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Abstract
Ordinal embedding refers to the following problem: all we know about an unknown set of points
x1, . . . , xn ∈ Rd are ordinal constraints of the form ‖xi−xj‖ < ‖xk−xl‖; the task is to construct
a realization y1, . . . , yn ∈ Rd that preserves these ordinal constraints. It has been conjectured since
the 1960ies that upon knowledge of all ordinal constraints a large but finite set of points can be
approximately reconstructed up to a similarity transformation. The main result of our paper is a
formal proof of this conjecture.
Keywords: non-metric multidimensional scaling, monotone mapping, isotonic mapping

1. Introduction

We consider the problem of ordinal embedding, also called ordinal scaling, non-metric multidimen-
sional scaling, monotonic embedding, or isotonic embedding. Consider a set x1, . . . , xn in some
metric space (X , dist), but assume that the distances between these points are unknown. All we get
to see are ordinal relationships, namely whether dist(xi, xj) < dist(xk, xl) or vice versa. The goal
of ordinal embedding is to construct y1, . . . , yn ∈ Rd such that all ordinal constraints are preserved
(throughout the paper, ‖ · ‖ denotes the Euclidean norm):

dist(xi, xj) < dist(xk, xl)⇒ ‖yi − yj‖ < ‖yk − yl‖.

The problem of ordinal embedding has first been studied in the psychometric community by
Shepard (1962a,b) and Kruskal (1964a,b), see also the monograph Borg and Groenen (2005). Lately
it has drawn quite some attention in the machine learning community (Quist and Yona, 2004; Ros-
ales and Fung, 2006; Agarwal et al., 2007; Shaw and Jebara, 2009; McFee and Lanckriet, 2009;
Jamieson and Nowak, 2011a; McFee and Lanckriet, 2011; Tamuz et al., 2011; Ailon, 2012), also
in its special case of ranking (Ouyang and Gray, 2008; McFee and Lanckriet, 2010; Jamieson and
Nowak, 2011b; Lan et al., 2012; Wauthier et al., 2013). Even though ordinal embedding dates
back to the 1960ies and is widely used in practice, surprisingly little is known about its theoreti-
cal properties. Particularly striking, one of the most elementary properties, namely the uniqueness
of ordinal embeddings, has never been established in a finite sample setting. It is widely believed
that, upon knowledge of all ordinal relationships, a point set x1, . . . , xn ∈ Rd can be approximately
reconstructed up to a similarity transformation if n is “large enough” (p. 294 of Shepard, 1966;
Section 2.2 of Borg and Groenen, 2005; Section 4.13.2 of Dattorro, 2005). Numerous simulation
experiments have been published as supporting evidence (Shepard, 1966; Young, 1970; Sherman,
1972). The main result of our paper is a formal proof that this uniqueness conjecture is indeed true:
Consider a sequence of points (xn)n∈N that are dense in some “nice” set K ⊆ Rd. Let yn1 , . . . , y
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be any ordinal embedding of x1, . . . , xn. Then, as n→∞, the set of embedded points always con-
verges to the set of original points, up to similarity transformations such as rotations, translations,
rescalings, or reflections. This even holds if we only know about “local ordinal relationships”, that
is distance comparisons between points in small subregions.

Our proofs are elementary in the sense that we do not apply any heavy mathematical machinery.
However, details are delicate and require a careful treatment.

2. Setup, definitions and notation

We start this section with the definition of the two central notions in our paper, ordinal embeddings
and isotonic functions. We will see below that these two notions are closely related.

Definition 1 (Ordinal embedding) Consider two sets Xn = {x1, . . . , xn} ⊆ Rd and Yn =
{y1, . . . , yn} ⊆ Rd. Yn is an ordinal embedding of Xn if for all 1 ≤ i, j, k, l ≤ n,

‖xi − xj‖ < ‖xk − xl‖ ⇒ ‖yi − yj‖ < ‖yk − yl‖. (1)

Yn is a weak ordinal embedding of Xn if (1) holds for all 1 ≤ i, j, k, l ≤ n with i = k. Yn is a
strong ordinal embedding of Xn if (1) holds for all 1 ≤ i, j, k, l ≤ n, and additionally ‖xi − xj‖ =
‖xk − xl‖ ⇒ ‖yi − yj‖ = ‖yk − yl‖ for all 1 ≤ i, j, k, l ≤ n.

Definition 2 (Isotonic functions) Let Ω ⊆ Rd and f : Ω → Rd be an arbitrary function. f is a
similarity if there is λ > 0 such that for all x, y ∈ Ω we have ‖f(x) − f(y)‖ = λ‖x − y‖. f is
isotonic or an isotony if for all x, y, z, w ∈ Ω,

‖x− y‖ < ‖z − w‖ ⇒ ‖f(x)− f(y)‖ < ‖f(z)− f(w)‖.

f is weakly isotonic if this property only holds for x, y, z, w ∈ Ω with x = z. f is strongly isotonic
if it is isotonic and additionally satisfies ‖x−y‖ = ‖z−w‖ ⇒ ‖f(x)−f(y)‖ = ‖f(z)−f(w)‖ for
all x, y, z, w ∈ Ω. We say that f is locally a similarity / (weakly / strongly) isotonic if for each point
x ∈ Ω there exists a neighborhood U(x) in Ω such that f |U(x) has the corresponding property. If
we want to emphasize that a function f : Ω → Rd has a property not only locally but on all of Ω,
we sometimes say that f is globally a similarity / (weakly / strongly) isotonic.

Let us mention some obvious but important observations. Similarities f : Rd → Rd are nothing
else than the well-known similarity transformations, given by f(x) = λOx+ b for some orthogonal
matrix O and an offset b ∈ Rd. For general Ω, they are simply given by the restrictions of similarity
transformations to Ω (see Lemma A in Appendix A). Obviously, we have

similarity⇒ strongly isotonic⇒ isotonic⇒ weakly isotonic,

but for general Ω none of the converses are true. Any weakly isotonic function is injective. If f
is a similarity or a strong isotony, so is f−1, but this does not necessarily hold for isotonies. A
composition of similarities / (weak / strong) isotonies is again a similarity / (weak / strong) isotony.

Obviously, y1, . . . , yn is a (weak / strong) ordinal embedding of x1, . . . , xn if and only if the
mapping f : {x1, . . . , xn} → {y1, . . . , yn} given by f(xi) = yi is (weakly / strongly) isotonic. The
uniqueness question for ordinal embedding can thus be formalized as follows: if f is a (weakly /
strongly) isotonic mapping between two finite point sets, can it be approximated by a similarity? It
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is well-known that any strongly isotonic function f : Rd → Rd defined on the full domain Rd is a
similarity transformation. One can see this by exploiting properties of sphere-preserving mappings
in Euclidean geometry (see McKemie and Väisälä (1999) and also the argumentation in Shepard,
1966), by an elegant argument related to positive definite functions (Schoenberg, 1938), and also by
the Beckman-Quarles theorem (Beckman and Quarles, 1953). The key question of this paper is in
what sense such a property already holds for functions defined on a finite set.

Let us conclude this section with some standard notation for the rest of the paper. For any subset
A ⊆ Rd we denote its linear hull by [A] = {∑n

i=1 λiai : n ∈ N, ai ∈ A, λi ∈ R} and its affine
hull by H(A) = {∑n

i=1 λiai : n ∈ N, ai ∈ A, λi ∈ R,
∑n

i=1 λi = 1}. For z ∈ Rd and r > 0 the
open ball with center z and radius r is Ur(z) = {x ∈ Rd : ‖x − z‖ < r} and the closed ball is
Ur(z) = {x ∈ Rd : ‖x − z‖ ≤ r}. For a vector-valued function f : X → Rd and j = 1, . . . , d
we write f j for the jth component of f . For two functions f : X1 → Rd and g : X2 → Rd

and an arbitrary subset X ⊆ X1 ∩ X2 we denote the supremum norm between f and g on X by
‖f − g‖∞(X) = supx∈X ‖f(x)− g(x)‖. At some points we will speak of a cross-polytope. By this
we mean the image T (C) of the d-dimensional standard cross-polytope C, which is given by the
convex hull of all permutations of (±1/0/0/ . . . /0) ∈ Rd, under some similarity transformation T .

3. Main results

In this section we present our main results. The proofs of the theorems are deferred to Sections 4
and 5. Our key question is to what extent an isotonic function f is uniquely determined, up to a
similarity transformation. Our first result concerns the infinite case. We show that if f is defined on
a dense subset of some “nice” set G and f is locally isotonic, then it is actually a similarity.

Theorem 3 (Isotonic on a dense set implies similarity) Let G ⊆ Rd be an open and connected
domain and Ω ⊆ G a dense subset. Let f : Ω→ Rd be a locally isotonic function. Then there exists
a unique extension of f to a similarity transformation F : Rd → Rd.

The next theorem deals with the finite case and is the main result of this paper. We consider
Xn = {x1, . . . , xn} ⊆ Rd and an isotonic mapping ϕn : Xn → ϕn(Xn) — hence ϕn(Xn) =
{ϕn(x1), . . . , ϕn(xn)} is an ordinal embedding of Xn. We prove that ϕn can be approximated by a
similarity transformation, up to arbitrary precision as n→∞.

