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Abstract

We address the problem of classification under
fairness constraints. Given a notion of fairness,
the goal is to learn a classifier that is not discrimi-
natory against a group of individuals. In the liter-
ature, this problem is often formulated as a con-
strained optimization problem and solved using
relaxations of the fairness constraints. We show
that many existing relaxations are unsatisfactory:
even if a model satisfies the relaxed constraint, it
can be surprisingly unfair. We propose a princi-
pled framework to solve this problem. This new
approach uses a strongly convex formulation and
comes with theoretical guarantees on the fairness
of its solution. In practice, we show that this
method gives promising results on real data.

1. Introduction
Informally, a classifier is considered unfair when it unjustly
promotes a group of individuals while being detrimental
to others; it is considered fair when it is free of any unjust
behavior. However, the details of what is fair and unfair
can be vastly different from one application to another. For
example, a college might want to admit a diverse student
pool with respect to gender or race. This notion of fairness
is called demographic parity. On the other hand, consider a
bank giving out loans. If a group of individuals repays less
frequently than others, it is normal that they receive fewer
loans. However, it does not mean that all requests should be
declined. In particular, any individual that is likely to repay
a loan should be given the opportunity to get one, regardless
of group membership. This is called equality of opportunity.
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The problem of learning fair classifiers has mainly been ad-
dressed in three ways. First, pre-processing approaches alter
the labels of the examples or their representation to increase
the intrinsic fairness of a dataset. A classifier learned on
this modified data is then more likely to be fair (Feldman
et al., 2015; Calmon et al., 2017; Kamiran & Calders, 2012;
Dwork et al., 2012; Zemel et al., 2013). Second, post-hoc
procedures transform existing accurate but unfair classifiers
into fair classifiers (Chzhen et al., 2019; Hardt et al., 2016;
Woodworth et al., 2017; Kamiran et al., 2010). Finally, di-
rect methods learn a fair and accurate classifier in a single
step (Kamishima et al., 2012; Zafar et al., 2017b;a; Calders
& Verwer, 2010; Wu et al., 2019; Donini et al., 2018; Cotter
et al., 2019; Agarwal et al., 2018; Goh et al., 2016). In this
paper, we focus on the latter kind of approaches.

Motivation: relaxations sometimes fail to produce fair
solutions. Recently, several direct methods have been pro-
posed that use relaxed versions of the considered fairness
constraint. These approaches work reasonably well for some
applications. However, their relaxations are quite coarse and
we demonstrate below that they can fail to find fair classi-
fiers. In particular, there is typically no guarantee on the
relationship between the relaxed fairness and the true fair-
ness of a solution: a classifier that is perfectly fair in terms
of relaxed fairness can be highly unfair in terms of true
fairness (see Figure 1 for an illustration). In this paper, we
study the limitations of a number of popular approaches
(Zafar et al., 2017b;a; Wu et al., 2019; Donini et al., 2018).

Algorithmic contributions. We propose a new principled
framework to tackle the problem of fair classification that is
particularly relevant for application scenarios where formal
fairness guarantees are required. Our approach is based on
convex relaxations and comes with theoretical guarantees
that ensure that the learned classifier is fair up to sampling
errors. Furthermore, we use a learning theory framework for
similarity-based classifiers to exhibit sufficient conditions
that guarantee the existence of a fair and accurate classifier.

2. Problem Setting
Let X be a feature space, Y = {−1, 1} a space of binary
class labels, and S = {−1, 1} a space of binary sensitive
attributes. Assume that there exists a distribution DZ over
Z = X × S × Y and that we can draw some examples
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Figure 1. The goal is to separate the positive class (+) from the neg-
ative class (−) while remaining fair with respect to two sensitive
groups: the blue and the red group. We evaluate the true fairness
(DDP) and a linear relaxation of the fairness (Zafar, Section 3.1) of
three linear classifiers learned with no fairness constraint (Uncon-
str., orange), a linear relaxation of the fairness constraint (Linear
Constr., green), and our framework (SearchFair, red). We also
plot the classifier obtained by translating Linear (Linear (shifted),
brown). It has the same relaxed fairness as Linear but a different
true fairness: the relaxation is oblivious to the intercept parameter.
SearchFair finds the fairest classifier.

(x, s, y) ∼ DZ . Our goal in fair classification is to obtain
a classifier, a mapping h : X → Y defined as h(x) =
sign(f(x)) where f : X → R is a real valued function, that
is fair with respect to the sensitive attribute while remaining
accurate on the class labels. In this paper, we study two
notions of fairness: demographic parity and equality of
opportunity.

Demographic Parity. A classifier f is fair for demographic
parity when its predictions are independent of the sensitive
attribute (Calders et al., 2009; Calders & Verwer, 2010).
Formally, this can be written as

P
(x,s,y)∼DZ

[f(x)>0|s=1] = P
(x,s,y)∼DZ

[f(x)>0|s=−1] .

In practice, enforcing exact demographic parity might be too
restrictive. Instead, we consider a fairness score (Wu et al.,
2019) called Difference of Demographic Parity (DDP):

DDP(f) = (1)

E
(x,s,y)∼DZ

[
If(x)>0|s=1

]
− E

(x,s,y)∼DZ

[
If(x)>0|s=−1

]
,

where Ia is the indicator function that returns 1 when a
is true and 0 otherwise. The DDP is positive when the
favoured group is s = 1 and negative when it is s = −1.
Given a threshold τ ≥ 0, we say that a classifier f is τ -DDP
fair if |DDP(f) | ≤ τ . When τ = 0, exact demographic
parity is achieved and we say that the classifier is DDP fair.

Equality of Opportunity. A classifier f is fair for equality
of opportunity when its predictions for positively labelled

examples are independent of the sensitive attribute (Hardt
et al., 2016). Formally, it is

P
(x,s,y)∼DZ

[f(x) > 0|y = 1, s = 1] =

P
(x,s,y)∼DZ

[f(x) > 0|y = 1, s = −1] .

Again, instead of only considering exact equality of oppor-
tunity, we use a fairness score (Donini et al., 2018) called
Difference of Equality of Opportunity (DEO):

DEO(f) = E
(x,s,y)∼DZ

[
If(x)>0|y = 1, s = 1

]
− E

(x,s,y)∼DZ

[
If(x)>0|y = 1, s = −1

]
. (2)

This quantity is positive when the favoured group is s= 1
and negative when it is s=−1. Given a threshold τ ≥ 0,
we say that a classifier f is τ -DEO fair if |DEO(f) | ≤ τ .
When τ = 0, exact equality of opportunity is achieved and
we say that the classifier is DEO fair.

It is worth noting that demographic parity and equality of
opportunity are quite similar from a mathematical point of
view. In the remainder of the paper, we focus our exposition
on DDP as results that hold for DDP can often be readily ex-
tended to DEO by conditioning on the target label. We only
provide details in the supplementary when these extensions
are more involved.

Learning a fair classifier. Given a function class F , a τ -
DDP fair and accurate classifier f∗ is given as the solution
of the following problem:

f∗ = arg min
f∈F

|DDP(f)|≤τ

L(f) ,

where L(f) = E(x,s,y)∼DZ [`(f(x) , y)] is the true risk of
f for a convex loss function ` : X × Y → R. In practice,
we only have access to a set D̂Z = {(xi, si, yi)}ni=1 of n
examples drawn fromDZ . Hence, we consider the empirical
version of this problem:

fβ = arg min
f∈F

|DDP(f)|≤τ

L̂(f) + βΩ(f) , (3)

where Ω(f) is a convex regularization term used to pre-
vent over-fitting, β is a trade-off parameter, and L̂(f) =
1
n

∑
(x,s,y)∈D̂Z `(f(x) , y) is the empirical risk. The main

difficulty involved in learning a fair classifier is to ensure
that |DDP(f)| ≤ τ .

3. When Fairness Relaxations Fail
To obtain a τ -DDP fair classifier, most approaches consider
the fully empirical version of Optimization Problem 3:

min
f∈F

L̂(f) + βΩ(f)

subject to |D̂DP(f) | ≤ τ, (4)
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(a) DDP. (b) Linear. (c) Convex-concave. (d) Wu - Lower. (e) Wu - Upper.

Figure 2. Consider linear classifiers for the dataset in Figure 1. The decision boundaries are of the form x2 = a1x1 + a0 where a1
controls the slope and a0 the intercept. For given intercepts and slopes, we plot normalized values of (a) the DDP score (yellow is fair), (b)
the linear relaxation (Section 3.1), (c) the convex-concave relaxation (Section 3.2), (d) the concave Wu lower bound, and (d) the convex
Wu upper bound (Section 3.2). The black dotted area in (a) corresponds to trivial constant classifiers—the predicted class is the same for
all points. The colored crosses correspond to the classifiers in Figure 1. A good relaxation should capture the true DDP reasonably well,
in particular the yellow regions should match. However, none of the considered relaxations manage to achieve this.

where the empirical version of DDP is:

D̂DP(f) =
1

n

∑
(x,s,y)∈D̂Z

s=1

If(x)>0 −
1

n

∑
(x,s,y)∈D̂Z
s=−1

If(x)>0.

The main issue with this optimization problem is the non-
convexity of the constraints that makes it hard to find the
optimal solution. A standard approach is then to first rewrite
the DDP in an equivalent, but easier to handle form1 and
then replace the indicator functions with a relaxation. Zafar
et al. (2017b) and Donini et al. (2018) use a linear relaxation
to obtain a fully convex constraint. Zafar et al. (2017a) use a
convex relaxation that leads to a convex-concave constraint.
Wu et al. (2019) combine a convex relaxation with a con-
cave one to obtain a fully convex problem. Below, we show
that these approaches only loosely approximate the true con-
straint and might lead to suboptimal solutions (see Figure 2).
Furthermore, when theoretical guarantees accompany the
method, they are either insufficient to ensure that the learned
classifier is fair (Wu et al., 2019) or they make assumptions
that are hard to satisfy in practice (Donini et al., 2018).

3.1. Linear Relaxations

We first study methods that use a linear relaxation of the indi-
cator function to obtain a convex constraint in Optimization
Problem 4. First, Zafar et al. (2017b) rewrite the DDP:

DDP(f) = E
(x,s,y)∼DZ

1

p1(1− p1)

(
s+ 1

2
− p1

)
If(x)>0,

where p1 = P(x,s,y)∼DZ (s = 1) is the proportion of in-
dividuals in group s = 1. Then, they consider a linear

1In the supplementary, we provide the derivations for all the
alternate formulations of DDP presented in this paper.

approximation of If(x)>0 and obtain the constraint:∣∣∣∣∣∣ 1n
∑

(x,s,y)∈D̂Z

1

p̂1(1− p̂1)

(
s+ 1

2
− p̂1

)
f(x)

∣∣∣∣∣∣ ≤ τ,
where p̂1 is an empirical estimate of p1. In their origi-
nal formulation, Zafar et al. (2017b) get rid of the factor

1
p̂1(1−p̂1) by replacing the right hand side of the constraint
with c = p̂1(1− p̂1)τ .

Similarly, Donini et al. (2018) rewrite the DDP:

DDP(f) = E
(x,s,y)∼DZ

s

ps
If(x)>0,

where ps = P(x′,s′,y′)∼DZ (s′ = s) is the proportion of in-
dividuals in group s. Then, using the same linear relaxation
as Zafar et al. (2017b) with p̂s, an empirical estimate of ps,
they obtain the constraint2∣∣∣∣∣∣ 1n

∑
(x,s,y)∈D̂Z

s

p̂s
f(x)

∣∣∣∣∣∣ ≤ τ.
Both constraints are mathematically close and only differ
in terms of the multiplicative factor in front of f(x) in the
inner sum. Thus, they can be rewritten as

∣∣LRD̂DP(f)
∣∣ =

∣∣∣∣∣∣ 1n
∑

(x,s,y)∈D̂Z

C
(
s, D̂Z

)
f(x)

∣∣∣∣∣∣ ≤ τ.
2Donini et al. (2018) originally consider τ -DEO fairness rather

than DDP. In the constraint, instead of drawing the examples from
DZ , they use the conditional distribution DZ|y=1. However, this
does not change the intrinsic nature of the constraint, and the issues
raised here remain valid.
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where C
(
s, D̂Z

)
can be chosen to obtain any of the two

constraints. In the following, we use this general formula-
tion to show that both formulations have shortcomings that
can lead to undesired behaviors.

