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Abstract. The goal of this paper is to discuss statistical aspects of clus-
tering in a framework where the data to be clustered has been sampled
from some unknown probability distribution. Firstly, the clustering of
the data set should reveal some structure of the underlying data rather
than model artifacts due to the random sampling process. Secondly, the
more sample points we have, the more reliable the clustering should be.
We discuss which methods can and cannot be used to tackle those prob-
lems. In particular we argue that generalization bounds as they are used
in statistical learning theory of classification are unsuitable in a general
clustering framework. We suggest that the main replacements of general-
ization bounds should be convergence proofs and stability considerations.
This paper should be considered as a road map paper which identifies im-
portant questions and potentially fruitful directions for future research
about statistical clustering. We do not attempt to present a complete
statistical theory of clustering.

1 Introduction

Clustering is one of the most widely used techniques for exploratory data analy-
sis. Across all disciplines, from social sciences over biology to computer science,
people try to get a first intuition about their data by identifying meaningful
groups among the data points. Despite this popularity of clustering, distressingly
little is known about theoretical properties of clustering. One of the main reasons
is that it is very difficult to evaluate the quality of a partition of some given data
set other than with ad-hoc measures. Contrary to data analysis methods such as
regression or classification, for clustering there exists no “ground truth”. We wish
to consider the common situation in which clustering takes place without having
any significant prior knowledge about the subject data set. The very reason for
performing clustering is that we want to discover a structure in the data which
we did not know about before. Consequently, if a clustering algorithm does not
achieve ”good” results we do not know whether the reason is that the algorithm
performs poorly or whether there is just no group structure in our data. In this
paper we argue that even though the question “what clustering is” is difficult
to answer in such generality, there are important sub-questions which are well
defined and can and should be investigated in a general statistical framework.
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2 Asking the right questions

There are two completely different issues with clustering: the problem “what
a cluster actually is” and the problem ”how such a thing can be found in the
data”. More precisely:

1. How does a desirable clustering look like if we have complete knowledge
about our data generating process?

2. How can we approximate such an optimal clustering if have incomplete
knowledge about our data, or if we have limited computational resources?

To emphasize the difference between those two questions let us consider a simple
example. Assume that we are astronomers and want to cluster a given set of stars
in different categories. We assume that we know everything about those stars,
that is we know the true values of all parameters describing the stars: how large
they are, how bright they are, which materials they consist of, etc. To answer
Question 1 we now have to define how we would like to cluster stars given all
those parameters. Formally, the answer to this question is a function which for
all combinations of parameter values returns a partition of the set of stars. In
true life, we do not know the exact parameters of those stars, we only have some
measurements which might be noisy and inaccurate. Furthermore, a full analysis
of the data we have may require unacceptable computational time. This is the
setting which Question 2 refers to. It asks for a method by which we can still
discover or approximate the correct clustering even though we do not have the
full information about the stars.

More abstractly, both questions can be formulated in a statistical setting
where the data is generated according to some probability distribution. The first
question asks how a given probability space should be clustered (as a function
of the probability distribution). The second question asks how this clustering
can be approximated if we only know a finite sample of data points from this
probability distribution. Each question has a different nature and refers to dif-
ferent aspects of clustering. The first question is a conceptual question about
clusterings of a given data space. The second question has two aspects to it,
algorithmic and statistical, asking for a resource-efficient clustering algorithm.
Answering Question 1 “simply” requires to make a definition. To answer Ques-
tion 2, we have to propose an algorithm and then prove that this algorithm
has the desired properties. The algorithmic Question 2 bears much similarity to
classical theoretical machine learning questions. Like classification or regression
tasks, it may be divided into two aspects – information and computation. That
is, how can one overcome having incomplete data, and what is the complexity
of carrying out the required computational tasks. In this paper we focus on the
statistical aspects of clustering: Do the partitions constructed by a given clus-
tering algorithm “converge” for growing sample size? If yes, how fast? What is
the “limit clustering”? How far is the clustering of a given sample from the limit
clustering? Which algorithm is the best one to use on my given finite sample?