Theorem 4 (Isotonic on a finite set implies approximate similarity)

1. Global Version: Let K = Ur(z) ⊆ Rd be a closed and bounded ball (for some arbitrary r > 0,
z ∈ Rd). Let (xn)n∈N be a sequence of points xn ∈ K such that {xn : n ∈ N} is dense inK. Let
0 < R < ∞ and (ϕn)n∈N be a sequence of isotonic functions ϕn : {x1, . . . , xn} → UR(0) ⊆
Rd. Then there exists a sequence (Sn)n∈N of similarity transformations Sn : Rd → Rd such that

‖Sn − ϕn‖∞({x1,...,xn}) → 0 as n→∞. (2)

2. Local Version: More generally, let K =
⋃k
i=1Ki ⊆ Rd be a finite union of closed and bounded

balls such that
⋃k
i=1K

◦
i is connected. Let (xn)n∈N be a sequence of points xn ∈ K such that
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{xn : n ∈ N} is dense in K. Let 0 < R < ∞ and (ϕn)n∈N be a sequence of functions
ϕn : {x1, . . . , xn} → UR(0) ⊆ Rd such that

∀i ∈ {1, . . . , k} : ϕn|{x1,...,xn}∩Ki
is isotonic.

Then there exists a sequence (Sn)n∈N of similarity transformations Sn : Rd → Rd with (2).

Our proofs show that we can replace the set K in Part 1 of Theorem 4 by a cross-polytope or
any convex set “between a cross-polytope and a ball”. Consequently, we can replace K in Part 2 by
any finite union of such sets if we additionally assume that all these sets satisfy Ki ⊆ K◦i . Note that
the assumption that all functions ϕn map to the same bounded ball UR(0) is necessary. Otherwise
we could blow up the configuration of the image points by a larger and larger constant and prevent
the approximation error ‖Sn − ϕn‖∞ from converging.

4. Proof of Theorem 3 (the infinite case)

The proof of Theorem 3 consists of a number of steps, which we formulate as separate lemmas.

Lemma 5 (Isotonic implies continuous) Let Ω ⊆ Rd and f : Ω → Rd be a locally isotonic func-
tion. Then f is continuous. If we additionally assume Ω to be a set with at least one limit point
which is contained in it and f to be globally isotonic, then f is even uniformly continuous.

Proof (sketch) Since continuity is a local property, it suffices to show that for any point x ∈ Ω
there is a neigborhood U(x) in Ω such that f |U(x) is continuous. Hence, w.l.o.g. we may assume f
to be globally isotonic. The key observation is that if f was discontinuous at one point, the distance
between different points in f(Ω) would be bounded from below by a positive constant. In case that
Ω is uncountable, this immediately contradicts the separability of Rd. In general, a compactness
argument leads to the desired contradiction. In case Ω has a limit point which is contained in it,
denote one such point by x0 and let ε > 0 be arbitrary. We already know that f is continuous, and
hence there exists δ > 0 such that ‖f(x)−f(x0)‖ < ε for all x ∈ Ω with ‖x−x0‖ < δ. Let x′ ∈ Ω
with 0 < ‖x′ − x0‖ = δ′ < δ (since x0 is a limit point, there is such a point x′). For all x, y ∈ Ω
with ‖x−y‖ < δ′ we have ‖x−y‖ < ‖x′−x0‖ and hence ‖f(x)−f(y)‖ < ‖f(x′)−f(x0)‖ < ε.

The next lemma shows that if Ω ⊆ Rd is a ball and f : Ω → Rd is weakly isotonic, then it is
even strongly isotonic, at least on a slightly smaller ball.

Lemma 6 (Weakly isotonic implies strongly isotonic on balls) Let Ω = Uε(z) ⊆ Rd and f :
Ω→ Rd be weakly isotonic. Then f |Uε/4(z) is strongly isotonic.

Proof (sketch) In order to prove that f |Uε/4(z) is isotonic, we have to show that ‖f(x) − f(y)‖ <
‖f(v) − f(w)‖ for all x, y, v, w ∈ Uε/4(z) with ‖x − y‖ < ‖v − w‖. The idea is to use in-
termediate points u1, . . . , un ∈ Ω such that ‖x − y‖ < ‖y − u1‖ < ‖u1 − u2‖ < . . . <
‖un−1 − un‖ < ‖un − v‖ < ‖v − w‖. Since f is assumed to be weakly isotonic, it follows
that ‖f(x) − f(y)‖ < ‖f(y) − f(u1)‖ < ‖f(u1) − f(u2)‖ < . . . < ‖f(un−1) − f(un)‖ <
‖f(un) − f(v)‖ < ‖f(v) − f(w)‖. Using continuity we can show that f |Uε/4(z) is even strongly
isotonic.
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The following proposition already shows that for functions defined on all points of an open and
connected domain, all the properties we defined in Definition 2 are equivalent. The key ingredient
in the proof is that the midpoint of a line segment between two points in Ω is mapped by an isotony
to the midpoint of the line segment between the corresponding image points.

Proposition 7 (Weakly isotonic implies similarity) Let Ω ⊆ Rd be an open and connected do-
main and f : Ω→ Rd be a locally weakly isotonic function. Then f is globally a similarity.

Proof (details can be found in Appendix B) First we consider a globally strongly isotonic function
f : Ω = Ur(z) → Rd. This allows us to define a function µ : [0,diam Ω] → [0,diam f(Ω)] by
µ(‖x − y‖) = ‖f(x) − f(y)‖ for all x, y ∈ Ω. In order to show that f is a similarity, we have
to show that µ is linear. By showing that the midpoint of a line segment between two points in
Ω is mapped by f to the midpoint of the line segment between the corresponding image points,
we iteratively obtain µ( j

2i
diam Ω) = j

2i
diam f(Ω), i ∈ N, j ∈ {0, . . . , 2i} (see Appendix B for

details). By Lemma 5, f is continuous and so is µ, implying that µ(t) = t · (diam f(Ω)/ diam Ω).
Now assume that Ω is open and connected and f : Ω→ Rd is a locally weakly isotonic function.

By Lemma 6, f is locally strongly isotonic. Hence, given x ∈ Ω we can choose ε(x) > 0 such that
Uε(x)(x) ⊆ Ω and that f |

Uε(x)(x)
: Uε(x)(x)→ Rd is globally strongly isotonic. It follows from the

above that f |
Uε(x)(x)

is a similarity and hence f : Ω→ Rd is locally a similarity. By Lemma B (see
Appendix A), f is even globally a similarity.

Finally, a continuous extension of an isotonic mapping is isotonic too. The proof is elementary.

Lemma 8 (Continuous extension inherits isotony) Let Ω ⊆ Rd such that K = Ω is convex. Let
f : Ω→ Rd be isotonic and F : K → Rd be a continuous extension of f . Then F is isotonic.

Now, we have collected all ingredients to prove Theorem 3.

Proof of Theorem 3 (sketch) In case that f is globally isotonic and Ω = G is convex, we consider
the unique continuous extension F̃ of f to Ω. This is possible since f is uniformly continuous by
Lemma 5. By Lemma 8, F̃ is isotonic. According to Proposition 7, F̃ |G is even a similarity. By
Lemma A (see Appendix A), F̃ |G can be uniquely extended to a similarity F : Rd → Rd. For
the general case we restrict f to several intersections of Ω and small balls. Considering one such a
restriction, we are in the situation of the previous case and obtain a unique extension. We can show
that all these extensions have to coincide similarly to the proof of Lemma B from Appendix A.

5. Proof of Theorem 4 (the finite case)

Case d = 1. The case d = 1 is particularly simple: it is easy to see that any weakly isotonic
function f : Ω → R (with Ω ⊆ R) is either strictly increasing or decreasing. The following lemma
is the main step of the proof in the one-dimensional case. It considers points that approximate a
grid, and proves that this property remains intact after an isotonic mapping. See Figure 1 for an
illustration.

Lemma 9 (Isotonic maps approximately preserve a grid) Let N ∈ N. For some ε1 < 1/22N+1

set εk = ε12k−1, 2 ≤ k ≤ N , and δ = ε1/2. For k ∈ {1, . . . , N} and i ∈ {1, 3, . . . , 2k − 1} set
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Figure 1: The idea of Lemma 9 is to place points in small intervals close to the grid points i/2N (ylk,i on
the left side, yrk,i on the right side) in such a way that the ordinal constraints between all these points are
sufficient to determine the grid cells they belong to, independent of their exact location within the intervals.

xk,i = i/2k and let ylk,i, y
r
k,i be arbitrary elements of (xk,i−εk−δ, xk,i−εk) and (xk,i+εk, xk,i+

εk + δ), respectively. Let ϕ : {0, 1} ∪ {ymk,i : m ∈ {l, r}, k ≤ N, i ∈ {1, 3, . . . , 2k − 1}} → [0, 1]
be a weakly isotonic function with ϕ(0) = 0 and ϕ(1) = 1. Then it holds that

∣∣ymk,i − ϕ(ymk,i)
∣∣ < 1

2N
, m ∈ {l, r}, k ≤ N, i ∈ {1, 3, . . . , 2k − 1}. (3)