Linear relaxations are too loose. In Figures 2(a) and 2(b)
we illustrate the behaviors of D̂DP(f) and LRD̂DP(f). In
the figures, we consider linear classifiers of the form
f(x) = −x2 + a1x1 + a0 where a1 controls the slope
of the classifier and a0 the intercept. The underlying data
is the same as in Figure 1. It shows that the linear relax-
ation of DDP can behave completely differently compared
to the true DDP. It is particularly striking to notice that
the intercept does not have any influence on the constraint.
This behavior can be formally verified. Let f be a pre-
dictor of the form f(x) = g(x) + b where b is the in-
tercept. Then, LRD̂DP(f) is independent of changes in b

since 1
n

∑
(x,s,y)∈D̂Z C

(
s, D̂Z

)
= 0 for both constraints

presented above. The proofs are given in the supplementary.

Theoretical guarantees for linear relaxations are not sat-
isfactory. Donini et al. (2018) study a sufficient condition
under which the linear fairness relaxation LRD̂DP(f) of a
function f is close to its true fairness, that is it holds that∣∣∣D̂DP(f)

∣∣∣ ≤ ∣∣LRD̂DP(f)
∣∣+ ∆̂. The condition that needs to

be satisfied by f is

1

2

∑
s′∈{−1,1}

∣∣∣∣∣∣∣∣
1

2

∑
(x,s,y)∈D̂Z

s=s′

(sign(f(x))− f(x))

∣∣∣∣∣∣∣∣ ≤ ∆̂.

Unfortunately, the left hand side of this condition is non-
convex and thus, it is difficult to use in practice. In particu-
lar, when they learn a classifier with their linear relaxation,
Donini et al. (2018) do not ensure that it also has a small ∆̂.
They only verify this condition when the learning process is
over, that is when a classifier f has already been produced.
However, at this time, it is also possible to compute D̂DP(f)
directly, so the bound is not needed anymore.

If one could show that for a given function class F , there
exists a small ∆̂ such that the condition holds for all f ∈ F ,
then any classifier learned from this function class would be
guaranteed to be fair when

∣∣LRD̂DP(f)
∣∣ is small. However,

it is not clear whether such function class exists. Never-
theless, this argument hints that for linear relaxations of
the fairness constraint, the complexity of the function class
largely controls the DDP that can be achieved.

Linear relaxations should not be combined with com-
plex classifiers. We demonstrate that, if the class of clas-
sifiers F is complex, then the linear relaxation constraint
has almost no influence on the outcome of the optimization
problem. In Figure 3, we compare the performance, in terms

(a) DDP. (b) Accuracy.

Figure 3. We consider a similarity-based classifier (Section 5) with
rbf kernel and 1000 train and test points from the Adult dataset.
Using a varying regularization parameter β and fairness parameter
τ , we train several classifiers using the linear fairness relaxation
(Section 3.1). We plot the empirical test DDP of the learned models
in Figure 3(a) (red and blue are bad, yellow is good) and their
accuracy in Figure 3(b) (red is bad, green is good). We can see that,
if β is small (complex model), the fairness relaxation parameter τ
has no influence on the DDP score. For higher values of β (simpler
models), decreasing τ improves the DDP. Best viewed in color.

of empirical DDP and accuracy, of several models learned
by Optimization Problem 4 equipped with the linear relax-
ation for different parameters β (for regularization) and τ
(for fairness). Intuitively, one would expect that varying τ
leads to changes in the fairness level while varying β leads
to changes in accuracy. However, this is not the case: τ only
has an effect on the result when β is sufficiently large. It
means that the fairness of the model is mainly controlled by
the regularization parameter rather than the fairness one.

This would not be an issue if the fairness of complex clas-
sifiers was small. Unfortunately, high-complexity models
have a high capacity to alter their decision boundaries. It
means that to achieve both high accuracy and high fairness
at the same time, they tend to alter their prediction margin
for a few selected examples. While this might not affect
the accuracy by a lot, the linear relaxation is sensible to this
kind of changes and thus can be largely improved—which
is what the optimization aims for. However, altering labels
of individual points does not have a big influence on the
true DDP: it remains high. This effect is reduced when one
learns models of low capacity, which have less freedom
to deliberately change labels of individual points. Overall,
linear relaxations are mainly relevant for simple classifiers
and tend to have little effect on complex ones. We outline
this undesirable behavior in the experiments.

3.2. Other Relaxations

In the previous section we demonstrated that linear relax-
ations are not sufficient to ensure fairness of the learned
classifier. We now focus on two approaches that use non-
linear relaxations of the indicator function to stay close to
the original fairness definition.
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Convex-concave relaxation. In a second paper, Zafar et al.
(2017a) use the same fairness formulation as Zafar et al.
(2017b), but, instead of a linear relaxation of the indicator
function, they use a non-linear relaxation.3 Hence, given p̂1

defined as in Section 3.1, they obtain the constraint:∣∣CCRD̂DP(f)
∣∣ =∣∣∣∣∣∣ 1n
∑

(x,s,y)∈D̂Z

(
s+1

2 − p̂1

)
p̂1(1− p̂1)

min (0, f(x))

∣∣∣∣∣∣ ≤ τ.
In Figure 2(c) we give an illustration of CCRD̂DP(f). It
more closely approximates the original D̂DP(f) than the
linear relaxation. Nevertheless, it remains quite far from the
original definition—in particular for classifiers that are not
constant. Moreover, using such a convex relaxation leads
to a convex-concave problem that turns out to be difficult to
optimize without guarantees on the global optimality.

Lower-upper relaxation with guarantees. To derive their
fairness constraint, Wu et al. (2019) propose to first equiva-
lently rewrite the DDP as follows:

DDP(f) =

E
(x,s,y)∼DZ

[
Is=1

p1
If(x)>0 +

Is=−1

1− p1
If(x)<0 − 1

]
where p1 is defined as in Section 3.1. Replacing the indica-
tor functions with a convex surrogate other than the linear
one would lead to a convex-concave problem due to the
absolute value in the constraint. Instead, Wu et al. (2019)
propose to use a convex surrogate function κ for the require-
ment DDP(f) < τ and a concave surrogate function δ for
DDP(f) > −τ . The corresponding relaxation is

DDPκ(f) =

E
(x,s,y)∼DZ

[
Is=1

p1
κ(f(x)) +

Is=−1

1− p1
κ(−f(x))− 1

]
,

and DDPδ(f) is defined analogously by simply replacing κ
with δ. It leads to the following convex problem:

min
f∈F

L̂(f) + βΩ(f) (5)

subject to D̂DPκ(f) ≤ τκ
−D̂DPδ(f) ≤ τδ.

Individually, the relaxations are far from the original fairness
constraint (as illustrated in Figures 2(e) and 2(d)) but the
idea is that combining the upper bound and the lower bound
will help to learn a fair classifier. However, one needs to

3Zafar et al. (2017a) originally consider other notions of fair-
ness than DPP, among them is the τ -DEO fairness (Equation (5)
in their paper). Instead of drawing the examples from DZ , they
consider the conditional distribution DZ|y=1.

choose τκ and τδ appropriately. To address this, Wu et al.
(2019) show that choosing

τκ = ψκ

(
τupper − D̂DP

+
)

+ D̂DP
−
κ

τδ = ψδ

(
τlower + D̂DP

−)
+ D̂DP

+

δ ,

guarantees that −τlower ≤ D̂DP(f) ≤ τupper. Here D̂DP
+

and D̂DP
−

are the worst possible scores of D̂DP(f): they
are attained by those functions in the given function class
that advantage either group s = −1 or group s = 1 the
most. The values D̂DP

−
κ and D̂DP

+

δ are defined in the same
way for the relaxed scores. The functions ψκ and ψδ are
invertible functions that depend on the selected surrogate.

While this solution is appealing at a first glance, it turns
out that Optimization Problem 5 is often infeasible for
meaningful values of τupper and τlower as the constraints
form disjoint convex sets. To illustrate this, consider
κ(x) = max{0, 1 + x} and δ(x) = min{1, x} as pro-
posed by Wu et al. (2019) and the dataset used in Figure 1.
Then, if τupper = τlower ≤ 1.13, the problem is infeasible. If
τlower = 0 and τupper ≤ 1.95 the problem is also infeasible.
Overall, the guarantees are often meaningless: they either
make statements about the empty set (no feasible solution)
or they are too loose to ensure meaningful levels of fairness.

4. New Approach with Guaranteed Fairness
In the previous section, we have seen that existing ap-
proaches use relaxations of the fairness constraint that lead
to tractable optimization problems but have little control
over the true fairness of the learned model. For this reason,
we propose a new framework that solves the problem of
finding provably fair solutions: given a convex approxima-
tion of the fairness constraint, our method is guaranteed to
find a classifier with a good level of fairness.

We consider the following optimization problem:

fβ
D̂Z

(λ) = arg min
f∈F

L̂(f) + λRD̂DP(f) + βΩ(f) , (6)

where RD̂DP(f) is a convex approximation of the signed
fairness constraint, that is we do not consider the usual ab-
solute value. In other words, we obtain a trade-off between
accuracy and fairness that is controlled by two hyperparam-
eters λ ≥ 0 and β > 0 and, given β fixed, we can vary
λ to move from strongly preferring one group to strongly
preferring the other group. Our goal is then to find a pa-
rameter setting that is in the neutral regime and does not
favor any of the two groups. The main theoretical ingredient
for this procedure to succeed is the next theorem, which
states that the function λ 7→ DDP

(
fβ
D̂Z

(λ)
)

is continuous
under reasonable assumptions on the data distribution, the
candidate classifiers, and the convex relaxation.
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Theorem 1 (Continuity of DDP
(
fβ
D̂Z

(λ)
)

). Let F be a
function space, we define the set of learnable functions as
FΛ =

{
f ∈ F : ∃λ ≥ 0, f = fβ

D̂Z
(λ)
}

. Assume that the
following conditions hold:
(i) Optimization Problem 6 is m-strongly convex in f ,
(ii) ∀f ∈ F , RD̂DP(f) is bounded in [−B,B],
(iii) ∃ρ, a metric, such that (FΛ, ρ) is a metric space,
(iv) ∀x ∈ X , g(f) : f 7→ f(x) is continuous,
(v) ∀f ∈ FΛ, f is Lebesgue measurable and the set
{x : (x, s, y) ∈ Z, s = 1, f(x) = 0} is a Lebesgue null set,
as well as {x : (x, s, y) ∈ Z, s = −1, f(x) = 0},
(vi) the probability density functions fZ|s=1 and fZ|s=−1

are Lebesgue-measurable.
Then, the function λ 7→ DDP

(
fβ
D̂Z

(λ)
)

is continuous.

The proof of this theorem is given in the supplementary. The
conditions (i) - (vi) are of a technical nature, but not very
restrictive: Condition (i) can be satisfied by using a strongly
convex regularization term, for example the squared L2

norm. Condition (ii) can be satisfied by assuming that X is
bounded. Condition (iii) is, for example, satisfied by any
Hilbert Space equipped with the standard dot product. This
includes, but is not restricted to, the set of linear classifiers.
Condition (iv) ensures that small changes in the hypothe-
sis, with respect to the metric associated to F , also yield
small changes in the predictions. Condition (v) ensures that
the number of examples for which the predictions are zero
is negligible, for example this happens when the decision
boundary is sharp. Condition (vi) is satisfied by many usual
distributions, for example the Gaussian distribution.

