R12,n and R21,n should have a small norm compared to the norm of
the diagonal matrices R11,n and R22,n, which is easy to check in practical appli-
cations. It will be a topic for future investigations to work out this idea in detail.

There are many open questions related to spectral clustering which have not
been addressed in our work so far. The most obvious one is the question about
the speed of convergence and the concentration of the limit results. Results in
this direction would enable us to make confidence predictions about how close
the clustering on the finite sample is to the “true” clustering proposed by the
limit operator.

This immediately raises a second question: Which relations are there between
the limit clustering and the geometry of the data space? For certain similarity
functions such as the Gaussian kernel kt(x, y) = exp(−‖x − y‖2/t), it has been
established that there is a relationship between the operator T and the Laplace
operator on IRn (Bousquet et al., 2004) or the Laplace-Beltrami operator on
manifolds (Belkin, 2003). Can this relationship also be extended to the eigenval-
ues and eigenfunctions of the operators?

There are also more technical questions related to our approach. The first one
is the question which space of functions is the “natural” space to study spectral
clustering. The space L2(P ) is a large space and is likely to contain all eigen-
functions we might be interested in. On the other hand, for “nice” similarity



functions the eigenfunctions are continuous or even differentiable, thus L2(P )
might be too general to discuss relevant properties such as relations to continu-
ous Laplace operators. Moreover, we want to use functions which are pointwise
defined, as we are interested in the value of the function at specific data points.
But of all spaces, the functions in Lp-spaces do not have this property.

Another question concerns the type of convergence results we should prove.
In this work, we fixed the similarity function k and considered the limit for
n → ∞. As a next step, the convergence of the limit operators with respect to
some kernel parameters, such as the kernel width t for the Gaussian kernel, can
be studied as in the works of Bousquet et al. (2004) and Belkin (2003). But it
seems more appropriate to take limits in t and n simultaneously. This might
reveal other important aspects of spectral clustering, for example how the kernel
width should scale with n.
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