Proof (details can be found in Appendix B) By induction over N we prove

ϕ(ylk,i) ∈
(

2N−ki− 1

2N
,
2N−ki

2N

)
, ϕ(yrk,i) ∈

(
2N−ki

2N
,
2N−ki+ 1

2N

)
,

for all k ≤ N , i ∈ {1, 3, . . . , 2k − 1}, which immediately implies (3). The basis is clear (see
Figure 1(a)): Due to ϕ(0) = 0 and ϕ(1) = 1, ϕ is strictly increasing and hence 0 = ϕ(0) <
ϕ(yl1,1) < ϕ(yr1,1) < ϕ(1) = 1. Since |yl1,1 − 0| < |yl1,1 − 1| and ϕ is weakly isotonic, we
have |ϕ(yl1,1) − ϕ(0)| < |ϕ(yl1,1) − ϕ(1)| and thus can conclude that ϕ(yl1,1) ∈ (0, 1/2). In the
same way we obtain ϕ(yr1,1) ∈ (1/2, 1). We demonstrate the inductive step by proving that the
statement also holds for N = 2 (see Figure 1(b)): We already know that ϕ(yl1,1) ∈ (0, 1/2) and
ϕ(yr1,1) ∈ (1/2, 1). Furthermore, due to ϕ being strictly increasing, we have 0 < ϕ(yl2,1) <

ϕ(yr2,1) < ϕ(yl1,1) < ϕ(yr1,1) < ϕ(yl2,3) < ϕ(yr2,3) < 1. The choice of (εk)1≤k≤N and δ guar-
antees that |yl2,1 − 0| < |yl2,1 − yl1,1| and |yr2,1 − yr1,1| < |yr2,1 − 0| leading to |ϕ(yl2,1) − 0| <
|ϕ(yl2,1)− ϕ(yl1,1)| and |ϕ(yr2,1)− ϕ(yr1,1)| < |ϕ(yr2,1)− 0|. This yields 2ϕ(yl2,1) < ϕ(yl1,1) < 1/2

and 1/2 < ϕ(yr1,1) < 2ϕ(yr2,1) and thus ϕ(yl2,1) ∈ (0, 1/4) and ϕ(yr2,1), ϕ(yl1,1) ∈ (1/4, 1/2). In
the same way we can show that ϕ(yr2,3) ∈ (3/4, 1) and ϕ(yl2,3), ϕ(yr1,1) ∈ (1/2, 3/4).

Now it is straightforward to prove Theorem 4 for the case d = 1 (Proposition 10 implies Part 1
of Theorem 4; the proof of Part 2 is the same as for the case d ≥ 2, which follows later on).

Proposition 10 (Statement for d = 1) Let I = [a, b] (for some −∞ < a < b < ∞) and let
(xn)n∈N be a sequence of points xn ∈ I such that {xn : n ∈ N} is dense in I . Let 0 < R < ∞
and (ϕn)n∈N be a sequence of weakly isotonic functions ϕn : {x1, . . . , xn} → [−R,R]. Then there
exists a sequence (Sn)n∈N of similarity transformations Sn : R→ R with (2).

Proof (sketch) By appropriately rescaling the domain and the image of ϕn we may assume that
I = [0, 1] and that ϕn maps to [0, 1] with ϕn(0) = 0, ϕn(1) = 1. We use Lemma 9 in order
to show that ϕn for large values of n can be approximated by the identity: Choose N ∈ N such
that 1/2N is sufficiently small. Since {xn : n ∈ N} is dense in I , there exists N0 ∈ N such
that in each of the intervals (xk,i − εk − δ, xk,i − εk) and (xk,i + εk, xk,i + εk + δ) as defined in
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Lemma 9 (for the chosen N ) there lies an element of {x1, . . . , xN0}. If n ≥ N0, y ∈ {x1, . . . , xn},
and y is one of these elements, we immediately obtain |y − ϕn(y)| < 1/2N according to (3). If
y is not one of these elements, we can use the monotonicity of ϕn to infer that |y−ϕn(y)| is small.

Case d ≥ 2. The case d ≥ 2 is harder to deal with. Our basic idea is to show that an
isotonic mapping ϕn : {x1, . . . , xn} → Rd, up to some rescaling, is an ε(n)-nearisometry, that is
ϕn satisfies

‖x− y‖ − ε(n) ≤ ‖ϕn(x)− ϕn(y)‖ ≤ ‖x− y‖+ ε(n), x, y ∈ {x1, . . . , xn}. (4)

Then, by a theorem of Alestalo et al. (2001), ϕn can be approximated by an isometry up to an error
depending (essentially) only on ε(n) and going to zero as ε(n)→ 0.

For proving that ϕn is an ε(n)-nearisometry we observe the following: since ϕn is isotonic, it
is sufficient to prove (4) only for some pairs x, y such that ‖x− y‖ is roughly uniformly distributed
in [0,diam{x1, . . . , xn}]. Hence, we would like to consider points close to a straight line and argue
in a way similar to Lemma 9 that their relative positions along the line are almost preserved by an
isotonic mapping. Yet the problem is that, in general, there is no guarantee that the points are still
close to a straight line after applying an isotony. However, assuming that there are points located
close to the vertices of a cross-polytope and that these are “fixed” points (this is Assumption (?) in
the following lemma), we can show that this is indeed the case and Lemma 9 can be generalized
in the following sense. Here we just provide a sketch of the lemma (see also Figure 2 for an
explanation). A detailed version can be found in Appendix C.

Lemma 11 (Under Assumption (?) isotonic mappings preserve an approximately straight line)
Let d ≥ 2. Let N ∈ N such that

ω = 24

(
Γ(d2 + 1)

π
d
2

) 1
d ( 1

2N − 1

) 1
d

<
1

2(d− 1)

be fixed. Let U+
s , U−s , Ũ+

s , Ũ−s , s = 1, . . . , d, and U jk,i, U
l
k,i, U

r
k,i, k ≤ N, i ∈ {1, 3, . . . , 2k −

1}, j ∈ {2, . . . , d}, be open balls with some certain properties (see Appendix C for details). Let
X+
s , X

−
s ∈ Rd, s = 1, . . . , d, be arbitrary elements of U+

s and U−s , respectively, zjk,i ∈ Rd be an

arbitrary element of U jk,i, and ylk,i, y
r
k,i ∈ Rd be arbitrary elements of U lk,i and U rk,i, respectively.

Let ϕ : {X+
1 , X

−
1 , . . . , X

+
d , X

−
d } ∪ {z

j
k,i : k ≤ N, i ∈ {1, 3, . . . , 2k − 1}, j ∈ {2, . . . , d}} ∪ {ymk,i :

m ∈ {l, r}, k ≤ N, i ∈ {1, 3, . . . , 2k − 1}} → Rd be an isotonic function and assume that

ϕ(X+
s ) ∈ Ũ+

s , ϕ(X−s ) ∈ Ũ−s , s = 1, . . . , d. (?)

Set γ(−1) = γ(1) = α̃1 and γ(0) = α̃1 + d−1
2 (ω + ρ) (where α̃1 is the radius of the balls Ũ+

1 , Ũ
−
1

and ρ a small number depending on size and location of the balls Ũ+
s , Ũ

−
s , s = 2, . . . , d), and define

for 2 ≤ k ≤ N and i ∈ {1, 3, . . . , 2k − 1} the positive expression γ(−1 + i/2k−1) recursively by

γ

(
−1 +

i

2k−1

)
=

1

2

(
γ

(
−1 +

i− 1

2k−1

)
+ γ

(
−1 +

i+ 1

2k−1

)
+ (d− 1)(ω + 2ρ)

)
.

7
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Figure 2: Explanation of Lemma 11 (for d = 2) We consider an isotonic map ϕ defined on the following
point set (see 2(a)): (i) X+

1 , X
−
1 , X

+
2 , X

−
2 are located in small balls around the vertices of a cross-polytope

and assumed to be “fixed” under ϕ (this is Assumption (?)). (ii) The points ylk,i, y
r
k,i approximate a grid as

in Lemma 9 on the line segment between X−
1 and X+

1 and are closer to X−
2 than to X+

2 . (iii) The points
z2k,i are close to the points ylk,i and yrk,i but are closer to X+

2 than to X−
2 . Since ϕ is isotonic, the points

ϕ(ylk,i), ϕ(yrk,i) are closer to ϕ(X−
2 ) than to ϕ(X+

2 ) and hence ϕ2(ylk,i), ϕ
2(yrk,i) < ρ whereas for the points

ϕ(z2k,i) it is the other way round such that ϕ2(z2k,i) > −ρ (see 2(b)). However, ymk,i (m ∈ {l, r}) and z2k,i are
close to each other and so are ϕ(ymk,i) and ϕ(z2k,i). We can conclude that all points ϕ(ymk,i) are close to the
first coordinate axis. This allows us to estimate the location of ϕ(ymk,i) along similar lines as in Lemma 9.

Let N∗ < N such that N∗ · 2N∗ < 1
5(d+1)(ω+ρ+α̃1) . Then we have

∥∥ymk,i − ϕ
(
ymk,i
)∥∥ < γ(xk,i) + ω + (d− 1)(ω + ρ) < 3d

√
ω, m ∈ {l, r}, (5)

where xk,i = −1 + i
2k−1 , for all 1 ≤ k ≤ N∗ and i ∈ {1, 3, . . . , 2k − 1}.