We demonstrate the continuous behavior of DDP on a real
dataset in Figure 4. We plot the DDP score and the accu-
racy of classifiers learned with Optimization Problem 6 for
varying parameters λ and β. Given a fixed β, the results
support our theoretical findings: there is a smooth transition
between favouring the group s = 1 with small λ and favour-
ing the group s = −1 with higher λ. In between, there is
always a region of perfect fairness. In the next corollary,
we formally state the conditions necessary to ensure the
existence of such a DDP-fair classifier.

Corollary 1 (Existence of a DDP-fair classifier). Assume
that the conditions of Theorem 1 hold and that the
convex approximation RD̂DP(f) is chosen such that for
Optimization Problem (6) there exist
(i) λ+ such that DDP

(
fβ
D̂Z

(λ+)
)
>0,

(ii) λ− such that DDP
(
fβ
D̂Z

(λ−)
)
<0.

Then, there exists at least one value λ0 in the in-
terval [min (λ+, λ−) ,max (λ+, λ−)] such that

DDP
(
fβ
D̂Z

(λ0)
)

= 0.

We prove this corollary in the supplementary. This sug-

(a) DDP. (b) Accuracy.

Figure 4. We consider a similarity-based classifier (Section 5) with
rbf kernel and 1000 train and test points from the Adult dataset.
Using a varying regularization parameter β and fairness parameter
λ, we train several classifiers using Optimization Problem 6 with
the same loss, convex relaxation, and regularization as SearchFair
in the experiments. We plot the empirical test DDP of the learned
models in (a) (red and blue are bad, yellow is good) and their
accuracy in (b) (red is bad, green is good). We can see that, given
a fixed regularization β, we can move from positive DDP (small λ,
in red) to a negative DDP (large λ, in blue) with a region of perfect
fairness in between (in yellow).

gests a very simple framework to learn provably fair models.
First, we choose a convex fairness relaxation (e.g. the one
proposed by Wu et al. (2019)) and search for two initial
hyperparameters λ+ and λ− that fulfill the assumptions
of Corollary 1 (empirically, λ = 0 and 1 are good candi-
dates). Then, we use a binary search to find a λ0 between
λ+ and λ− such that DDP

(
fβ
D̂Z

(λ0)
)

= 0. We call this
procedure SearchFair and summarize it in Algorithm 1 in
the supplementary. Note that any convex approximation
RD̂DP(f) can be used as long as the conditions of Corol-
lary 1 are respected. In Appendix A we give more details
on how we choose this relaxation. Finally, SearchFair the-
oretically requires to evaluate the true population fairness
DDP

(
fβ
D̂Z

(λ)
)

on the underlying distribution DZ . In prac-
tice, we follow the example of existing fairness constraints
(Woodworth et al., 2017) and simply approximate this quan-
tity by its empirical counterpart D̂DP

(
fβ
D̂Z

(λ)
)

.

5. Towards Classifiers that are Fair and
Accurate

In the last section, we presented a method that is guaran-
teed to find a DDP fair classifier. However, there is one
important catch: we did not make any statement about the
classification accuracy of this solution. Here, we take a step
in this direction by proposing some sufficient conditions
that ensure the existence of a classifier that is both fair and
accurate. To this end, we focus on a particular set of clas-
sifiers: the family of similarity-based functions. Given a
similarity functionK : X ×X → [−1, 1] and a set of points
S = {(x′1, s′1, y′1), . . . , (x′d, s

′
d, y
′
d)}, we define a similarity
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based classifier as f(x) =
∑d
i=1 αiK(x, x′i). The goal is

then to learn the weights αi.

A theory of learning with such functions has been devel-
oped by Balcan et al. (2008). By defining a notion of good
similarities, they provide sufficient conditions that ensure
the existence of an accurate similarity-based classifier. Here,
we build upon this framework and we introduce a notion
of good similarities for both accuracy and fairness. Hence,
in Definition 1 we give sufficient conditions that ensure
the existence of a classifier that is—within a guaranteed
margin—fair and accurate at the same time.

Definition 1 (Good Similarities for Fairness). A sim-
ilarity function K is (ε, γ, τ)-good for convex, posi-
tive, and decreasing loss ` and (µ, ν)-fair for demo-
graphic parity if there exists a (random) indicator func-
tion R(x, s, y) defining a (probabilistic) set of “reason-
able points” such that, given that ∀x ∈ X , g(x) =
E(x′,s′,y′)∼DZ [y′K(x, x′) |R(x′, s′, y′)], the following con-
ditions hold:

(i) E
(x,s,y)∼DZ

[
`

(
yg(x)

γ

)]
≤ ε,

(ii)
∣∣∣∣ P
DZ|s=1

[g(x) ≥ γ]− P
DZ|s=−1

[g(x) ≥ γ]

∣∣∣∣ ≤ µ,

(iii) P
(x,s,y)∼DZ

[|g(x)| ≥ γ] ≥ 1− ν,

(iv) P
(x,s,y)∼DZ

[R(x, s, y)] ≥ τ .

Roughly speaking, a similarity is good for classification if
examples of the same class are on average closer to each
other than examples of different classes up to a certain
margin. Moreover, it is good for fairness if this margin is
independent of group membership. Given such a similarity,
we can prove the existence of a fair and accurate classifier
as is summarized in the next theorem. The proof is given in
the supplementary.

Theorem 2 (Existence of a fair and accurate separator).
Let K ∈ [−1, 1] be a (ε, γ, τ)-good and (µ, ν)-fair metric
for a given convex, positive and decreasing loss ` with lips-
chitz constant L. For any ε1 > 0 and 0 < δ < γε1

2(L+ (̀0)) , let
S = {(x′1, s′1, y′1), . . . , (x′d, s

′
d, y
′
d)} be a set of d examples

drawn from DZ with

d ≥ 1

τ

[
L2

γ2ε2
1

+
3

δ
+

4L

δγε1

√
δ(1− τ) log(2/δ)

]
.

Let φS : X → Rd be a mapping with φSi (x) = K(x, x′i),
for all i ∈ {1, . . . , d}. Then, with probability at least 1− 5

2δ
over the choice of S, the induced distribution over φS(X )×
S × Y has a linear separator α such that

E
(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]
≤ ε+ ε1,

and, with p1 = P(x,s,y)∼DZ [s = 1],

|DDP(α)| ≤ µ+ (ν + 2δ) max

(
1

p1
,

1

1− p1

)
.

6. Experiments
In this section, we empirically evaluate SearchFair by com-
paring it to 5 baselines on 6 real-world datasets. In all
the experiments, SearchFair either reliably finds the fairest
classifier and is comparable to a very recent non-convex
optimization approach.

Datasets. We consider 6 different datasets: CelebA (Zi-
wei Liu & Tang, 2015), Adult (Kohavi & Becker, 1996),
Dutch (Zliobaite et al., 2011), COMPAS (Larson et al.,
2016), Communities and Crime (Redmond & Baveja, 2002),
and German Credit (Dua & Graff, 2017). In the supplemen-
tary, we give detailed descriptions of these datasets, how we
pre-process the data, and the sizes of the train and test splits.
Note that we remove the sensitive attribute s from the set of
features x so that it is not needed at decision time.

Baselines. We compare SearchFair to 5 baselines. For 3 of
them, we use Optimization Problem 4 with hinge loss and
a squared `2 norm as the regularization term. As a func-
tion class F , we use similarity-based classifiers presented
in Section 5 with either the linear or the rbf kernel and with
70% (at most 1000) of the training examples as reasonable
points. As a fairness constraint, we use either the linear
relaxation of Zafar et al. (2017b) (Zafar), the linear relax-
ation of Donini et al. (2018) (Donini), or no constraint at
all (Unconst). The fourth baseline is a recent method for
non-convex constrained optimization by Cotter et al. (2019)
(Cotter). Our last baseline is the constant classifier (Con-
stant) that always predicts the same label but has perfect
fairness.

SearchFair.4 For SearchFair we also use the hinge loss, a
squared `2 norm as the regularization term (it is strongly
convex), and similarity-based classifiers. As a convex ap-
proximation of the fairness constraint, we use the bounds
with hinge loss proposed by Wu et al. (2019) (see Section A
in the supplementary for details).

Metrics. Our main goal is to learn fair classifiers. Hence,
our main evaluation metrics are the empirical DDP and
DEO scores on the test set (lower is better). As a secondary
metric (in case of ties in the fairness scores), we consider the
classification performance of the models and we report the
errors on the test set (lower is better). All the experiments
are repeated 10 times and we report the mean and standard
deviation for all the metrics.

4The code is freely available online: github.com/
mlohaus/SearchFair.

github.com/mlohaus/SearchFair
github.com/mlohaus/SearchFair
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(a) Adult. (b) Dutch. (c) CelebA.

Figure 5. We report the average and standard deviation of classification error and absolute fairness scores DDP and DEO (closer to 0 is
better) over 10 repetitions. The constant classifier is perfectly fair as it always predicts the same label. Its classification error is shown by
the grey dashed vertical line. (a) To obtain good fairness on Adult, all DDP fair methods learn the constant classifier. Only SearchFair and
Cotter reliably find fair classifiers for both kernels. (b) On Dutch, SearchFair obtains the lowest DDP with a slight loss in accuracy. Cotter
performs comparably for both kernels, whereas the other methods only do well with a linear kernel but fail to learn fair classifiers with the
rbf kernel. (c) For CelebA, SearchFair and Cotter are the only methods that obtain a low DDP and DEO with only a slight loss in accuracy.
The other methods only provide little to no improvement.

Hyperparameters. Zafar, Donini and Cotter use a fairness
parameter, that we call τ , to control the fairness level. Since
our goal is to learn classifiers that are fair, we set τ = 0 such
that perfect fairness is required. For SearchFair, there is no
fairness parameter since λ0 is automatically searched for
between a lower bound λmin and an upper bound λmax. We
set λmin = 0 and λmax = 1 as these values usually lead to
classifiers with fairness scores of opposite sign (as needed).
We use 10 iterations in the binary search.

We use 5-fold cross validation to choose other hyperparam-
eters. For Cotter, only the width of the rbf kernel has to
be tuned since we use the framework of the original paper
with no regularization term. For all remaining methods
we need to choose the regularization parameter β and
the width of the rbf kernel. These values are respectively
chosen in the sets

{
10−6, 10−5, 10−4, 10−3, 10−2

}
and

{10−dlog de−1, 10−dlog de, d−1, 10−dlog de+1,10−dlog de+2},
with d the number of features. We select the set of
parameters that lead to the most accurate classifier on
average over the 5 folds. Indeed, the fairness level is
automatically taken care of by the methods.

Results. We present the results for 3 out of 6 datasets in
Figure 5. The other results are deferred to the supplementary
as they follow the same trend. We make two main obser-

vations. First, SearchFair always obtains fairness values
that are very close to zero. It learns the fairest classifiers
out of all the methods and is only matched by Cotter, the
non-convex approach. This sometimes comes with a small
increase in terms of classification error. For example, in
order to achieve perfect DDP fairness on the Adult dataset,
SearchFair, and all the other fair methods, yield classifiers
close to the trivial constant one. Second, the complexity
of the model greatly influences the performances of the lin-
ear relaxations. For example, using the complex rbf kernel
almost always results in an increase in the fairness score
of Zafar and Donini. This is particularly striking for Adult
and Dutch where the linear kernel yields reasonable fairness
scores. Note that this trend is not always respected. For ex-
ample, on CelebA, using an rbf kernel improves the fairness
score compared to the linear kernel. However, neither of
them obtain reasonable fairness levels in the first place.

Discussion on hyperparameter selection. Apart from the
hyperparameter selection method used in our experiments,
one can think of other cross validation procedures. For
example, Donini et al. (2018) proposed NVP, a cross valida-
tion method where one selects the set of hyperparameters
that gives the fairest classifier while obtaining an average
accuracy above a given threshold. Similarly, one could se-
lect the set of hyperparameters that yields the most accurate
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classifier under a given fairness threshold. In the supple-
mentary, we report results that empirically show that these
more complex procedures tend to improve the fairness of
the baselines (SearchFair remains competitive on all the
datasets). Unfortunately, they also blur the dividing line be-
tween hyperparameters that control the fairness of the model
and the ones that control its complexity. In other words, it
becomes unclear whether fairness is achieved thanks to the
relaxation or thanks to the choice of hyperparameters (we
already evoked this issue in Figure 3). We believe that it
is better to have a method that is guaranteed to find a fair
classifier for any given family of models and does not rely
on a complex cross validation procedure.