On a given data set, does our algorithm fit random noise or does it discover true
structure?

3 Complete information case

In this section we briefly discuss Question 1: if we have the full information about
our data generating process, how do we cluster the space of objects? We denote
the underlying probability space by (X , P ). To answer Question 1 we have to
define a function which for all probability distributions P tells us how the data
space X should be clustered. The easiest way to do this is by defining a quality
measure q of clusterings. In the literature there is an overwhelming number of
quality measures for clusters on discrete sets, and most of them can also be used
to define a clustering of the whole probability space (X , P ). For example we can
define the clustering induced by P as the partition of the space X into k sets
which minimizes the expected distances of the individual points to the cluster
centers. Or we maximize the expected ratio between the intra-cluster similarity
to the inter-cluster similarity. Such quality measures are plausible heuristics, but
often rather ad-hoc.

A definition implicitly present in many clustering algorithms is that the goal
of clustering is to identify high density regions which are separated by low density
regions (e.g., Cuevas et al. (2001), Stuetzle (2003), and references therein). Of
course, for a sound mathematical analysis this definition has to be made precise.
The advantage of this definition is that it is geometrically easy to understand.
The disadvantage is that it suggests that to perform clustering we first have to
estimate the level sets of the underlying distribution. As density estimation is
very difficult in general, this does not seem to be a promising approach. As a
side remark, note that it is an interesting open question whether clustering in
this framework is (provably) easier than density estimation or not.

A third principal way to define clustering is via axiomatic approaches (e.g.,
Jardine and Sibson (1971), Wright (1973), Hartigan (1975), or Puzicha et al.
(2000)). Instead of trying to define clustering explicitly, one states certain ax-
ioms which a clustering algorithm should satisfy, such as rotation invariance,
invariance with respect to uniform scaling, and so on. The next step is then
either to show that a certain clustering algorithm satisfies all axioms, or to the
contrary, to prove that it is impossible to construct a clustering respecting all
axioms (Kleinberg, 2003).

An approach which we find quite promising is to measure the quality of a
clustering by its “interestingness”. A clustering is called interesting if it has a
large distance to predefined ”uninteresting” clusterings such as the trivial clus-
tering. Instead of defining what a clustering should be, this approach defines
what a clustering should not be. This concept has not yet been studied from a
theoretical point of view, but it has already been implemented in practice, for



example in the gap statistic (Tibshirani et al., 2001).

There are many more ways to define clustering, but, for every definition that
we are aware of, it is rather obvious that it has major drawbacks. To a large
extent, this is due to the fact that clustering is performed for a wide variety
of very different purposes. If the goal is to compress the data, an approach
maximizing the compression rate should be chosen. If the goal is to separate parts
of the data which have been generated by different processes, a mixture model
using the high density definition is more appropriate. Furthermore, for many
important applications of clustering it is not at all clear what type of clustering
is the ”right” one (this is the case, for example, with clustering microarray gene
expression data to detect functionally related genes, or clustering customers for
marketing applications). Since we think that Question 1 cannot be solved in
full generality we suggest to start with the Question 2. We will see that many
important aspects of this question can be answered even without having an
answer to the basic conceptual Question 1. In a sense, some of the answers that
we suggest for Question 2 can be viewed as necessary conditions on a satisfactory
answer to Question 1.

4 Comparing clusterings

A basic tool for any statistical analysis of clustering is a formal measure of
the distance (or similarity) between different clusterings. In the literature there
exist many definitions of distances between clusterings of the same set. How-
ever, to compare clusterings of two independent random samples, one needs to
measure the distance between clusterings of different sets. We propose to do
that by using an extension operator. Given any clusterings C1 and C2 of subsets
S1, S2 ⊂ X , respectively, we extend each of them to a clustering of the whole
space X and then compare the extended clusterings. For example, an algorithm
where such an extension is straight forward to implement is k-means. Given a k
center clustering of a sample, each point in the whole data space is attributed to
the closest sample cluster center. Such extension operators can also be defined
for non-center based algorithms, as an example take the extension of spectral
clustering suggested in von Luxburg et al. (2004, 2005).