Proof (sketch) We prove that for all 1 ≤ k ≤ N∗ and i ∈ {1, 3, . . . , 2k − 1},

ϕ(ylk,i) ∈ (xk,i − γ(xk,i)− ω, xk,i + γ(xk,i))× (−ρ− ω, ρ)d−1 ,

ϕ(yrk,i) ∈ (xk,i − γ(xk,i), xk,i + γ(xk,i) + ω)× (−ρ− ω, ρ)d−1 .
(6)

It is elementary to show that γ(xk,i) <
1
2(d − 1)

√
3ω, k ≤ N∗, and because of ylk,i ∈ (xk,i −

ω, xk,i)× (−ω, 0)d−1, yrk,i ∈ (xk,i, xk,i + ω)× (−ω, 0)d−1 this immediately yields (5).

All points ylk,i, y
r
k,i, z

j
k,i lie in the convex hull of the points X+

1 , X
−
1 , . . . , X

+
d , X

−
d . Since ϕ is

isotonic and satisfies Assumption (?), one can roughly estimate that

ϕ(ylk,i), ϕ(yrk,i), ϕ(zjk,i) ∈ [−3, 3]d. (7)

The idea for proving ϕj(ylk,i), ϕ
j(yrk,i) ∈ (−ρ − ω, ρ), j ∈ {2, . . . , d}, is the following: Let j be

fixed. Form ∈ {l, r}, k ∈ {1, . . . , N}, i ∈ {1, 3, . . . , 2k−1} we have ‖ymk,i−X−j ‖ < ‖ymk,i−X+
j ‖

and ‖zjk,i − X+
j ‖ < ‖z

j
k,i − X−j ‖. Since ϕ is isotonic, it follows that ‖ϕ(ymk,i) − ϕ(X−j )‖ <

‖ϕ(ymk,i) − ϕ(X+
j )‖ and ‖ϕ(zjk,i) − ϕ(X+

j )‖ < ‖ϕ(zjk,i) − ϕ(X−j )‖. Because of (?) and (7), we

can conclude that ϕj(ymk,i) < ρ and ϕj(zjk,i) > −ρ (see Figure 2(b)). The distance between any

8



UNIQUENESS OF ORDINAL EMBEDDING

two points zjk1,i1 , z
j
k2,i2

is larger than the distance between any two points zjk,i, y
l
k,i (or zjk,i, y

r
k,i,

respectively), that is for m ∈ {l, r}, k ∈ {1, . . . , N}, i ∈ {1, 3, . . . , 2k − 1} it holds that

‖zjk,i − ymk,i‖ < min
{
‖u− v‖ : u 6= v ∈

{
zj
k̃,̃i

: k̃ ≤ N, ĩ ∈
{

1, 3, . . . , 2k̃ − 1
}}}

. (8)

Letm ∈ {l, r}, k0 ≤ N , i0 ∈ {1, 3, . . . , 2k0−1} be arbitrary and write r = ‖ϕ(zjk0,i0)−ϕ(ymk0,i0)‖.
Due to (8) and ϕ being isotonic, all points ϕ(zjk,i) are located at distance larger than r to each other
which implies that the intersection of two balls (whether open or closed) with radius r/2 and centers
ϕ(zjk1,i1) and ϕ(zjk2,i2), respectively, is empty. Recall (7). Due to (?) and, again, ϕ being isotonic,

we clearly have r ≤ 3. Hence, with each point ϕ(zjk,i) at least a fraction of 1/2d of the volume of

the ball Ur/2(ϕ(zjk,i)) is contained in [−3, 3]d too. We can infer that

(2N − 1)
1

2d
π

d
2

Γ(d2 + 1)

(r
2

)d
≤ 6d,

or equivalently r ≤ ω. Hence, we have |ϕj(zjk0,i0)−ϕj(ymk0,i0)| ≤ ‖ϕ(zjk0,i0)−ϕ(ymk0,i0)‖ ≤ ω and
finally obtain ϕj(ylk0,i0), ϕj(yrk0,i0) ∈ (−ρ− ω, ρ). Similar to (8), we also have

‖ylk,i − yrk,i‖ < min
{
‖u− v‖ : u 6= v ∈

{
zj
k̃,̃i

: k̃ ≤ N, ĩ ∈
{

1, 3, . . . , 2k̃ − 1
}}}

,

and with the same argument as above obtain |ϕ1(ylk,i)−ϕ1(yrk,i)| ≤ ω, k ≤ N , i ∈ {1, 3, . . . , 2k −
1}. Now, (6) can be shown by induction over k.

The following lemma shows that the Assumption (?), which says that points close to the vertices
of a cross-polytope are mapped approximately to themselves, can be taken as satisfied if the isotonic
function acts on sufficiently many points. See Figure 3 for an explanation. Again, here we just
provide a sketch of the lemma and the detailed version is in Appendix C.

Lemma 12 (Assumption (?) can be taken as satisfied) Let d ≥ 2. Let N ′ ∈ N such that

ω′ = 32

(
Γ(d2 + 1)

π
d
2

) 1
d 1

d
√
N ′

is sufficiently small and r < 1 and µ, δ, ε > 0 be appropriately chosen real numbers (see Appendix
C for details). Define points A,B ∈ Rd and Z−s , Z

+
s ∈ Rd, s ∈ {2, . . . , d}, by

A = (−1/0/ . . . /0), B = (1/0/ . . . /0), Z−2 = (0/− r/0/0/ . . .) ,
Z+

2 = (0/r/0/0/ . . .) , Z−3 = (0/0/− r/0/ . . .) , Z+
3 = (0/0/r/0/ . . .) , and so forth.

For s ∈ {2, . . . , d} and v ∈ {−1, 1}d setE−s,v = Z−s +µv,E+
s,v = Z+

s +µv and let e−s,v, e
+
s,v ∈ Rd be

arbitrary elements of Uε(E−s,v) and Uε(E+
s,v), respectively. For i ∈ {1, . . . , 2N ′− 1} let xi ∈ Rd be

an arbitrary element of Uδ((−1+ i
N ′ /0/ . . . /0)). Let ϕ : {A,B}∪{e−s,v, e+

s,v : s ∈ {2, . . . , d}, v ∈

9
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Figure 3: Explanation of Lemma 12 We
consider an isotonic mapping ϕ defined on
the following point set: (i) A and B are op-
posite vertices of a cross-polytope. (ii) The
points e−s,v, e

+
s,v are located in small balls

around the vertices of hypercubes placed
around the remaining vertices of the cross-
polytope. (iii) Numerous points xi are
located in small balls which are placed
equidistantly between A and B. This yields
ordinal constraints sufficient to show that all
points e−s,v, e

+
s,v are “fixed” under ϕ up to

some similarity transformation. The figure
shows the setting of Lemma 12 for d = 3.

{−1, 1}d} ∪ {xi : i = 1, . . . , 2N ′ − 1} → Rd be an isotonic function with ‖ϕ(A) − ϕ(B)‖ = 2.
Then there exist a constant C (depending only on d) and an isometry S : Rd → Rd such that

‖A− S(ϕ(A))‖ ≤ C
√
A(ω′), ‖B − S(ϕ(B))‖ ≤ C

√
A(ω′),

‖Zms − S(ϕ(ems,v))‖ ≤ C
√
A(ω′), m ∈ {−,+}, s ∈ {2, . . . , d},

where v = (1/1/1/ . . . /1) andA(ω′) only depends on ω′ and d and satisfiesA(ω′)→ 0 as ω′ → 0.

Proof (sketch) With an argument similar to the one subsequent to (8) in the proof of Lemma 11
we can show that all points p1, p2 in the domain of ϕ and with ‖p1 − p2‖ < ‖A− x1‖ must satisfy
‖ϕ(p1)−ϕ(p2)‖ < ω′/2. The parameters µ, δ and ε are chosen in such a way that ‖ems,v1−ems,v2‖ <
‖A − x1‖ for any m ∈ {−,+}, s ∈ {2, . . . , d} and for all v1, v2 ∈ {−1, 1}d. Using this and the
assumption of ϕ being isotonic, we can show that

2− ω′ < ‖p+
s − p−s ‖ ≤ 2, s = 1, . . . , d,

‖p+
s − p−s′‖ − ω′ < ‖p+

s − p+
s′‖ < ‖p+

s − p−s′‖+ ω′, s 6= s′ ∈ {1, . . . , d},
‖p−s − p−s′‖ − ω′ < ‖p−s − p+

s′‖ < ‖p−s − p−s′‖+ ω′, s 6= s′ ∈ {1, . . . , d},
(9)

where p+
1 = ϕ(B), p−1 = ϕ(A) and p+

s = ϕ(e+
s,v), p−s = ϕ(e−s,v) for s = 2, . . . , d. For example,

let us prove ‖p−1 − p−2 ‖ − ω′ < ‖p−1 − p+
2 ‖ < ‖p−1 − p−2 ‖+ ω′: Elementary calculations show that

‖A− e−2,v‖ < ‖A− e+
2,v‖ and ‖A− e+

2,vc‖ < ‖A− e−2,vc‖ with vc = (−1/− 1/− 1/ . . . /− 1). We
infer ‖p−1 − p−2 ‖ < ‖p−1 − p+

2 ‖ and ‖p−1 − ϕ(e+
2,vc)‖ < ‖p−1 − ϕ(e−2,vc)‖ and thus obtain

‖p−1 − p+
2 ‖ ≤ ‖p−1 − ϕ(e+

2,vc)‖+ ‖ϕ(e+
2,vc)− p+

2 ‖ < ‖p−1 − ϕ(e−2,vc)‖+ ‖ϕ(e+
2,vc)− p+

2 ‖
≤ ‖p−1 − p−2 ‖+ ‖p−2 − ϕ(e−2,vc)‖+ ‖ϕ(e+

2,vc)− p+
2 ‖ < ‖p−1 − p−2 ‖+ ω′.