7. Conclusion
In this paper, we have shown that existing approaches to
learn fair and accurate classifiers have many shortcomings.
They use loose relaxations of the fairness constraint and
guarantees that relate the relaxed fairness to the true fair-
ness of the solutions are either missing or not sufficient.
We empirically demonstrated how these approaches can
produce undesirable models. If “fair machine learning” is
supposed to be employed in real applications in society, we
need algorithms that actually find fair solutions, and ideally
come with guarantees. We made a first step in this direc-
tion by proposing SearchFair, an approach that uses convex
relaxations to learn a classifier that is guaranteed to be fair.
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This supplementary gives technical details about SearchFair in Section A and details on our experiments in Section B.
The proof of the vanishing intercept problem, the derivations of the equivalent formulations of DDP and the proofs of all
theorems are given in Section C.

A. SearchFair: A Binary Search Framework for Fairness
This section presents technical details about SearchFair that were omitted in the main paper. We present our binary search
based algorithm in Algorithm 1.

Recall that

fβ
D̂Z

(λ) = arg min
f∈F

L̂(f) + λRD̂DP(f) + βΩ(f) .

Then, we choose a lower bound λmin and an upper bound λmax, so that sign
(

DDP
(
fβ
D̂Z

(λmin)
))

6=

sign
(

DDP
(
fβ
D̂Z

(λmax)
))

. If RD̂DP(f) is chosen correctly then setting λmin = 0 and λmax = 1 usually works. The
number of iterations C is used to control how close to 0 the fairness measure should be. Note that, instead of a number of
iterations, it is also possible to choose a stopping criterion, for example when DDP falls below a threshold.

Example of convex relaxation. One example of a convex relaxation is to use the bounds proposed by Wu et al. (2019).
When no fairness regularizer is used, we evaluate the fairness of the resulting classifier and choose an approximation
accordingly. More precisely, with λ = 0 if DDP(f(λ)) > 0 we use the upper bound with hinge loss:

RD̂DP(f) =
1

n

∑
(x,s,y)∈D̂Z

[
Is=1

p1
max (0, 1 + f(x)) +

Is=−1

1− p1
max (0, 1− f(x))− 1

]
.

If DDP(f(λ)) < 0, we use the negative lower bound with hinge loss:

RD̂DP(f) = − 1

n

∑
(x,s,y)∈D̂Z

[
Is=1

p1
min (1, f(x))− Is=−1

1− p1
min (1,−f(x)) + 1

]
.

With λmin = 0 and λmax = 1 this choice often ensures that sign(DDP(f(λmin))) 6= sign(DDP(f(λmax))). We use this
approach in all our experiments in the paper.

Note that we give an example where the relaxations are in fact upper and lower bounds of the DDP score. However,
we want to stress that any convex approximation would work as long as the condition sign

(
DDP

(
fβ
D̂Z

(λmin)
))
6=

sign
(

DDP
(
fβ
D̂Z

(λmax)
))

is respected.

Satisfying the conditions of Theorem 3. The strong convexity of the optimization problem (condition (i)) can be ensured
by choosing a strongly convex regularization term (we adopt this strategy in our experiments).

Satisfying conditions (ii) to (v) mainly depends on our choice of function class F . For example, linear classifiers satisfy
all the conditions as long as X is bounded (which is the case in most machine learning applications) and the classifier
f0(x) = 0Tx, where 0 is the vector of all zeros, is not part of the set of learnable functions FΛ (otherwise condition (v)

would be violated). To verify that f0 /∈ FΛ, it is sufficient to verify that the equation
dL̂(f0)
df + λ

dRD̂DP(f
0)

df + β
dΩ(f0)
df = 0

with β fixed has no solutions for λ ∈ [λmin, λmax]. Note that, in practice, this is usually easy to verify and can be achieved by
correctly choosing RD̂DP(f). Note that the similarity-based classifiers that we use in our experiments are a particular form of
linear classifiers and thus satisfy conditions (ii) to (v).

Finally, condition (vi) depends on the data distribution and should be satisfied for most non-degenerate problems.

B. Missing details on the Experiments
In this section we provide missing details on the experiments. First, we shortly describe the toy dataset in Figure 1 of
the main paper. Second, we describe the pre-processing step and each dataset. Then, we present detailed results on all 6
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Algorithm 1 SearchFair: A binary search framework for fairness

Input: A set D̂Z = (xi, si, yi)
n
i=1 of n labelled examples, a regularization parameter β > 0, λmin and λmax the lower and

upper bounds for λ, a convex fairness regularizer RD̂DP(·), a number of iterations C.
Output: A fair classifier.

1: if DDP
(
fβ
D̂Z

(λmin)
)
> 0 and DDP

(
fβ
D̂Z

(λmax)
)
< 0 then

2: λ+ = λmin and DDP+ = DDP
(
fβ
D̂Z

(λmin)
)

.

3: λ− = λmax and DDP− = DDP
(
fβ
D̂Z

(λmax)
)

.
4: search possible = True
5: else if DDP

(
fβ
D̂Z

(λmin)
)
< 0 and DDP

(
fβ
D̂Z

(λmax)
)
> 0 then

6: λ− = λmin and DDP− = DDP
(
fβ
D̂Z

(λmin)
)

.

7: λ+ = λmax and DDP+ = DDP
(
fβ
D̂Z

(λmax)
)

.
8: search possible = True
9: else

10: search possible = False
11: end if
12: if search possible then
13: for c = 1, . . . , C do
14: λ = 1

2 (λ− + λ+)

15: DDPλ = DDP
(
fβ
D̂Z

(λ)
)

.
16: if DDPλ > 0 then
17: λ+ = λ and DDP+ = DDPλ.
18: else
19: λ− = λ and DDP− = DDPλ.
20: end if
21: end for
22: if |DDP−| < |DDP+| then
23: return fβ

D̂Z
(λ−)

24: else
25: return fβ

D̂Z
(λ+)

26: end if
27: else
28: Either choose new values for λmin and λmax, or choose a new fairness regularizer RD̂DP(f).
29: end if

datasets in Figures 6– 11. The overall trend of the results is the same as described in the main paper and we discuss the
results of each dataset in the corresponding figure. Lastly, we present the results of the experiments under two different
hyperparameters selection methods in Figures 12 and 13. For all results, each experiment has been repeated 10 times and we
report the average and standard deviation of classification error and absolute fairness scores DDP and DEO. Furthermore,
we report the value of the Donini linear relaxation (Section 3.1) on the test set to show the discrepancy between the true and
relaxed fairness (this metric was omitted in the main paper).

Toy dataset–Figure 1 in main paper. The toy dataset set in Figure 1 of the main paper consists of 600 points (for the sake
of readability, we only plot a random subset of 400 examples). We draw the points from different Gaussian distributions. For
the protected sensitive attribute (the dots), we sample 150 points with negative label from a Gaussian with mean µ1 = [2,−2]
and covariance matrix Σ1 = [[1, 0], [0, 1]], and another 150 points for the positive class from the mixture of two Gaussians,
with µ2 = [3,−1] and Σ2 = [[1, 0], [0, 1]] and µ3 = [1, 4] and Σ3 = [[0.5, 0], [0, 0.5]]. For the unprotected sensitive attribute
(the crosses), we draw 150 points with positive label from a Gaussian with µ4 = [2.5, 2.5] and Σ4 = [[1, 0], [0, 1]], and 150
points with negative label from a Gaussian with µ5 = [4.5,−1.5] and Σ5 = [[1, 0], [0, 1]].
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General setup. For all the methods except Cotter, as the set of functions F , we use the similarity-based classifiers that
were presented in the main paper. As similarities, we consider both the linear and the rbf kernel. As reasonable points, we
use a random subset of 70% (at most 1000) of the training examples. As regularization term we use a squared `2 norm
(which is a strongly convex function). The loss function in the empirical risk is the hinge loss, that is

`(f(x) , y) = max (0, 1− f(x) y) .

For the linear version of Cotter et al. (2019), we use the approach suggested in their example on the Adult dataset. We use
a single-layer neural network where the input size is the number of features. The parameters are then learned using the
RATEMINIMIZATIONPROBLEM provided by the package TENSORFLOW-CONSTRAINED-OPTIMIZATION. In order to use
more complex classifiers based on the rbf kernel, we precompute the kernel matrix between the training points and the
reasonable points. Then, the input size of the single-layer neural network is set to the number of reasonable points. For
both linear and complex classifiers, no further regularization is used. However, to obtain reasonable and stable results, the
number of epochs has to be carefully chosen. We use between 1000 and 5000 epochs depending on the dataset, and for the
minibatch size we use the default of 200 points.

We pre-process the datasets by normalizing and centering continuous variables. For categorical values, we use a one-hot
encoding. We select a fixed number of randomly selected points for training, and use the rest of the points for testing.

CelebA–Figure 6. The CelebA dataset (Ziwei Liu & Tang, 2015) contains 202, 599 images of celebrity faces from the
web. In addition to the image data, there exist 40 binary attribute labels describing the content of the images, such as ‘Black
Hair’, ‘Bald’, and ‘Eyeglasses’. We use 38 of those descriptions as features, the sex as the sensitive attribute, and the
attribute ‘Smiling’ as the class label. We use 10, 000 randomly selected points for training.

Adult–Figure 7. The Adult dataset (Kohavi & Becker, 1996) contains data from the U.S. 1994 Census database. There
are 48, 842 instances with 14 features, among others age and education, including the two sensitive attributes sex and race.
We apply the pre-processing of Wu et al. (2019): we consider sex with values male and female as the sensitive attribute and
use 9 features for training, dropping FNLWGT, EDUCATION, CAPITAL-GAIN, CAPITAL-LOSS. The goal is to predict the
income: y = 1 if it is more than fifty thousand U.S. Dollars, y = −1 otherwise. We use 10, 000 randomly selected points
for training.

Dutch–Figure 8. The Dutch dataset (Zliobaite et al., 2011) contains data from the 2001 Netherlands Census and consists
of 60, 420 data points which are characterized by 12 features. We use gender as the sensitive attribute and predict low
income or high income as it is determined by occupation. Hence, we learn with the remaining 10 features. We use 10, 000
randomly selected points for training.

Compas–Figure 9. The Compas dataset (Larson et al., 2016) contains 7214 points with 53 features, such as name, age,
degree of crime, and number of prior crimes. We use the same pre-processing as Zafar et al. (2017a) and, in particular, we
select the same 5 features. The goal is to predict if a defendant has been arrested again within two years of the decision. The
sensitive attribute is race. It has been changed to a binary attribute with the values ‘White’ and ‘NonWhite’. We use 5, 000
randomly selected points for training.

Communities and Crime–Figure 10. This dataset includes socio-economic data of 1994 communities in the United
States (Redmond & Baveja, 2002). It consists of 128 attributes, of which we drop the name of the state, county, and
community, and features with missing values. Overall, we drop 29 features. We use the attribute RACEPCTWHITE to
construct a binary sensitive attribute. A community with a percentage of white residents higher than the mean 0.75 obtains
the sensitive label 1, otherwise the label is −1. The goal of this data set is to predict the number of violent crimes. We
binarize the label by splitting VIOLENTCRIMESPERPOP at the mean of 0.24. We use 1, 500 randomly selected points for
training.

German Credit–Figure 11. There are 1000 records of german applicants for a credit with 20 attributes (Dua & Graff,
2017). The goal is to classify the applicants in creditworthy or not creditworthy. The categorical feature ‘personal status’ is
changed into the binary feature sex. We use it as the sensitive attribute and use the other 19 features for training. We use 700
randomly selected points for training.
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Cross Validation Procedure. We report the results for different cross validation procedures as discussed in the main
paper. In Figure 12 we use a procedure called NVP proposed by (Donini et al., 2018). In a first step, we exclude the
hyperparameters with an accuracy score that is lower than 90% of the best accuracy score. Then, we choose the set of
hyperparameters with the best average fairness score. Finally, we use these hyperparameters to train on the whole train set.