A completely different method of comparing clusterings can be used if we
are working with a quality measure q of a clustering (cf. Section 3). Instead of
comparing two clusterings C1 and C2 directly, we simply compute the distance
|q(C1)−q(C2)| between their qualities. One can view such a measure as a projec-
tion of the space of clusterings into one aspect - the quality measure at hand. We
expect that similar clusterings will have similar quality values, but the reverse
statement may often fail - clusterings may have the same quality value while still
being very different from each other. One also needs to be careful to make sure
that comparing qualities of different clusterings makes. For example, we might
need to take into account the sizes of the sets S1 and S2.



5 Finite sample case

In this section we assume that the underlying distribution P is unknown, but
we are given a finite sample X1, ..., Xn which has been drawn i.i.d. with respect
to P . We denote its empirical distribution by Pn.

5.1 Generalization bounds - classification versus clustering

For classification, generalization bounds are an omni-present tool to answer all
kinds of statistical questions about classification. They are used to prove con-
vergence of certain algorithms, they provide convergence rates, they can be used
to estimate errors on a given sample, and often they are employed for model
selection purposes for a particular sample. Intuitively, classification and cluster-
ing are closely related. In both problems we try to partition a given data set
into groups, the only difference is that in classification we have additional prior
knowledge how to do this. Thus the motivation to derive “generalization bounds
for clustering” is obvious. In this section we argue that in some special situa-
tions such bounds can also be useful for clustering, but in the general case the
classification generalization bounds do not have a corresponding counterpart in
clustering.

Let us recapitulate the roles of generalization bounds in the statistical learn-
ing theory of classification. The overall goal of classification is to find a classifier
f which has a small true risk R(f) = EP (`(x, y, f(x)). Here ` is a loss function
which for each point x in the input space measures the distance between its true
label y and the predicted label f(x). The expectation is taken with respect to
the underlying probability distribution P . As the latter is unknown, we cannot
compute R(f) on a finite sample (xi, yi)i=1,...,n. Instead we evaluate the empir-
ical risk Remp(f) = EPn(`(x, y, f(x)) = 1/n

∑n
i=1 `(xi, yi, f(xi)). Generalization

bounds are now used to bound the distance between the true and the empirical
risk:

P (|Remp(f)−R(f)| > ε) ≤ ...

Usually, those bounds are worst case bounds which simultaneously hold for all
functions f in the function class F used by the classification algorithm. In prac-
tice we then argue as follows. From the set of functions F , the algorithm chooses
a function fn that has small empirical risk. The generalization bound guarantees
that the empirical risks Remp(f) of all functions f ∈ F are close to their true
risks R(f). In particular this holds for the function fn. As we already know by
the mechanism of the algorithm that fn has a small empirical risk Remp(fn),
we can then conclude that it also has a small true risk R(fn). This is what we
wanted to know. Note that statistical learning theory does not tell us anything
about how close the risk of the classifier fn is to the risk of the best possible
classifier f∗ (the Bayes classifier). We only specify that if we pick a function
which has a small empirical risk on the sample, then this function is likely to
have a small true risk. This also leads to statements which can compare the risk



of a given classifier fn to the best classifier in the set F , but we never attempt
to compare to classifiers which are not in the function class F .

Pursuing the analogy between classification and clustering, one may try to
develop a similar notion of a risk for clustering. This risk has to be defined as the
expectation of some loss function on individual points. There are a few clustering
paradigms where it is natural to define such a loss function. For example in the
k-means framework we can define the loss `(x, C) of data point x with respect to
clustering C as the distance of x to its corresponding cluster center. The quality
q(C) of the clustering C is then the expected loss EP (`(x,C)), and the empirical
quality is then estimated by qemp(C) = EPn

(`(x,C)). Then we can work in a
framework of “empirical quality maximization” which is completely analogous
to empirical risk minimization for classification. The results of Ben-David (2004)
are an example of bounds obtained along these lines.