From (9) we can infer that

|〈p+
s − p−s , p+

s′ − p−s′〉| < 10ω′, s 6= s′ ∈ {1, . . . , d}. (10)

10



UNIQUENESS OF ORDINAL EMBEDDING

Furthermore, we can show that ‖(p+
s + p−s )− (p+

s′ + p−s′)‖, s 6= s′ ∈ {1, . . . , d}, is small (provided
ω′ is small), that is

‖(p+
s + p−s )− (p+

s′ + p−s′)‖2 ≤ d
(

20ω′ + 810dω′
4d−1 (4d)d−1

2− ω′ − 10dω′
4d−1 (4d)d−1

)2

, s 6= s′ ∈ {1, . . . , d}. (11)

This is done by first applying the Gram-Schmidt process to the vectors (p+
s − p−s ), s = 1, . . . , d.

By doing so we obtain an orthonormal basis of Rd whose elements (appropriately rescaled) differ
from the vectors (p+

s − p−s ) only up to some small error (depending on ω′). Considering the Fourier
coefficients of (p+

s + p−s )− (p+
s′ + p−s′) with respect to this orthonormal basis then leads to (11) .

Now, setting Z−1 = A, Z+
1 = B, we consider the mapping f : {Z−1 , Z+

1 , . . . , Z
−
d , Z

+
d } →

{p−1 , p+
1 , . . . , p

−
d , p

+
d } given by f(Zms ) = pms for m ∈ {−,+}, s ∈ {1, . . . , d}. Using (10) and (11)

it is straightforward to show that f is a 2
√
A(ω′)-nearisometry, that is it holds that

‖x− y‖ − 2
√
A(ω′) ≤ ‖f(x)− f(y)‖ ≤ ‖x− y‖+ 2

√
A(ω′), x, y ∈ {Z−1 , Z+

1 , . . . , Z
−
d , Z

+
d }.

According to Alestalo et al. (2001), Theorem 3.3, there exists a constant C ′ (depending only on d
— can be chosen independently of the parameters r, µ, δ, ε) and an isometry T : Rd → Rd such that
‖T (x) − f(x)‖ ≤ 2C ′

√
A(ω′), x ∈ {Z−1 , Z+

1 , . . . , Z
−
d , Z

+
d }. Setting S = T−1 and C = 2C ′ the

statement of Lemma 12 follows immediately.

Now we can prove Theorem 4 for d ≥ 2.

Proof of Part 1 of Theorem 4 (sketch) By Lemma C (see Appendix A) it is sufficient to prove
that for every ε0 > 0 there exists N(ε0) ∈ N such that for all n ≥ N(ε0) there is a similarity
transformation S(n, ε0) : Rd → Rd with ‖ϕn − S(n, ε0)‖∞({x1,...,xn}) < ε0.

In a nutshell, the basic idea is the following: Assume K is a ball with diameter only slightly
larger than two and containing all the balls of Lemma 11. If n ∈ N is sufficiently large, in each of
these balls there is an element of {x1, . . . , xn}. Assume for the moment that ϕn satisfies Assump-
tion (?) of Lemma 11. Then from (5) we obtain an estimate for the expression ‖ϕn(x) − ϕn(y)‖
for roughly uniformly distributed values of ‖x− y‖ in [0, 2] ≈ [0,diam{x1, . . . , xn}]. Since ϕn is
isotonic, this gives an estimate for ‖ϕn(x)− ϕn(y)‖ for all x, y ∈ {x1, . . . , xn} which is sufficient
to show that ϕn is an ε-nearisometry for some small ε. Hence, we can uniformly approximate ϕn
by an isometry according to Alestalo et al. (2001). It remains to be argued why Assumption (?) of
Lemma 11 indeed can be taken as satisfied. However, this is the statement of Lemma 12.

A bit more precisely, the main steps of the proof can be summarized as follows:

1. Since {xn : n ∈ N} is dense in K, we can choose N0 ∈ N so large that there are points
xA, xB ∈ {x1, . . . , xN0} and a similarity transform T : Rd → Rd with the following properties:

• T (xA) = (−1/0/0/ . . . /0), T (xB) = (1/0/0/ . . . /0)

• U1(0) ⊆ T (K), diamT (K) is “sufficiently small”

• ∀y ∈ T (K) : Ur0(y) ∩ {T (x1), . . . , T (xN0)} 6= ∅ where r0 > 0 is smaller than the minimal
radius of the finitely many open balls considered in Step 3 and smaller than δ0 from Step 6.

In the following, we consider ϕn for a fixed n ≥ N0.

11
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2. Let U : Rd → Rd be a similarity transformation with ‖U(ϕn(xA)) − U(ϕn(xB))‖ = 2. For its
scale factor λ(U) we have

λ(U) =
‖U(ϕn(xA))− U(ϕn(xB))‖
‖ϕn(xA)− ϕn(xB)‖ ≥ 2

2R
=

1

R
. (12)

3. (a) We choose N ∈ N such that ω = ω(N) as in Lemma 11 is “sufficiently small” and N∗

from Lemma 11 can be chosen “sufficiently large”. We choose all parameters of Lemma 11
(see the detailed version in Appendix C) except the vectors r, r̃ appropriately — assuming
that we will choose r, r̃ with r = r̃ ≥ 1/2 (in every component) afterwards.

(b) We choose N ′ ∈ N such that ω′ = ω′(N ′) as in Lemma 12 satisfies C
√
A(ω′) < α̃i,

i = 1, . . . , d (with α̃i from (a)). We choose all parameters of Lemma 12 (see the detailed
version in Appendix C) appropriately and such that

• Uε(E−s,v) ⊆ Uαs(Z
−
s ), Uε(E

+
s,v) ⊆ Uαs(Z

+
s ) (with αs from (a)), s ∈ {2, . . . , d},

• all corresponding balls are contained in U1(0).

(c) Denoting the parameter r from (b) by r′, we use r′ to define r from Lemma 11 as r =
(1/r′/r′/ . . . /r′) and set r̃ = r. Hence, we have chosen all parameters of Lemma 11.

4. We consider the map U ◦ ϕn ◦ T−1 : {T (x1), . . . , T (xn)} → Rd. According to Step 1, in every
open ball of Lemma 12 there is an element of {T (x1), . . . , T (xn)}. We denote these elements
as in Lemma 12 (A = T (xA), B = T (xB)). According to Lemma 12 there exists an isometry
S : Rd → Rd such that

‖A− S(U ◦ ϕn ◦ T−1(A))‖ ≤ C
√
A(ω′) < α̃1, ‖B − S(U ◦ ϕn ◦ T−1(B))‖ < α̃1,

‖Zms − S(U ◦ ϕn ◦ T−1(ems,v))‖ ≤ C
√
A(ω′) < α̃s, m ∈ {−,+}, s ∈ {2, . . . , d}.

5. We consider the map S ◦ U ◦ ϕn ◦ T−1 : {T (x1), . . . , T (xn)} → Rd. According to Step 1,
in every open ball of Lemma 11 there is an element of {T (x1), . . . , T (xn)}. We denote these
elements as in Lemma 11 (X−1 = A = T (xA), X+

1 = B = T (xB), Xm
s = ems,v). According to

Step 4, Assumption (?) of Lemma 11 is satisfied. Hence, we have

‖ymk,i − S ◦ U ◦ ϕn ◦ T−1(ymk,i)‖ < 3d
√
ω, m ∈ {l, r}, k ≤ N∗, i ∈ {1, 3, . . . , 2k − 1},

where ω = ω(N) from Step 3(a).

6. We show that f = S ◦U ◦ϕn ◦ T−1 is an ε-nearisometry for some small ε (depending on ω and
1/2N

∗
), that is f satisfies

‖x− y‖ − ε ≤ ‖f(x)− f(y)‖ ≤ ‖x− y‖+ ε, x, y ∈ {T (x1), . . . , T (xn)}. (13)

For elements x, y with ‖x− y‖ ≤ (2N
∗ − 2)/2N

∗−1 it is straightforward to show the inequality
(13) by approximating ‖x− y‖ by ‖x̃− ỹ‖ with elements x̃, ỹ ∈ {ymk,i : m ∈ {l, r}, k ≤ N∗, i ∈
{1, 3, . . . , 2k − 1}} and using that f is isotonic.

For elements x, y with (2N
∗ − 2)/2N

∗−1 < ‖x− y‖ ≤ diamT (K) we approximate ‖x− y‖ =
‖x−x′‖+‖x′−y′‖+‖y′−y‖ by ‖x−xa‖+‖xa−ya‖+‖ya−y‖where each summand is smaller

12
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than (2N
∗ − 2)/2N

∗−1 by approximating x′ = x+ 1
3(y−x), y′ = x+ 2

3(y−x) by elements xa ∈
Uδ0(x′), ya ∈ Uδ0(y′) (for some “sufficiently small” δ0) with xa, ya ∈ {T (x1), . . . , T (xn)}.
Since K is assumed to be convex, so is T (K) and hence x′, y′ ∈ T (K). According to Step 1
there exist such elements xa, ya. Using that diamT (K) is small (see Step 1), then it is easy to
show that ‖x− y‖ − ε ≤ ‖f(x)− f(y)‖ ≤ ‖x− y‖+ ε.