In Figure 13 we report the results when we use a given fairness threshold. We shortlist all hyperparameters with an absolute
fairness score lower than 0.05 and, among them, choose the hyperparameters with the highest accuracy score. We report
average and standard deviation of classification error and absolute fairness scores DDP and DEO over 10 repetitions. Note
that we also report results for the approach by Cotter et al. (2019) for comparison, even though the linear version does not
tune any hyperparameters. Using the rbf kernel on the other hand, we need to tune the width of the kernel.
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CelebA

FAIRNESS NOTION Demographic Parity Equality of Opportunity
Kernel |DDP| |LR| Error |DEO| |LR| Error

SearchFair linear 0.02± 0.02 0.42± 0.07 0.19± 0.01 0.01± 0.01 0.38± 0.01 0.17± 0.00
rbf 0.01± 0.01 0.38± 0.04 0.17± 0.00 0.02± 0.01 0.40± 0.04 0.16± 0.00

Zafar linear 0.21± 0.01 0.02± 0.01 0.16± 0.00 0.22± 0.00 0.04± 0.02 0.16± 0.00
rbf 0.17± 0.01 0.02± 0.01 0.15± 0.00 0.16± 0.01 0.06± 0.04 0.15± 0.00

Donini linear 0.22± 0.01 0.02± 0.01 0.15± 0.00 0.22± 0.01 0.03± 0.02 0.16± 0.00
rbf 0.17± 0.01 0.03± 0.01 0.15± 0.00 0.15± 0.01 0.07± 0.08 0.15± 0.00

Cotter linear 0.05± 0.03 0.43± 0.10 0.18± 0.01 0.02± 0.02 0.37± 0.03 0.17± 0.00
rbf 0.01± 0.01 0.42± 0.06 0.18± 0.00 0.03± 0.01 0.49± 0.07 0.16± 0.00

Unconstrained linear 0.25± 0.00 0.51± 0.00 0.16± 0.00 0.26± 0.00 0.52± 0.00 0.16± 0.00
rbf 0.20± 0.01 0.46± 0.02 0.15± 0.00 0.16± 0.01 0.18± 0.11 0.15± 0.00

Constant – 0.00± 0.00 – 0.48± 0.00 0.00± 0.00 – 0.48± 0.00

Figure 6. CelebA. The grey dashed vertical line depicts the classification error of the constant classifier, which is perfectly fair for both
DDP and DEO. Overall, SearchFair is the only method with both low DDP and DEO, while linear Cotter is only slightly worse for DDP.
Additionally, SearchFair and Cotter exhibit high values for the linear relaxations which might imply that this relaxation is not suitable
here. This is confirmed by the fact that the competing methods have low relaxation values with high DDP and DEO values.
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Adult

FAIRNESS NOTION Demographic Parity Equality of Opportunity
Kernel |DDP| |LR| Error |DEO| |LR| Error

SearchFair linear 0.00± 0.00 0.00± 0.00 0.24± 0.00 0.00± 0.00 0.00± 0.00 0.24± 0.00
rbf 0.01± 0.01 0.02± 0.01 0.24± 0.01 0.05± 0.03 0.09± 0.07 0.20± 0.01

Zafar linear 0.00± 0.00 0.00± 0.00 0.24± 0.00 0.09± 0.06 0.04± 0.05 0.20± 0.02
rbf 0.20± 0.01 0.02± 0.02 0.18± 0.00 0.15± 0.02 0.24± 0.18 0.19± 0.00

Donini linear 0.00± 0.00 0.00± 0.00 0.24± 0.00 0.11± 0.04 0.05± 0.05 0.19± 0.02
rbf 0.21± 0.01 0.08± 0.08 0.18± 0.00 0.17± 0.04 0.28± 0.21 0.19± 0.00

Cotter linear 0.00± 0.00 0.01± 0.01 0.24± 0.00 0.00± 0.00 0.00± 0.00 0.24± 0.00
rbf 0.02± 0.03 0.10± 0.07 0.24± 0.01 0.06± 0.04 0.08± 0.05 0.20± 0.01

Unconstrained linear 0.25± 0.00 0.86± 0.00 0.19± 0.00 0.18± 0.01 0.43± 0.02 0.19± 0.00
rbf 0.21± 0.01 0.52± 0.04 0.18± 0.00 0.24± 0.01 0.47± 0.02 0.18± 0.00

Constant – 0.00± 0.00 – 0.24± 0.00 0.00± 0.00 – 0.24± 0.00

Figure 7. Adult. The grey dashed vertical line depicts the classification error of the constant classifier, which is perfectly fair for both
DDP and DEO. All the methods tend to learn the constant classifier to obtain a DDP fair model with the linear kernel. With the rbf kernel,
SearchFair and Cotter obtain low fairness scores (both for DDP and DEO) showing that the fairness of the model learned by the relaxation
based baselines can be heavily linked to the complexity of the models. Note that, even though all the fairness methods learn classifiers
with a low linear relaxation, their DDP scores vary widely. It confirms that there is no guarantee that a low relaxation value will lead to a
fair classifier.
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Dutch

FAIRNESS NOTION Demographic Parity Equality of Opportunity
Kernel |DDP| |LR| Error |DEO| |LR| Error

SearchFair linear 0.02± 0.01 0.05± 0.03 0.23± 0.00 0.01± 0.00 0.09± 0.04 0.19± 0.00
rbf 0.02± 0.01 0.03± 0.01 0.23± 0.01 0.01± 0.00 0.08± 0.03 0.18± 0.00

Zafar linear 0.03± 0.01 0.03± 0.01 0.23± 0.00 0.02± 0.02 0.03± 0.02 0.19± 0.00
rbf 0.13± 0.02 0.07± 0.05 0.20± 0.00 0.01± 0.01 0.04± 0.03 0.18± 0.00

Donini linear 0.03± 0.01 0.03± 0.02 0.23± 0.00 0.01± 0.01 0.03± 0.03 0.19± 0.00
rbf 0.12± 0.01 0.08± 0.04 0.19± 0.00 0.01± 0.00 0.03± 0.01 0.18± 0.00

Cotter linear 0.04± 0.02 0.05± 0.02 0.25± 0.03 0.01± 0.01 0.10± 0.04 0.19± 0.00
rbf 0.01± 0.01 0.03± 0.01 0.25± 0.01 0.00± 0.00 0.07± 0.04 0.19± 0.00

Unconstrained linear 0.17± 0.02 0.59± 0.03 0.19± 0.00 0.02± 0.02 0.03± 0.01 0.19± 0.00
rbf 0.16± 0.01 0.50± 0.05 0.19± 0.00 0.01± 0.00 0.03± 0.02 0.18± 0.00

Constant – 0.00± 0.00 – 0.48± 0.00 0.00± 0.00 – 0.48± 0.00

Figure 8. Dutch. The grey dashed vertical line depicts the classification error of the constant classifier, which is perfectly fair for both
DDP and DEO. In terms of DEO all the methods perform equally well on this dataset as the Unconstrained classifier is already DEO fair.
On the other hand, SearchFair and Cotter obtain a low DDP regardless of the complexity of the model. Once again, even though all the
fairness methods learn classifiers with a low linear relaxation, their DDP scores vary widely. It confirms that there is no guarantee that a
low relaxation value will lead to a fair classifier.
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Compas

FAIRNESS NOTION Demographic Parity Equality of Opportunity
Kernel |DDP| |LR| Error |DEO| |LR| Error

SearchFair linear 0.03± 0.01 0.03± 0.01 0.45± 0.02 0.01± 0.01 0.02± 0.03 0.45± 0.01
rbf 0.07± 0.01 0.11± 0.03 0.40± 0.01 0.09± 0.05 0.17± 0.08 0.38± 0.01

Zafar linear 0.03± 0.01 0.01± 0.01 0.42± 0.01 0.00± 0.01 0.01± 0.03 0.46± 0.01
rbf 0.12± 0.03 0.24± 0.10 0.35± 0.01 0.21± 0.06 0.53± 0.21 0.33± 0.02

Donini linear 0.04± 0.01 0.03± 0.02 0.42± 0.01 0.01± 0.02 0.03± 0.05 0.46± 0.02
rbf 0.14± 0.05 0.29± 0.14 0.35± 0.02 0.19± 0.05 0.39± 0.18 0.33± 0.01

Cotter linear 0.06± 0.03 0.06± 0.04 0.46± 0.05 0.01± 0.01 0.04± 0.04 0.45± 0.02
rbf 0.04± 0.02 0.07± 0.04 0.40± 0.01 0.08± 0.04 0.13± 0.06 0.40± 0.01

Unconstrained linear 0.20± 0.02 0.47± 0.04 0.34± 0.01 0.24± 0.04 0.55± 0.10 0.34± 0.01
rbf 0.20± 0.02 0.39± 0.04 0.32± 0.01 0.23± 0.04 0.46± 0.07 0.33± 0.01

Constant – 0.00± 0.00 – 0.46± 0.01 0.00± 0.00 – 0.46± 0.01

Figure 9. Compas. The grey dashed vertical line depicts the classification error of the constant classifier, which is perfectly fair for both
DDP and DEO. On this dataset, Zafar and Donini with rbf kernel tend to have high values for the linear relaxation, which is probably due
to an overfitting issue (as evoked at the end of Section 3.1 in the main paper). Overall, SearchFair obtains good fairness scores, comparable
to Cotter. For the DDP, SearchFair is slightly worse than Cotter with an rbf kernel, but better with a linear kernel. Surprisingly, both
methods also have low relaxation values which hints that, on this dataset, this relaxation might be relevant if one could avoid overfitting.
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Communities and Crime

FAIRNESS NOTION Demographic Parity Equality of Opportunity
Kernel |DDP| |LR| Error |DEO| |LR| Error

SearchFair linear 0.01± 0.01 0.07± 0.05 0.33± 0.02 0.14± 0.07 0.38± 0.17 0.22± 0.02
rbf 0.02± 0.01 0.06± 0.05 0.32± 0.01 0.30± 0.13 0.73± 0.28 0.19± 0.02

Zafar linear 0.15± 0.05 0.09± 0.07 0.27± 0.02 0.12± 0.06 0.37± 0.22 0.22± 0.01
rbf 0.45± 0.06 0.22± 0.19 0.20± 0.01 0.30± 0.10 0.78± 0.25 0.17± 0.02

Donini linear 0.12± 0.04 0.10± 0.07 0.28± 0.02 0.18± 0.09 0.58± 0.30 0.21± 0.02
rbf 0.45± 0.05 0.42± 0.21 0.20± 0.02 0.39± 0.04 0.90± 0.14 0.16± 0.01

Cotter linear 0.02± 0.02 0.09± 0.04 0.32± 0.02 0.12± 0.06 0.22± 0.12 0.21± 0.02
rbf 0.03± 0.05 0.09± 0.05 0.32± 0.03 0.34± 0.08 0.77± 0.21 0.19± 0.02

Unconstrained linear 0.65± 0.03 3.25± 0.28 0.16± 0.01 0.55± 0.06 2.46± 0.34 0.15± 0.01
rbf 0.67± 0.04 2.64± 0.21 0.14± 0.01 0.65± 0.05 2.19± 0.24 0.14± 0.01

Constant – 0.00± 0.00 – 0.34± 0.01 0.00± 0.00 – 0.34± 0.01

Figure 10. Communities and Crime. The grey dashed vertical line depicts the classification error of the constant classifier, which is
perfectly fair for both DDP and DEO. Overall, all the fairness methods perform similarly well in terms of DEO. For DDP, only SearchFair
and Cotter are able to learn a fair classifier for both the linear and rbf kernel. Once again, one can notice that a low linear relaxation might
or might not imply a DDP fair classifier. Indeed, the DDP scores of Zafar, Donini, and SearchFair are very different while their linear
relaxation scores are all close to 0.
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German Credit