However, the assumption that the quality of a clustering is an expectation
over some function of individual samples is hardly ever satisfied in clustering
(k-means being a noble exception). In the general case, where the information
we care about goes beyond some quality function, this approach breaks down.
On a first glance, one possible substitute might be to define the true risk of
a clustering Cn as its distance to the (unknown) true clustering C∗, that is
R(Cn) := d(Cn, C∗) for some distance function d between clusterings. But in
contrast to the classification scenario, here we cannot estimate this risk by some
“empirical risk”; such an estimator simply does not exist. In classification we are
given some information about the optimal classifier f∗ by the training labels. But
in clustering we do not have any information on C∗, and hence we cannot build
an estimator of d(C,C∗). So the generalization bound toolbox, which allows us
to effectively estimate the true risk of a classifier by some empirical risk, does
not have any application in the general clustering setting.

In Section 5.3 we will discuss an approach of stability bounds, which may be
seen as a weak version of generalization bounds.

5.2 Convergence of clustering algorithms

The convergence of a clustering algorithm provides evidence for the intuition
that the more data points we get, the more reliable the result of the clustering
algorithm should be. An algorithm which does not converge produces rather
unpredictable results on any given sample and thus is completely unreliable.
Conversely, if an algorithm does converge, it can be investigated whether, at
least for some prototypical examples, the limit clustering is a useful clustering
of the data space or not.

To define what convergence means, let us fix some clustering algorithm A
and a sequence of sample points (Xn)n∈N drawn i.i.d according to the unknown
probability distribution P . Let Cn be the clustering constructed by algorithm



A on the first n data points X1, ..., Xn. Let C be some clustering of X , and d
some distance function between clusterings. We say that the sequence of cluster-
ings (Cn)n∈N converges to some limit clustering C if d(Cn, C) → 0. In the last
section we have already seen that it is impossible to derive statistical learning
theory type bounds for the distance d(Cn, C) if C is unknown. Thus we have to
investigate the question of convergence for each clustering algorithm individu-
ally. It is mainly for three classes of non-parametric clustering algorithms that
certain convergence properties are known: k-means (Pollard (1981), see Lem-
ber (2003) for a recent overview), linkage algorithms (Hartigan, 1981, 1985),
and spectral clustering (von Luxburg et al., 2004, 2005). In particular the latter
example shows that convergence analysis of clustering algorithms can lead to
unexpected insights which are very relevant for practical applications of the al-
gorithm. For spectral clustering it can be seen that one variant of the algorithm
always converges, while the other one can fail to converge or can converge to
trivial solutions. Hence we advocate for the importance of convergence analysis
for clustering algorithms, an issue which has not been taken very seriously in
the past.

5.3 Stability bounds for model selection

Convergence results for clustering algorithms lead to a first argument for or
against those algorithms in general, but they do not help us further in choosing
a suitable algorithm for a particular data set. As we have only very restricted
means of measuring the general quality of a clustering (Question 1), we have
to resolve to more indirect measures. One such measure is stability. We expect
that the results of a “good” clustering algorithm are stable with respect to the
sampling process, that is they do not change much if we draw another sample
or add or delete some points from our sample. In particular, stability is an in-
dication whether the model proposed by some algorithm fits to the data or not.
For example, if our data contains three true clusters, but we use a clustering
algorithm which looks for four clusters, the algorithm wrongly needs to split
one of the clusters into two clusters. Which of the three true clusters are split
might change from sample to sample, and thus the result will not be very stable.
Ben-David (2005) demonstrates such behavior on several basic probability dis-
tributions. Stability has already been used in practical applications of clustering,
see for example Levine and Domany (2001), Ben-Hur et al. (2002), Dudoit and
Fridlyand (2002), Lange et al. (2003).