7. According to Alestalo et al. (2001) (Theorem 2.2 or Theorem 3.3) there exists an isometry S′ :
Rd → Rd such that S′ uniformly approximates S◦U◦ϕn◦T−1 up to some small error (depending
on ε). Since λ(U) is bounded from below by (12), U−1 ◦ S−1 ◦ S′ ◦ T is a good approximation
of ϕn.

Proof of Part 2 of Theorem 4 (details can be found in Appendix B) W.l.o.g. we may assume
that K = ∪ki=1Ki such that K◦i ∩ K◦i+1 6= ∅, i = 1, . . . , k − 1. For every i ∈ {1, . . . , k},
{xn : n ∈ N} ∩Ki is dense in Ki because of Ki ⊆ K◦i . Hence, there exists a sequence (Sin)n∈N of
similarity transformations such that ‖Sin − ϕn|{x1,...,xn}∩Ki

‖∞({x1,...,xn}∩Ki) → 0. We prove that

‖S1
n − ϕn|{x1,...,xn}∩(K1∪...∪Kj)‖∞({x1,...,xn}∩(K1∪...∪Kj)) → 0, j = 1, . . . , k,

by induction over j. The key observation for the inductive step is the following: If S1
n is a good

approximation to ϕn for points in K1 ∪ . . .∪Kj−1 and Sjn for points in Kj , the similarities S1
n and

Sjn differ only slightly for points in (K1 ∪ . . .∪Kj−1)∩Kj . Since K is bounded, S1
n(x) cannot be

too different from Sjn(x) for any point x ∈ K.

6. Discussion

The main result of our paper is to establish the uniqueness of ordinal embedding, upon knowledge
of all pairwise constraints in local regions. This result closes a long-standing gap in the literature on
ordinal embedding. However, there are a number of interesting and important follow-up questions
that are still open: (1) Our current Theorem 4 states the convergence of isotonic embeddings but
does not give any error rates. It would be desirable to have a statement such as “if the points have
been sampled from some nice probability density, then with high probability an embedding of n
points has error at most ε”. However, it seems difficult to get such a statement, our current proof
techniques are not powerful enough to obtain strong bounds. (2) It also seems plausible that ordinal
embedding is still possible in a noisy scenario where either the distance measurements are noisy
or some of the constraints ‖xi − xj‖ < ‖xk − xl‖ have been flipped. (3) In this paper we have
shown that already mere local ordinal information guarantees a unique embedding. However, it
seems quite reasonable that even fewer ordinal relationships might be sufficient for reconstructing a
given set of points (in a similar spirit as turning partial orders to total orders). We also do not know
whether it is sufficient in Theorem 4 to assume the functions ϕn to be only weakly isotonic (for
d ≥ 2 — compare with Proposition 10 for d = 1). So finally, what is the minimal amount of ordinal
information that is necessary for reconstructing a given set of points up to a given precision?
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Appendix A. Additional lemmas

Lemma A (Extending a similarity) Let Ω ⊆ Rd and f : Ω→ Rd be a similarity. Then there exists
an affine and surjective similarity F : Rd → Rd (that is F is a similarity transformation) such that
F (x) = f(x), x ∈ Ω. The function F is uniquely determined by f if and only ifH(Ω) = Rd.

Proof Let λ > 0 such that ‖f(x) − f(y)‖ = λ‖x − y‖, x, y ∈ Ω. We may assume that λ = 1
since otherwise we can set f̃ = (1/λ)f and F = λF̃ if F̃ is an extension of f̃ . In the following we
distinguish three cases:

• 0 ∈ Ω and f(0) = 0

This implies that ‖f(x)‖ = ‖x‖, x ∈ Ω, and because of

‖f(x)− f(x′)‖2 = ‖x− x′‖2

⇒ ‖f(x)‖2 − 2〈f(x), f(x′)〉+ ‖f(x′)‖2 = ‖x‖2 − 2〈x, x′〉+ ‖x′‖2,

we can conclude that 〈f(x), f(x′)〉 = 〈x, x′〉, x, x′ ∈ Ω.

Let x1, . . . , xn ∈ Ω form a basis of [Ω]. If x ∈ Ω and x =
∑n

i=1 cixi, then

∥∥∥∥∥f(x)−
n∑

i=1

cif(xi)

∥∥∥∥∥

2

= ‖f(x)‖2 − 2

〈
f(x),

n∑

i=1

cif(xi)

〉
+

∥∥∥∥∥
n∑

i=1

cif(xi)

∥∥∥∥∥

2

= ‖x‖2 − 2
n∑

i=1

ci 〈x, xi〉+
n∑

i=1

n∑

j=1

cicj〈xi, xj〉

=
n∑

i=1

n∑

j=1

cicj〈xi, xj〉 − 2
n∑

i=1

n∑

j=1

cicj〈xi, xj〉+
n∑

i=1

n∑

j=1

cicj〈xi, xj〉

= 0,

hence f(x) =
∑n

i=1 cif(xi). Thus, by setting

f ′(x̃) =
n∑

i=1

c̃if(xi) for x̃ =
n∑

i=1

c̃ixi ∈ [Ω]

we can define a linear map f ′ from [Ω] to Rd which coincides with f on Ω.

Obviously, f ′ is a linear isometry from [Ω] onto f ′([Ω]). If [Ω] 6= Rd, we can choose an orthonor-
mal basis of [Ω]⊥ and one of f ′([Ω])⊥. These comprise the same number of basis vectors since
[Ω] and f ′([Ω]) have the same dimension. Let f ′′ be a linear mapping from [Ω]⊥ to f ′([Ω])⊥

which maps the orthonormal basis of [Ω]⊥ onto the one of f ′([Ω])⊥. Then f ′′ is a linear isometry
from [Ω]⊥ onto f ′([Ω])⊥ and F = f ′ ⊕ f ′′ a linear isometry from Rd onto Rd.

Concerning the uniqueness: Clearly, if [Ω] 6= Rd, we can choose different orthonormal bases of
[Ω]⊥ and f ′([Ω])⊥, respectively — or different mappings between them. On the other hand, if
[Ω] = Rd, any linear extension of f to Rd is uniquely determined by f(x1), . . . , f(xn). Since
0 ∈ Ω, we haveH(Ω) = [Ω], and because of f(0) = 0, any affine extension of f is linear.
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• 0 ∈ Ω but f(0) 6= 0

Define f ′ : Ω → Rd by f ′(x) = f(x) − f(0), x ∈ Ω. We can apply the previous case to f ′

and obtain a linear and isometric extension F ′ of f ′. Setting F = F ′ + f(0) gives the desired
extension of f . Obviously, F is uniquely determined if and only if F ′ is uniquely determined. As
we have seen, this is the case if and only ifH(Ω) = Rd.

• 0 /∈ Ω (in fact, one could deal with the second case in the same way as with this case, and so one
could merge them into one case “0 /∈ Ω, or 0 ∈ Ω but f(0) 6= 0”)

Let x′ ∈ Ω be fixed. Set Ω′ = Ω−x′ and define f ′ : Ω′ → Rd by f ′(x−x′) = f(x)−f(x′), x ∈ Ω.
Then it holds that 0 ∈ Ω′, f ′(0) = 0 and f ′ is isometric on Ω′. Let F ′ be the linear and isometric
extension of f ′ to Rd according to the first case. Define F : Rd → Rd by F = F ′−F ′(x′)+f(x′).
Since

F (x) = F ′(x)− F ′(x′) + f(x′) = F ′(x− x′) + f(x′) = f ′(x− x′) + f(x′)

= f(x)− f(x′) + f(x′) = f(x)

for x ∈ Ω, this gives an affine, surjective and isometric extension of f to Rd. In order to prove the
assertion concerning uniqueness of F it suffices to note that H(Ω) = Rd if and only if [Ω′] = Rd

and that F is unique if and only if F ′ is unique.

Lemma B (Local similarity implies global similarity) Let Ω ⊆ Rd be an open and connected
domain and f : Ω→ Rd be locally a similarity. Then f is globally a similarity.

Proof For z ∈ Ω we can choose εz > 0 and λz > 0 such that Uεz(z) ⊆ Ω and

‖f(u)− f(v)‖ = λz‖u− v‖ ∀u, v ∈ Uεz(z)

since Ω is open and f is locally a similarity. Fix an arbitrary element x0 ∈ Ω and consider the
mapping f |Uεx0

(x0) : Uεx0 (x0) → Rd which is a similarity. By Lemma A there exists a unique

extension Fx0 : Rd → Rd which is a similarity. We will show that f = Fx0 |Ω.
Let y 6= x0 be an arbitrary element of Ω. It is well known that an open and connected subset

of Rd is path-connected, hence there exists a continuous path ϕ : [0, 1] → Ω with ϕ(0) = x0

and ϕ(1) = y. Its image ϕ([0, 1]) is compact. Hence, we can choose x1, . . . , xn ∈ ϕ([0, 1]) with
xn = y such that it is covered by the open balls Uεxi (xi), i = 0, . . . , n. W.l.o.g. we may assume
that

∀i = 1, . . . , n ∃wi ∈ ϕ([0, 1]) ⊆ Ω : wi ∈ Uεxi−1
(xi−1) ∩ Uεxi (xi).