FAIRNESS NOTION Demographic Parity Equality of Opportunity
Kernel |DDP| |LR| Error |DEO| |LR| Error

SearchFair linear 0.04± 0.04 0.09± 0.06 0.26± 0.03 0.04± 0.03 0.13± 0.06 0.25± 0.02
rbf 0.05± 0.05 0.08± 0.08 0.25± 0.02 0.04± 0.05 0.10± 0.09 0.26± 0.03

Zafar linear 0.07± 0.04 0.24± 0.11 0.25± 0.03 0.03± 0.02 0.10± 0.07 0.26± 0.02
rbf 0.06± 0.04 0.17± 0.08 0.25± 0.02 0.03± 0.02 0.17± 0.12 0.26± 0.02

Donini linear 0.06± 0.04 0.20± 0.19 0.25± 0.02 0.04± 0.02 0.16± 0.12 0.26± 0.02
rbf 0.06± 0.03 0.13± 0.12 0.26± 0.02 0.03± 0.02 0.11± 0.06 0.25± 0.03

Cotter linear 0.03± 0.03 0.13± 0.10 0.27± 0.02 0.04± 0.04 0.13± 0.14 0.26± 0.02
rbf 0.06± 0.04 0.11± 0.09 0.25± 0.02 0.03± 0.02 0.08± 0.06 0.25± 0.01

Unconstrained linear 0.05± 0.03 0.13± 0.09 0.25± 0.03 0.05± 0.03 0.16± 0.13 0.25± 0.02
rbf 0.05± 0.05 0.16± 0.08 0.25± 0.01 0.06± 0.03 0.13± 0.07 0.26± 0.03

Constant – 0.00± 0.00 – 0.29± 0.02 0.00± 0.00 – 0.30± 0.02

Figure 11. German Credit. The grey dashed vertical line depicts the classification error of the constant classifier, which is perfectly fair
for both DDP and DEO. This is the smallest dataset out of the 6 with 700 training examples and 300 test examples. This explains the large
standard deviations. For this particular dataset, SearchFair does not bring any significant improvement in terms of fairness compared to
the baselines. We believe that it is due to a slight overfitting issue since the dataset is so small. Nevertheless, SearchFair is not worse that
the other baselines as all the methods perform comparably.
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NVP Cross Validation

(a) Adult. (b) Dutch. (c) CelebA.

(d) Compas. (e) Communities and Crime. (f) German Credit.

Figure 12. We use a procedure called NVP (Donini et al., 2018), where we choose the set of hyperparameters with the best average
fairness score while having an accuracy above a given threshold. Overall, using this procedure greatly improves the performances of
the fairness baselines. Hence, on most datasets, they now obtain classifiers that are as fair as the ones learned by SearchFair and Cotter.
Nevertheless, there is no guarantee that the method will succeed and it indeed fails for both DDP and DEO on CelebA (linear kernel), and
for DEO on Adult (linear kernel). The fact that NVP succeeds for the rbf kernel and sometimes fails for the linear kernel hints that NVP is
a good way to address the complexity issue of the linear relaxations but that it does not solve the other shortcommings. The grey dashed
vertical line depicts the classification error of the constant classifier, which is perfectly fair for both DDP and DEO.
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Fairness Cross Validation

(a) Adult. (b) Dutch. (c) CelebA.

(d) Compas. (e) Communities and Crime. (f) German.

Figure 13. We use another cross validation procedure, where we shortlist all hyperparameters with an absolute fairness score lower than
0.05 and, among them, choose the hyperparameters with the highest accuracy score. The results are very similar to the ones of NVP
presented in Figure 12 and the same conclusions can be drawn. In particular, it seems to solve the complexity issue of linear relaxations
with rbf kernel but can still fail when using the linear kernel (for both DDP and DEO on CelebA, and for DEO on Adult). The grey dashed
vertical line depicts the classification error of the constant classifier, which is perfectly fair for both DDP and DEO.
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C. Proofs
This section contains all the proofs and derivations that were omitted in the main paper. First, we shortly show that the
intercept does not influence the value of the linear fairness relaxation. Second, we present equivalent formulations of the
DDP in Section C.2. Finally, Theorem 3 is proved in Section C.3, Corollary 2 is proved in Section C.4, and Theorem 4 is
proved in Section C.5.

C.1. Proof of vanishing intercept

In the main paper, we claim that for a classifier f(x) = g(x) + b with b the intercept, it holds that LRD̂DP(f) = LRD̂DP(g)

for any b. First, we consider the formulation of Donini et al. (2018) with C
(
s, D̂Z

)
= s

p̂s
. Recall that p̂s = ns

n , where ns is

the number of samples with sensitive attribute s. We need to show that 1
n

∑
(x,s,y)∈D̂Z C

(
s, D̂Z

)
= 0.

1

n

∑
(x,s,y)∈D̂Z

s

p̂s
=

∑
(x,s,y)∈D̂Z

s

ns

=
∑

(x,s=1,y)∈D̂Z

1

n1
−

∑
(x,s=−1,y)∈D̂Z

1

n−1
= 0.

Second, we consider Zafar et al. (2017b) with C
(
s, D̂Z

)
= 1

p̂1(1−p̂1)

(
s+1

2 − p̂1

)
.

1

n

∑
(x,s,y)∈D̂Z

1

p̂1(1− p̂1)

(
s+ 1

2
− p̂1

)
= n

∑
(x,s,y)∈D̂Z

1

n1n−1

(
s+ 1

2
− n1

n

)

=
n

n1n−1

 ∑
(x,s=1,y)∈D̂Z

(
1− n1

n

)
−

∑
(x,s=−1,y)∈D̂Z

n1

n


=

n

n1n−1

 ∑
(x,s=1,y)∈D̂Z

(n−1

n

)
− n1n−1

n

 = 0.

C.2. Equivalent Formulations of DDP

In the main paper, we use several equivalent formulations of DDP depending on the method that we consider. We detail
their derivations here. Note that these derivations are analogous for equivalent DEO formulations. First, recall the original
DDP formulation:

DDP(f) = E
(x,s,y)∼DZ

[
If(x)>0|s = 1

]
− E

(x,s,y)∼DZ

[
If(x)>0|s = −1

]
.

We can rewrite it to obtain the formulation of Zafar et al. (2017b) and Zafar et al. (2017a). Recall that S = {−1, 1} and that
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p1 = P(x,s,y)∼DZ (s = 1), then:

DDP(f) = E
(x,s,y)∼DZ

[
If(x)>0|s = 1

]
− E

(x,s,y)∼DZ

[
If(x)>0|s = −1

]
⇔ = E

(x,s,y)∼DZ

[
s+ 1

2
If(x)>0|s = 1

]
− E

(x,s,y)∼DZ

[
1− s

2
If(x)>0|s = −1

]
⇔ =

1

p1
E

(x,s,y)∼DZ

[
s+ 1

2
If(x)>0

]
− 1

1− p1
E

(x,s,y)∼DZ

[
1− s

2
If(x)>0

]
⇔ = E

(x,s,y)∼DZ

[(
s+ 1

2p1
− 1− s

2(1− p1)

)
If(x)>0

]
⇔ = E

(x,s,y)∼DZ

[(
(s+ 1)(1− p1)− (1− s)p1

2p1(1− p1)

)
If(x)>0

]
⇔ = E

(x,s,y)∼DZ

[(
s+ 1− 2p1

2p1(1− p1)

)
If(x)>0

]
⇔ = E

(x,s,y)∼DZ

[
1

p1(1− p1)

(
s+ 1

2
− p1

)
If(x)>0

]
.

We can also rewrite it to obtain the formulation of Donini et al. (2018). Recall that ps = P(x′,s′,y′)∼DZ (s′ = s), then:

DDP(f) = E
(x,s,y)∼DZ

[
If(x)>0|s = 1

]
− E

(x,s,y)∼DZ

[
If(x)>0|s = −1

]
⇔ = E

(x,s,y)∼DZ

[
sIf(x)>0|s = 1

]
+ E

(x,s,y)∼DZ

[
sIf(x)>0|s = −1

]
⇔ = E

(x,s,y)∼DZ

[
sIf(x)>0|s = 1

] p1

p1
+ E

(x,s,y)∼DZ

[
sIf(x)>0|s = −1

] 1− p1

1− p1

⇔ = E
(x,s,y)∼DZ

[
s

ps
If(x)>0|s = 1

]
p1 + E

(x,s,y)∼DZ

[
s

ps
If(x)>0|s = −1

]
(1− p1)

(Law of total expectation.)

⇔ = E
(x,s,y)∼DZ

[
s

ps
If(x)>0

]
.

Finally, we can rewrite it to obtain the formulation of Wu et al. (2019) as follows:

DDP(f) = E
(x,s,y)∼DZ

[
If(x)>0|s = 1

]
− E

(x,s,y)∼DZ

[
If(x)>0|s = −1

]
⇔ = E

(x,s,y)∼DZ

[
s

ps
If(x)>0

]
(Formulation of Donini et al. (2018).)

⇔ = E
(x,s,y)∼DZ

[
Is=1

p1
If(x)>0 −

Is=−1

1− p1
If(x)>0

]
⇔ = E

(x,s,y)∼DZ

[
Is=1

p1
If(x)>0 +

Is=−1

1− p1
If(x)<0 − 1

]
.

C.3. Proof of Theorem 1 and Continuity of DEO
(
fβ
D̂Z

(λ)
)

Recall that our main optimization problem is:

fβ
D̂Z

(λ) = arg min
f∈F

L̂(f) + λRD̂DP(f) + βΩ(f) . (7)

To prove Theorem 1, that is to show the continuity of the function λ 7→ DDP
(
fβ
D̂Z

(λ)
)

, we need technical Lemmas 1 and 2.

The first one shows that the function λ 7→ fβ
D̂Z

(λ) is continuous. The second one shows that for particular function classes,
f 7→ Px∼DX [f(x) ≤ 0] is a continuous function. Before proving them, we first recall the definition of a m-strongly convex
function.
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Definition 2 (m-strongly convex functions). A function f : X 7→ R is called m-strongly convex with parameter m > 0 if
for all x, y ∈ X and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t) ‖x− y‖22 .

We can now prove our two technical lemmas.
Lemma 1 (Continuity of λ 7→ fβ

D̂Z
(λ)). Assume that Optimization Problem 7 is m-strongly convex and that RD̂DP(f) is

bounded in the interval [−B,B]. Given a training set D̂Z and a regularization parameter β > 0, the function:

λ 7→ fβ
D̂Z

(λ)

is continuous and there exists a constant C =
√

8B
m such that:∥∥∥fβD̂Z (λ)− fβ

D̂Z
(λ′)

∥∥∥
F
≤ C

√
|λ− λ′|.

Proof. Let gλ(f) = L̂(f) + λRD̂DP(f) + βΩ(f) and gλ
′
(f) = gλ(f) + εRD̂DP(f) with ε > 0 and ε = λ′ − λ. For the

sake of readability, for the remainder of the proof, we write fβ
D̂Z

(λ) as f(λ). Since Optimization Problem 7 is m-strongly
convex, it holds that:

gλ(tf(λ) + (1− t)f(λ′)) + εRD̂DP(tf(λ) + (1− t)f(λ′))

≤ tgλ(f(λ)) + (1− t)gλ(f(λ′)) + tεRD̂DP(f(λ)) + (1− t)εRD̂DP(f(λ′))

− m

2
t(1− t) ‖f(λ)− f(λ′)‖2F .

In particular, for t = 1
2 :

m

8
‖f(λ)− f(λ′)‖2F ≤

1

2
gλ(f(λ)) +

1

2
gλ(f(λ′)) +

1

2
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1

2
εRD̂DP(f(λ′))
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(

1

2
f(λ) +

1

2
f(λ′)

)
− εRD̂DP

(
1

2
f(λ) +

1

2
f(λ′)

)
⇔ m

8
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1

2
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2
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1
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)
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1
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)
⇔ m

8
‖f(λ)− f(λ′)‖2F ≤

1

2
gλ(f(λ))− 1

2
gλ
(

1

2
f(λ) +

1

2
f(λ′)

)
+

1

2
gλ
′
(f(λ′))− 1

2
gλ
′
(

1

2
f(λ) +

1

2
f(λ′)

)
+

1

2
εRD̂DP(f(λ))− 1

2
εRD̂DP

(
1

2
f(λ) +

1

2
f(λ′)

)
.