Let Sm and S′
m two independent samples of size m from the underlying

distribution P , C(Sm) and C(S′
m) the clusterings constructed by some algorithm

A on the respective samples, and d some a distance measure between clusterings.
The stability of the clustering algorithm A for distribution P and m sample
points can be defined as

β(A, P, m) = EP (d(C(Sm), C(S′
m)).



It measures how much the clusterings differ across different samples of the same
size. Note that β actually measures the instability of an algorithm: The smaller
β is, the the more stable is the underlying algorithm. Thus maximizing the
stability of an algorithm means to minimize the quantity β. As β refers to the
unknown distribution P , we need to estimate it by some empirical quantity
which can be computed on the given sample. With such an estimator we then
can establish an “empirical stability maximization” framework. From some set
of given models (that is, clustering algorithms) we chose a model for which the
estimated stability is high. Then we need to prove “stability bounds” to make
sure that high estimated stability implies that the true stability of the algorithm
is high. For example, Ben-David (2005) proves such a bound for a certain measure
of distance between clusterings:

Theorem (Ben-David, 2005) For every probability distribution P and any
center-based clustering algorithm A, for any m ∈ N and t > 0, if S1, S2 are two
i.i.d. P -random m-size samples, then,

P [|d(C(S1), C(S2))− β(A, P, m)| > t] < e−mt2 .

This theorem tells us that for clusterings C1, C2 computed by A on two inde-
pendent m-samples, the distance d(C1, C2) is a good estimator of the stability
β(A, P, m) of the algorithm.

Let us make one remark about the relation between stability and conver-
gence. Of course, if we know that a clustering algorithm converges, we also know
that it will be stable in the long run, that is stability for the limit for n →∞ is
guaranteed. Stability as defined above measures changes that occur in a regime
of n data points. This is a different concept than convergence in that it is con-
nected to a particular sample size n. An algorithm might be very stable if we
only alter one of n data points, but still in the long run might oscillate between
different solutions. The other way round, an algorithm might be very unstable
if it only knows n data points, but might converge very fast once it gets enough
data. Thus the concepts of convergence and stability are complementary aspects.
However, as stability for large n is already very close to the convergence of an
algorithm we suggest to use the slightly weaker concept of stability bounds in
cases where convergence of algorithms is difficult to show. Note that this sugges-
tion implicitly assumes that in the long run, stability is more or less monotonic
in the sample size. This is an issue which needs further investigation.

6 Other desirable clustering features and directions for
further research

One fundamental problem of the stability approach is how we can avoid choos-
ing trivial solutions. By the definition of stability, an algorithm which always
proposes the same or the trivial clustering is very stable. Thus it will not be



enough to maximize the stability of a solution, we will also have to ensure that
the proposed solution is useful. One idea is that additional to being stable, a
good clustering algorithm should also be flexible in that it should be capable of
constructing a large variety of different clusterings. We could say that an algo-
rithm A is flexible if there is a big family F of mutually distant clusterings, and a
family of probability distributions P, such that for large enough sample sizes m,
for every C ∈ F there exists some P ∈ P so that if Sm is an m- sample of P then
the clustering C(Sm) proposed by A is close to C, with high probability. The
properties of stability and flexibility capture opposing features: algorithms that
are insensitive to sample variations are more stable, whereas flexibility requires
sensitivity to sample variations. Interestingness as briefly introduced in Section
3 is an independent concept which would very well fit into a framework together
with stability and flexibility.

Ultimately, we would like to find a method to achieve stable and interesting
results by a flexible clustering algorithm. How such a statement can be cast
into a more precise framework is an interesting challenge for future research.
We think that some methods of statistical learning theory can be recycled for
this purpose, but as we indicated above, some completely new tools might be
necessary to achieve this goal. In our opinion, clustering is a great playground
for statisticians, and many important results remain to be discovered.
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