We will prove by induction that f |Uεxi
(xi) = Fx0 |Uεxi

(xi) for i = 0, . . . , n. This implies f(y) =

Fx0(y), and since y ∈ Ω was chosen arbitrarily, we can conclude that f = Fx0 |Ω.

The basis (i = 0) is clear by construction of Fx0 . For the inductive step from i− 1 to i let ε > 0
such that

Uε(wi) ⊆ Uεxi−1
(xi−1) ∩ Uεxi (xi).
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Note that it immediately follows that λxi = λx0 . By Lemma A there exists a unique extension
of f |Uε(wi) to a similarity defined on Rd (which is obviously given by Fx0). There also exists
a unique extension of f |Uεxi

(xi). However, these extensions have to coincide and thus we have
f |Uεxi

(xi) = Fx0 |Uεxi
(xi).

Lemma C (A diagonal argument) Let X be an arbitrary set and (An)n∈N, An ⊆ X , be a se-
quence of subsets of X . Let (ϕn)n∈N be a sequence of functions ϕn : An → Rd. Assume that for
every ε > 0 there exists N(ε) ∈ N such that for all l ≥ N(ε) there is a function S(l, ε) : X → Rd

with

‖ϕl − S(l, ε)‖∞(Al) < ε.

Then there exists a sequence of functions (Sn)n∈N, Sn : X → Rd, with

‖ϕn − Sn‖∞(An) → 0 as n→∞,

where every Sn equals a function S(ln, εn).

Proof We can choose a strictly decreasing sequence of positive reals (εn)n∈N converging to zero
and a strictly increasing sequence of natural numbers (Nn)n∈N such that for every l ≥ Nn there is
a function S(l, εn) : X → Rd with ‖ϕl − S(l, εn)‖∞(Al) < εn. Let ε0 > 0 and l0 ≥ N(ε0) be
arbitrary. Set Sk = S(l0, ε0) for k < N1 and Sk = S(k, εn) for Nn ≤ k < Nn+1. In order to show
that ‖ϕn − Sn‖∞(An) → 0, let δ > 0 be arbitrary. Let n0 ∈ N such that εn0 < δ. If m ≥ Nn0 , then
we have Nñ ≤ m < Nñ+1 for some ñ ≥ n0, and it holds that

‖ϕm − Sm‖∞(Am) = ‖ϕm − S(m, εñ)‖∞(Am) < εñ < εn0 < δ.

Appendix B. Detailed proofs of Proposition 7, Lemma 9 and Part 2 of Theorem 4

Proof Proposition 7 Here we want to prove the statement for the case that Ω = Ur(z) is a closed
and bounded ball (for some arbitrary r > 0, z ∈ Rd) and f : Ω→ Rd is globally strongly isotonic.
How to derive the general result from this special case is shown in Section 4.

Consider the set f(Ω). Since f is continuous by Lemma 5 and Ω is compact, so is f(Ω). In
particular, f(Ω) is bounded, that is diam f(Ω) < ∞. We can define a function µ : [0, diam Ω] →
[0,diam f(Ω)] as follows:

∀x, y ∈ Ω : ‖f(x)− f(y)‖ = µ(‖x− y‖).

Since f is strongly isotonic, µ is indeed well-defined. Note that µ is definitely defined on the whole
interval [0,diam Ω] since Ω naturally contains a line segment of length diam Ω. In order to show
that f is a similarity, we have to show that µ is linear (that is given by µ(t) = λt, t ∈ [0,diam Ω],
for some λ > 0).
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It follows from f being strongly isotonic that µ is strictly increasing. Obviously, we have
µ(0) = 0. Due to the compactness of Ω and f(Ω) and f being strongly isotonic, we can conclude
that µ(diam Ω) = diam f(Ω).

Choose points x0 and y0 on the boundary of Ω with ‖x0 − y0‖ = diam Ω (thus x0 and y0 are
elements of a straight line going through z). We can write µ(t) as

µ(t) =

∥∥∥∥f(x0)− f
(
x0 + t

y0 − x0

‖y0 − x0‖

)∥∥∥∥ , t ∈ [0, diam Ω].

This shows that µ is continuous.

Let m = (x0 + y0)/2 be the midpoint of the line segment between x0 and y0 (in fact, m = z).
We want to show that f(m) = (f(x0) + f(y0))/2. If d = 1, this immediately follows from f
being strongly isotonic. In general, set r0 = x0 − y0 and let R = [r0] be the linear hull of r0.
Let {e1, . . . , ed−1} be an orthonormal basis of R⊥. We can choose ε > 0 such that all points
p+
i = m+ εei and p−i = m− εei, i = 1, . . . , d− 1, are elements of Ω (in fact, we can choose any
ε ≤ r). Set p+

0 = x0 and p−0 = y0.
Now we have

‖m− p+
i ‖ = ‖m− p−i ‖, i = 0, . . . , d− 1,

and

‖p+
j − p+

i ‖ = ‖p+
j − p−i ‖, i 6= j ∈ {0, . . . , d− 1},

‖p−j − p+
i ‖ = ‖p−j − p−i ‖, i 6= j ∈ {0, . . . , d− 1}.

Since f is strongly isotonic, it follows that

‖f(m)− f(p+
i )‖ = ‖f(m)− f(p−i )‖, i = 0, . . . , d− 1,

and

‖f(p+
j )− f(p+

i )‖ = ‖f(p+
j )− f(p−i )‖, i 6= j ∈ {0, . . . , d− 1},

‖f(p−j )− f(p+
i )‖ = ‖f(p−j )− f(p−i )‖, i 6= j ∈ {0, . . . , d− 1}.

This implies

〈
f(p+

i )− f(p−i ), f(m)
〉

=

〈
f(p+

i )− f(p−i ),
f(p+

i ) + f(p−i )

2

〉
, i = 0, . . . , d− 1, (14)

and
〈
f(p+

i )− f(p−i ), f(p+
j )
〉

=

〈
f(p+

i )− f(p−i ),
f(p+

i ) + f(p−i )

2

〉
, i 6= j ∈ {0, . . . , d− 1},

〈
f(p+

i )− f(p−i ), f(p−j )
〉

=

〈
f(p+

i )− f(p−i ),
f(p+

i ) + f(p−i )

2

〉
, i 6= j ∈ {0, . . . , d− 1}.

(15)

We show that under the conditions (15) the point f(m) = (f(p+
0 ) + f(p−0 ))/2 = (f(x0) +

f(y0))/2 is the unique solution to (14):
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1. f(m) = (f(p+
0 ) + f(p−0 ))/2 is a solution to (14): Choose j = 0 (i ∈ {1, . . . , d − 1}

arbitrary) in (15). Add the first line in (15) to the second and divide by two. Hence, f(m) =
(f(p+

0 ) + f(p−0 ))/2 is a solution to (14) for i = 1, . . . , d− 1 and obviously also for i = 0.

2. there is a unique solution to (14): (14) is a linear system involving d equations for the d
unknown coordinates of f(m). It suffices to show that the vectors f(p+

i ) − f(p−i ), i =
0, . . . , d− 1, are linearly independent. Subtracting the two lines of (15) yields

〈
f(p+

i )− f(p−i ), f(p+
j )− f(p−j )

〉
= 0, i 6= j ∈ {0, . . . , d− 1}.

We see that the vectors (f(p+
i )− f(p−i )), i = 0, . . . , d− 1, even form an orthogonal system.

Hence, we have f(m) = (f(x0)+f(y0))/2 and can conclude that µ (diam Ω/2) = diam f(Ω)/2.

By repeating this procedure (once starting with x0 = x0, y0 = m, once starting with x0 = m,
y0 = y0) we see that

µ

(
1

4
diam Ω

)
=

1

4
diam f(Ω) and µ

(
3

4
diam Ω

)
=

3

4
diam f(Ω)

and in general

µ

(
j

2i
diam Ω

)
=

j

2i
diam f(Ω), i ∈ N, j ∈ {0, . . . , 2i}.

Note that Ω being a ball allows us to find a proper ε in each iteration step. By continuity, this shows

µ(t) = t
diam f(Ω)

diam Ω
.

Proof of Lemma 9 We want to prove Lemma 9 in the following slightly more general form:

Let N ∈ N and (εk)1≤k≤N , (δk)1≤k≤N be finite sequences of positive real numbers satisfying

εk < εk+1, δk ≥ δk+1 εk > εj + δj , j < k, εN + δN + max
j=1,...,N−1

(εj + δj) <
1

2N
. (16)

For k ∈ {1, . . . , N} and i ∈ {1, 3, . . . , 2k − 1} set xk,i = i/2k and let ylk,i, y
r
k,i be arbitrary

elements of (xk,i − εk − δk, xk,i − εk) and (xk,i + εk, xk,i + εk + δk), respectively.