Since f(λ) and f(λ′) respectively minimize gλ(f) and gλ
′
(f), it holds that

1

2
gλ(f(λ))− 1

2
gλ
(

1

2
f(λ) +

1

2
f(λ′)

)
≤ 0

1

2
gλ
′
(f(λ′))− 1

2
gλ
′
(

1

2
f(λ) +

1

2
f(λ′)

)
≤ 0
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which, in turns, implies

m

8
‖f(λ)− f(λ′)‖2F ≤

1

2
εRD̂DP(f(λ))− 1

2
εRD̂DP

(
1

2
f(λ) +

1

2
f(λ′)

)
⇔ ‖f(λ)− f(λ′)‖2F ≤

8

2m
εRD̂DP(f(λ))− 8

2m
εRD̂DP

(
1

2
f(λ) +

1

2
f(λ′)

)
(RD̂DP(f) ∈ [−B,B])

⇔ ‖f(λ)− f(λ′)‖2F ≤
8B

m
ε

(ε ≤ |λ′ − λ|)

⇒ ‖f(λ)− f(λ′)‖2F ≤
8B

m
|λ′ − λ|

⇒ ‖f(λ)− f(λ′)‖F ≤
√

8B

m

√
|λ′ − λ|.

Choosing C =
√

8B
m concludes the proof.

Lemma 2 (Continuity of f 7→ Px∼DX [f(x) ≤ 0]). Let F be a space of real valued functions f : X → R. Assume that the
following conditions hold:
(i) there exists a metric ρ such that (F , ρ) is a metric space,
(ii) ∀x ∈ X , the function g(f) : f 7→ f(x) is continuous,
(iii) ∀f ∈ F , f is Lebesgue measurable and the set {x : x ∈ X , f(x) = 0} is a Lebesgue null set,
(iv) the probability density functions fX is Lebesgue-measurable.
We have that:

P
x∼DX

[f(x) ≤ 0]

is a continuous function in f ∈ F .

Proof. We have that:

P
x∼DX

[f(x) ≤ 0] = E
x∼DX

[
If(x)≤0

]
=

∫
X
If(x)≤0fX (x) dx =

∫
X
h(f, x) dx.

To show that this function is continuous, we apply Theorem 5.6 in Elstrodt (1996). To this extent, we need to show that all
the conditions hold.

• Condition a: ∀f ∈ F , h(f, ·) ∈ L1.
The function f(x) 7→ If(x)≤0 is Borel measurable and the function f is Lebesgue measurable. By composition, the
function x 7→ If(x)≤0 is also Lebesgue measurable. As the product of two Lebesgue measurable functions, h is also
Lebesgue measurable. Furthermore, we have:∫

X
|h(f, x)| dx ≤

∫
X
fX (x) dx = 1 <∞

which is the desired condition.

• Condition b: h(·, x) is continuous in f0 ∈ F for µ-almost all x ∈ X .
Since ∀x ∈ X , g(f) : f 7→ f(x) is continuous in f0, If(x)≤0 is also a continuous function in f0 expect for the set
{x : x ∈ X , f(x) = 0} which is a Lebesgue null set.

• Condition c: There exists a neighbourhood U of f0 and an integrable function u : X → [0,∞) such that ∀f ∈ U we
have h(f, ·) ≤ u µ-a.e..
Taking u = fX satisfy the condition with U = F .
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Since all the conditions hold, we have that Px∼DX [f(x) ≤ 0] is continuous at f0. Furthermore, given our assumptions on
F , this remains true ∀f0 ∈ F . This concludes the proof.

We are now ready to prove Theorem 3.

Theorem 3 (Continuity of DDP
(
fβ
D̂Z

(λ)
)

). Let F be a function space, we define the set of learnable functions as

FΛ =
{
f ∈ F : ∃λ ≥ 0, f = fβ

D̂Z
(λ)
}

. Assume that the following conditions hold:
(i) Optimization Problem 7 is m-strongly convex in f ,
(ii) for all f ∈ F , RD̂DP(f) is bounded in the interval [−B,B],
(iii) there exists a metric ρ such that (FΛ, ρ) is a metric space,
(iv) ∀x ∈ X , the function g(f) : f 7→ f(x) is continuous,
(v) ∀f ∈ FΛ, f is Lebesgue measurable and the sets {x : (x, s, y) ∈ Z, s = 1, f(x) = 0} and
{x : (x, s, y) ∈ Z, s = −1, f(x) = 0} are Lebesgue null sets,
(vi) the probability density functions fZ|s=1 and fZ|s=−1 are Lebesgue-measurable.

Then, the function λ 7→ DDP
(
fβ
D̂Z

(λ)
)

is continuous.

Proof. Recall that DDP is defined as follows:

DDP(f) = P
(x,s,y)∼DZ|s=1

[f(x) > 0]− P
(x,s,y)∼DZ|s=−1

[f(x) > 0] .

Applying Lemma 2, we have that c : FΛ → R defined as c(f) = P(x,s,y)∼DZ|s=1
[f(x) > 0] and c′ : FΛ → R defined

as c′(f) = P(x,s,y)∼DZ|s=−1
[f(x) > 0] are continuous functions. It implies that the function q : FΛ → R defined as

q(f) = DDP(f) is continuous.

Then, using Lemma 1 and recalling that the composition of two continuous functions is also continuous gives the theorem.

We use the same proof technique to prove the continuity of DEO as stated in the next theorem. The main differences are in
conditions (v) and (vi) where we only need to consider the positively labelled examples.

Theorem 1.1 (Continuity of DEO
(
fβ
D̂Z

(λ)
)

). Let F be a function space, we define the set of learnable functions as

FΛ =
{
f ∈ F : ∃λ ≥ 0, f = fβ

D̂Z
(λ)
}

. Assume that the following conditions hold:
(i) Optimization Problem 7 is m-strongly convex in f ,
(ii) for all f ∈ F , RD̂DP(f) is bounded in the interval [−B,B],
(iii) there exists a metric ρ such that (FΛ, ρ) is a metric space,
(iv) ∀x ∈ X , the function g(f) : f 7→ f(x) is continuous,
(v) ∀f ∈ FΛ, f is Lebesgue measurable and the sets {x : (x, s, y) ∈ Z, y = 1, s = 1, f(x) = 0} and
{x : (x, s, y) ∈ Z, y = 1, s = −1, f(x) = 0} are Lebesgue null sets,
(vi) the probability density functions fZ|y=1,s=1 and fZ|y=1,s=−1 are Lebesgue-measurable.

Then the function λ 7→ DEO
(
fβ
D̂Z

(λ)
)

is continuous.

Proof. Recall that DEO is defined as follows:

DEO(f) = P
(x,s,y)∼DZ|y=1,s=1

[f(x) > 0]− P
(x,s,y)∼DZ|y=1,s=−1

[f(x) > 0] .

Applying Lemma 2, we have that c : FΛ → R defined as c(f) = P(x,s,y)∼DZ|y=1,s=1
[f(x) > 0] and c′ : FΛ → R defined

as c′(f) = P(x,s,y)∼DZ|y=1,s=−1
[f(x) > 0] are continuous functions. It implies that the function q : FΛ → R defined as

q(f) = DEO(f) is continuous.

Then, using Lemma 1 and recalling that the composition of two continuous functions is also continuous gives the theorem.
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C.4. Proof of Corollary 2 and Existence of a DEO-fair classifier

Corollary 2 (Existence of a DDP-fair classifier). Let F be a function space, we define the set of learnable functions
as FΛ =

{
f ∈ F : ∃λ ≥ 0, f = fβ

D̂Z
(λ)
}

. Assume that Theorem 3 holds and that there exist two hyperparameters

λ+ and λ− such that DDP
(
fβ
D̂Z

(λ+)
)
> 0 and DDP

(
fβ
D̂Z

(λ−)
)
< 0. Then, there exists at least one value λ0 ∈

[min (λ+, λ−) ,max (λ+, λ−)] such that DDP
(
fβ
D̂Z

(λ0)
)

= 0.

Proof. This corollary is a direct consequence of the intermediate value theorem and the continuity of DDP proven in
Theorem 3.

Note that one can obtain the same result for DEO.

Corollary 1.1 (Existence of a DEO-fair classifier). Let F be a function space, we define the set of learnable functions
as FΛ =

{
f ∈ F : ∃λ ≥ 0, f = fβ

D̂Z
(λ)
}

. Assume that Theorem 3 holds and that there exist two hyperparameters

λ+ and λ− such that DEO
(
fβ
D̂Z

(λ+)
)
> 0 and DEO

(
fβ
D̂Z

(λ−)
)
< 0. Then, there exists at least one value λ0 ∈

[min (λ+, λ−) ,max (λ+, λ−)] such that DEO
(
fβ
D̂Z

(λ0)
)

= 0.

Proof. This corollary is a direct consequence of the intermediate value theorem and the continuity of DEO proven in
Theorem 1.1.

C.5. Proof of Theorem 4

Recall the definition of a good similarity for fairness.

Definition 3 (Good Similarities for Fairness). A similarity functionK is (ε, γ, τ)-good for convex, positive, and decreasing
loss ` and (µ, ν)-fair for demographic parity if there exists a (random) indicator functionR(x, s, y) defining a (probabilistic)
set of “reasonable points” such that, given that ∀x ∈ X , g(x) = E(x′,s′,y′)∼DZ [y′K(x, x′) |R(x′, s′, y′)], the following
conditions hold:

(i) E
(x,s,y)∼DZ

[
`

(
yg(x)

γ

)]
≤ ε,

(ii)
∣∣∣∣ P
(x,s,y)∼DZ|s=1

[g(x) ≥ γ]− P
(x,s,y)∼DZ|s=−1

[g(x) ≥ γ]

∣∣∣∣ ≤ µ,

(iii) P
(x,s,y)∼DZ

[|g(x)| ≥ γ] ≥ 1− ν,

(iv) P
(x,s,y)∼DZ

[R(x, s, y)] ≥ τ .

In the following theorem we prove, given a good and fair similarity, the existence of an accurate and fair classifier.

Theorem 4 (Existence of a fair and accurate separator). Let K ∈ [−1, 1] be a (ε, γ, τ)-good and (µ, ν)-fair metric
for a given convex, positive and decreasing loss ` with lipschitz constant L. For any ε1 > 0 and 0 < δ < γε1

2(L+ (̀0)) , let
S = {(x′1, s′1, y′1), . . . , (x′d, s

′
d, y
′
d)} be a set of d examples drawn from DZ with

d ≥ 1

τ

[
L2

γ2ε2
1

+
3

δ
+

4L

δγε1

√
δ(1− τ) log(2/δ)

]
.

Let φS : X → Rd be a mapping defined as φSi (x) = K(x, x′i), for all i ∈ {1, . . . , d}. Then, with probability at least 1− 5
2δ

over the choice of S, the induced distribution over φS(X )× S × Y has a linear separator α such that

E
(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]
≤ ε+ ε1.

and, with p1 = P(x,s,y)∼DZ [s = 1],

|DDP(α)| ≤ µ+ (ν + 2δ) max

(
1

p1
,

1

1− p1

)
.
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Proof. Let S = {(x′1, s′1, y′1), . . . , (x′d, s
′
d, y
′
d)} be a sample of size d drawn from DZ and let φS : X → Rd be a mapping

defined as φSi (x) = K(x, x′i), for all i ∈ {1, . . . , d}. Recall that |K(x, x)| ≤ 1 for all x. It implies that
∥∥φS∥∥∞ ≤ 1.

Furthermore, let α ∈ Rd be defined as αi =
y′iR(x

′
i,s
′
i,y
′
i)

d1
with d1 =

∑
iR(x′i, s

′
i, y
′
i) which ensures that ‖α‖1 = 1.

The proof is in two parts. First, we show the bound on the target criterion, that is, given d chosen as in the theorem, we show
that

P
S∼DdZ

[
E

(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]
≤ ε+ ε1

]
≥ 1− δ.

Second, we show a bound on the true DDP, that is, given d chosen as in the theorem, we show that

|DDP(α)| ≤ µ+ νmax

(
1

p1
,

1

1− p1

)
where p1 = P(x,s,y)∼DZ [s = 1].

Bound on the target criterion. For any example (x, s, y) ∼ DZ , we have

y
〈
α, φS(x)

〉
=

∑d
i=1 yy

′
iR(x′i, s

′
i, y
′
i)K(x, x′i)

d1

which is an empirical average of d1 terms with R(x′i, s
′
i, y
′
i) = 1 and

−1 ≤ yy′iR(x′i, s
′
i, y
′
i)K(x, x′i) ≤ 1.

Using Hoeffding’s inequality, we can show that

P
S∼DdZ

[
y
〈
α, φS(x)

〉
≤ E

(x′,s′,y′)∼DZ
[yy′K(x, x′) |R(x′, s′, y′)]− t

]
≤ exp

(
− t

2d1

2

)

which implies that, with probability at least 1− δ2

4 , we have

y
〈
α, φS(x)

〉
≥ E

(x′,s′,y′)∼DZ
[yy′K(x, x′) |R(x′, s′, y′)]−

√
2 log

(
4
δ2

)
d1

.

This inequality holds for any (x, s, y) ∼ DZ and thus we have that

P
S∼DdZ

y 〈α, φS(x)
〉
≤ E

(x′,s′,y′)∼DZ
[yy′K(x, x′) |R(x′, s′, y′)]−

√
2 log

(
4
δ2

)
d1

 ≤ δ2

4

⇒ E
(x,s,y)∼DZ

 P
S∼DdZ

y 〈α, φS(x)
〉
≤ E

(x′,s′,y′)∼DZ
[yy′K(x, x′) |R(x′, s′, y′)]−

√
2 log

(
4
δ2

)
d1

 ≤ δ2

4

⇒ E
S∼DdZ

 P
(x,s,y)∼DZ

y 〈α, φS(x)
〉
≤ E

(x′,s′,y′)∼DZ
[yy′K(x, x′) |R(x′, s′, y′)]−

√
2 log

(
4
δ2

)
d1

 ≤ δ2

4
.

Then, applying Markov’s inequality, we obtain that

P
S∼DdZ

 P
(x,s,y)∼DZ

y 〈α, φS(x)
〉
≤ E

(x′,s′,y′)∼DZ
[yy′K(x, x′) |R(x′, s′, y′)]−

√
2 log

(
4
δ2

)
d1

 ≥ δ
 ≤ δ

4
,
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which implies

P
S∼DdZ

 P
(x,s,y)∼DZ

y 〈α, φS(x)
〉
≤ E

(x′,s′,y′)∼DZ
[yy′K(x, x′) |R(x′, s′, y′)]−

√
2 log

(
4
δ2

)
d1

 ≤ δ
 ≥ 1− δ

4
.

In other words, with a probability at least 1− δ
4 at most δ fraction of points violate

y
〈
α, φS(x)

〉
≥ E

(x′,s′,y′)∼DZ
[yy′K(x, x′) |R(x′, s′, y′)]−

√
2 log

(
4
δ2

)
d1

. (8)

Therefore, let g(x) = E(x′,s′,y′)∼DZ [y′K(x, x′) |R(x′, s′, y′)], with a probability at least 1− δ
4 for at least 1− δ fraction

of points, which do not violate (8), we have, for our decreasing loss ` (an example of decreasing loss is the hinge loss,
`(w) = max (0, 1− w)):

`

(
y
〈
α, φS(x)

〉
γ

)
≤ `

yg(x)−
√

2 log( 4
δ2

)
d1

γ


(A convex loss is L-lipschitz continuous on any closed sub-interval.)

≤ `
(
yg(x)

γ

)
+ L

∣∣∣∣∣∣ 1γ
√

2 log
(

4
δ2

)
d1

∣∣∣∣∣∣
≤ `
(
yg(x)

γ

)
+
L

γ

√
2 log

(
4
δ2

)
d1

.

For at most a δ fraction of points violating (8), we use a bound on the worst case loss derived from its lipschitzness.

`

(
y
〈
α, φS(x)

〉
γ

)
≤ L

∣∣∣∣∣y
〈
α, φS(x)

〉
γ

∣∣∣∣∣+ `(0)

≤ Lmax
x

∣∣〈α, φS(x)
〉∣∣

γ
+ `(0)

(Cauchy-Schwarz Inequality.)

≤ Lmax
x

‖α‖1
∥∥φS(x)

∥∥
∞

γ
+ `(0)

≤ `(0) +
L

γ

(γ ≤ 1.)

≤ L+ `(0)

γ
.
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Altogether, we obtain with a probability of at least 1− δ
4 over S that

E
(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]
≤ E

(x,s,y)∼DZ

[
L+ `(0)

γ
I(x violates (8))

+

`(yg(x)

γ

)
+
L

γ

√
2 log

(
4
δ2

)
d1

 I(x does not violate (8))


≤ (L+ `(0)) δ

γ
+ E

(x,s,y)∼DZ

[
`

(
yg(x)

γ

)]
+
L

γ

√
2 log

(
4
δ2

)
d1

(By definition of a good similarity.)

≤ (L+ `(0)) δ

γ
+ ε+

L

γ

√
2 log

(
4
δ2

)
d1

(δ < γε1
2(L+ (̀0)) .)

≤ ε1

2
+ ε+

L

γ

√
2 log

(
4
δ2

)
d1

.

Furthermore, the number d1 of reasonable landmarks follows a binomial distribution B(d, p) with p ≥ τ . With our choice
of d, we have that

P
S∼DdZ

L
γ

√
2 log

(
4
δ2

)
d1

≤ ε1

2

 ≥ 1− δ

4
.

Using the union bound, we obtain with a probability of at least 1− δ
2 over S that

E
(x,s,y)∼DZ

[
`

(
y
〈
α, φS(x)

〉
γ

)]
≤ ε+ ε1.

Bound on the fairness criterion For any example (x, s, y) ∼ DZ , we have

〈
α, φS(x)

〉
=

∑d
i=1 y

′
iR(x′i, s

′
i, y
′
i)K(x, x′i)

d1
,

which is an empirical average of d1 terms with R(x′i, s
′
i, y
′
i) = 1 and

−1 ≤ y′iR(x′i, s
′
i, y
′
i)K(x, x′i) ≤ 1.

Let g(x) = E(x′,s′,y′)∼DZ [y′K(x, x′) |R(x′, s′, y′)]. Using the same kind of argument than in the first part of the proof,
that is applying Hoeffding’s inequality followed by Markov’s inequality, we can show that

P
S∼DdZ

 P
(x,s,y)∼DZ

∣∣〈α, φS(x)
〉
− g(x)

∣∣ ≥
√

2 log
(

8
δ2

)
d1

 ≤ δ
 ≥ 1− δ

4
.

Furthermore, notice that the number d1 of reasonable landmarks follows a binomial distribution B(d, p) with p ≥ τ . With
our choice of d, with probability at least 1− δ

4 over the choice of S, it implies that√
2 log

(
8
δ2

)
d1

≤ γ.
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As a consequence, we have that

P
S∼DdZ

[
P

(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ ≥ γ] ≤ δ] ≥ 1− δ

2
. (9)

To derive a bound on |DDP(α)|, we first derive bounds on P(x,s,y)∼DZ
[〈
α, φS(x)

〉
≥ 0
∣∣ s = 1

]
and

P(x,s,y)∼DZ
[〈
α, φS(x)

〉
≥ 0
∣∣ s = −1

]
. Notice that:

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s = 1

]
≥ P

(x,s,y)∼DZ

[
g(x) ≥ γ ∩

∣∣〈α, φS(x)
〉
− g(x)

∣∣ ≤ γ∣∣ s = 1
]

≥ 1− P
(x,s,y)∼DZ

[
g(x) < γ ∪

∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
∣∣ s = 1

]
(Union’s bound.)

≥ 1− P
(x,s,y)∼DZ

[g(x) < γ| s = 1]− P
(x,s,y)∼DZ

[ ∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
∣∣ s = 1

]
(P [A|B] ≤ P[A]

P[B] )

≥ P
(x,s,y)∼DZ

[g(x) ≥ γ| s = 1]− P
(x,s,y)∼DZ

[ ∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
∣∣ s = 1

]
≥ P

(x,s,y)∼DZ
[g(x) ≥ γ| s = 1]−

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1
,

where p1 = P(x,s,y)∼DZ [s = 1]. With a symmetric argument, we have that

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
< 0
∣∣ s = 1

]
≥ P

(x,s,y)∼DZ
[g(x) ≤ −γ| s = 1]−

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1
,

which implies

1− P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s = 1

]
≥ P

(x,s,y)∼DZ
[g(x) ≤ −γ| s = 1]−

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1

⇔ P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s = 1

]
≤ 1− P

(x,s,y)∼DZ
[g(x) ≤ −γ| s = 1] +

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1

⇔ P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s = 1

]
≤ P

(x,s,y)∼DZ
[g(x) ≥ −γ| s = 1] +

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1
.

Furthermore, we have that

P
(x,s,y)∼DZ

[g(x) ≥ −γ| s = 1] ≤ P
(x,s,y)∼DZ

[−γ ≤ g(x) ≤ γ ∪ g(x) ≥ γ| s = 1]

(Using the union bound and by definition of a good similarity.)

≤ ν

p1
+ P

(x,s,y)∼DZ
[g(x) ≥ γ| s = 1] .

This implies that

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s = 1

]
≤ ν

p1
+ P

(x,s,y)∼DZ
[g(x) ≥ γ| s = 1] +

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1
.

In a similar fashion, we have that

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s = −1

]
≥ P

(x,s,y)∼DZ
[g(x) ≥ γ| s = −1]−

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

1− p1

and

P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s=−1

]
≤ ν

1−p1
+ P

(x,s,y)∼DZ
[g(x) ≥ γ| s=−1] +

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
−g(x)

∣∣ > γ
]

1− p1
.



Too Relaxed to Be Fair

These inequalities imply an upper bound on DDP(α),

DDP(α) = P
(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s = 1

]
− P

(x,s,y)∼DZ

[〈
α, φS(x)

〉
≥ 0
∣∣ s = −1

]
≤ ν

p1
+ P

(x,s,y)∼DZ
[g(x) ≥ γ| s = 1] +

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1

− P
(x,s,y)∼DZ

[g(x) ≥ γ| s = −1] +
P(x,s,y)∼DZ

[∣∣〈α, φS(x)
〉
− g(x)

∣∣ > γ
]

1− p1

(By definition of a good similarity.)

≤ ν

p1
+ µ+

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1
+

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

1− p1

and, similarly these inequalities imply a lower bound on DDP(α),

DDP(α) ≥ − ν

1− p1
− µ−

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

p1
−

P(x,s,y)∼DZ
[∣∣〈α, φS(x)

〉
− g(x)

∣∣ > γ
]

1− p1
.

Then, using Inequality 9 and the union bound, we obtain that

P
S∼DdZ

[
DDP(α) ≤ ν

p1
+ µ+

δ

p1
+

δ

1− p1

]
≥ 1− δ

In a similar fashion, we also obtain that

P
S∼DdZ

[
DDP(α) ≥ − ν

1− p1
− µ− δ

p1
− δ

1− p1

]
≥ 1− δ

We can combine both inequalities with the union bound to obtain

P
S∼DdZ

[
|DDP(α)| ≤ µ+ (ν + 2δ) max

(
1

p1
,

1

1− p1

)]
≥ 1− 2δ

Using the union one last time to combine the fairness bound and the target criterion bound gives the theorem.