Let ϕ : {0, 1}∪{ymk,i : m ∈ {l, r}, k ≤ N, i ∈ {1, 3, . . . , 2k−1}} → [0, 1] be a weakly isotonic
function with ϕ(0) = 0 and ϕ(1) = 1. Then it holds for k ≤ N and i ∈ {1, 3, . . . , 2k − 1} that

ϕ(ylk,i) ∈
(

2N−ki− 1

2N
,
2N−ki

2N

)
, ϕ(yrk,i) ∈

(
2N−ki

2N
,
2N−ki+ 1

2N

)
, (17)

20
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and hence
∣∣ymk,i − ϕ(ymk,i)

∣∣ < 1

2N
, m ∈ {l, r}, k ≤ N, i ∈ {1, 3, . . . , 2k − 1}. (18)

Due to (16) we have

ylk,i ∈
(

2N−ki− 1

2N
,
2N−ki

2N

)
, yrk,i ∈

(
2N−ki

2N
,
2N−ki+ 1

2N

)
,

and thus (18) follows from (17). We prove (17) by induction over N . Note that ϕ is strictly increas-
ing due to ϕ(0) = 0 and ϕ(1) = 1.

For the basis let N = 1. Then we have yl1,1 ∈ (0, 1/2) and yr1,1 ∈ (1/2, 1) implying that
|0 − yl1,1| < |1 − yl1,1| and |0 − yr1,1| > |1 − yr1,1|. Since ϕ is weakly isotonic, ϕ(0) = 0 and
ϕ(1) = 1, it follows that |0−ϕ(yl1,1)| < |1−ϕ(yl1,1)| and |0−ϕ(yr1,1)| > |1−ϕ(yr1,1)| and hence

ϕ(yl1,1) ∈
(

0,
1

2

)
, ϕ(yr1,1) ∈

(
1

2
, 1

)
.

Assume that the statement holds for N and we want to infer that it also holds for N + 1. If the
assumptions of the lemma are satisfied for N + 1, (εk)1≤k≤N , (δk)1≤k≤N and
ϕ|{0,1}∪{ymk,i:m∈{l,r},k≤N,i∈{1,3,...,2k−1}} satisfy the assumptions with N , and hence the induction

hypothesis yields for k ≤ N and i ∈ {1, 3, . . . , 2k − 1}

ϕ(ylk,i) ∈
(

2N−ki− 1

2N
,
2N−ki

2N

)
, ϕ(yrk,i) ∈

(
2N−ki

2N
,
2N−ki+ 1

2N

)
.

First, consider ylN+1,1 and yrN+1,1. Due to (16) we have

1

2N+1
+ εN+1 + δN+1 <

1

2N
− εN − δN

and hence

0 < ylN+1,1 < yrN+1,1 < ylN,1 < yrN,1.

We have

|ylN+1,1 − 0| < 1

2N+1
− εN+1

and

|ylN,1 − ylN+1,1| >
1

2N
− εN − δN −

(
1

2N+1
− εN+1

)
=

1

2N+1
+ εN+1 − εN − δN .

Because of εN + δN < 2εN+1 according to (16), this yields

|ylN+1,1 − 0| < |ylN,1 − ylN+1,1|
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implying that

|ϕ(ylN+1,1)− 0| < |ϕ(ylN,1)− ϕ(ylN+1,1)|

and

2ϕ(ylN+1,1) < ϕ(ylN,1),

respectively. Due to the induction hypothesis we finally obtain

ϕ(ylN+1,1) <
1

2
ϕ(ylN,1) <

1

2

1

2N
=

1

2N+1

and hence

ϕ(ylN+1,1) ∈
(

0,
1

2N+1

)
.

We have

|yrN+1,1 − 0| > 1

2N+1
+ εN+1

and

|yrN,1 − yrN+1,1| <
1

2N
+ εN + δN −

(
1

2N+1
+ εN+1

)
=

1

2N+1
+ εN − εN+1 + δN

implying that (due to (16))

|yrN,1 − yrN+1,1| < |yrN+1,1 − 0|.

It follows that

1

2N+1
<

1

2
ϕ(yrN,1) < ϕ(yrN+1,1).

Because of

yrN+1,1 < ylN,1,

we have

ϕ(yrN+1,1) < ϕ(ylN,1) <
1

2N
=

2

2N+1

and hence

ϕ(yrN+1,1) ∈
(

1

2N+1
,

2

2N+1

)
.

We also obtain

ϕ(ylN,1) ∈
(

1

2N+1
,

2

2N+1

)
.
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In the same manner one can show (17) for yl
N+1,2N+1−1

, yr
N+1,2N+1−1

and yr
N,2N−1

.

Now, let i ∈ {3, 5, . . . , 2N+1 − 3} be arbitrary. Consider the reduced fractions i−1
2N+1 = j1

2k1
and

i+1
2N+1 = j2

2k2
with 1 ≤ k1, k2 ≤ N and j1 ∈ {1, 3, . . . , 2k1 − 1}, j2 ∈ {1, 3, . . . , 2k2 − 1}. Due to

(16) we have

ylk1,j1 < yrk1,j1 < ylN+1,i < yrN+1,i < ylk2,j2 < yrk2,j2 .

We have to show (17) for yrk1,j1 , ylN+1,i, y
r
N+1,i and ylk2,j2 .

We have

|ylk1,j1 − ylN+1,i| <
i

2N+1
− εN+1 −

(
i− 1

2N+1
− εk1 − δk1

)
=

1

2N+1
− εN+1 + εk1 + δk1

and

|ylk2,j2 − ylN+1,i| >
i+ 1

2N+1
− εk2 − δk2 −

(
i

2N+1
− εN+1

)
=

1

2N+1
− εk2 + εN+1 − δk2 .

Since δk1 + δk2 + εk1 + εk2 < 2εN+1 according to (16), this yields

|ylk1,j1 − ylN+1,i| < |ylk2,j2 − ylN+1,i|

and hence

|ϕ(ylk1,j1)− ϕ(ylN+1,i)| < |ϕ(ylk2,j2)− ϕ(ylN+1,i)|.

Using the induction hypothesis we can conclude that

ϕ(ylN+1,i) <
ϕ(ylk2,j2) + ϕ(ylk1,j1)

2
<

1

2

(
i+ 1

2N+1
+
i− 1

2N+1

)
=

i

2N+1
.

The induction hypothesis also yields

ϕ(yrk1,j1) >
i− 1

2N+1

and hence we have

ϕ(yrk1,j1) ∈
(
i− 1

2N+1
,

i

2N+1

)
, ϕ(ylN+1,i) ∈

(
i− 1

2N+1
,

i

2N+1

)
.

We have

|yrk1,j1 − yrN+1,i| >
i

2N+1
+ εN+1 −

(
i− 1

2N+1
+ εk1 + δk1

)
=

1

2N+1
+ εN+1 − εk1 − δk1 ,

|yrk2,j2 − yrN+1,i| <
i+ 1

2N+1
+ εk2 + δk2 −

(
i

2N+1
+ εN+1

)
=

1

2N+1
− εN+1 + εk2 + δk2
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and hence (due to (16))

|yrk2,j2 − yrN+1,i| < |yrk1,j1 − yrN+1,i|.

In the same manner as above we can conclude that

ϕ(yrN+1,i) ∈
(

i

2N+1
,
i+ 1

2N+1

)
, ϕ(ylk2,j2) ∈

(
i

2N+1
,
i+ 1

2N+1

)
.

Remark 13

• The assumptions (16) on the sequences (εk)1≤k≤N and (δk)1≤k≤N are equivalent to εk > 0,
δk > 0, δk ≥ δk+1, εk + δk < εk+1 and εN + δN + εN−1 + δN−1 < 1/2N .

• Sequences (εk)1≤k≤N and (δk)1≤k≤N satisfying these assumptions always exist. For example,
we can choose εk = ε12k−1 and δk = ε1/2 with ε1 < 1/22N+1 as in Section 5.

Proof of Part 2 of Theorem 4 Since ∪ki=1K
◦
i is assumed to be connected, we can write K as

K = ∪k′i=1K
′
i with K ′i ∈ {K1, . . . ,Kk} and such that K ′i

◦ ∩K ′i+1
◦ 6= ∅, i = 1, . . . , k′ − 1. Hence,

w.l.o.g. we may assume that K = ∪ki=1Ki such that K◦i ∩K◦i+1 6= ∅, i = 1, . . . , k − 1.

For every i ∈ {1, . . . , k} it holds that {xn : n ∈ N} ∩Ki is dense in Ki because of Ki ⊆ K◦i ,
and hence there exists a sequence (Sin)n∈N of similarity transformations such that

‖Sin − ϕn|{x1,...,xn}∩Ki
‖∞({x1,...,xn}∩Ki) → 0. (19)

We prove that

‖S1
n − ϕn|{x1,...,xn}∩(K1∪...∪Kj)‖∞({x1,...,xn}∩(K1∪...∪Kj)) → 0, j = 1, . . . , k, (20)

by induction over j. The basis is clear. For the inductive step assume that (20) holds for some j < k.
We have to infer that it also holds for j + 1. So let ε > 0 be arbitrary.

Since K◦j ∩K◦j+1 6= ∅, we can choose N̂ ∈ N such that {x1, . . . , xN̂} contains d + 1 affinely
independent points of Kj ∩Kj+1. Denote these points by u1, u2, . . . , ud+1. Any point u ∈ Rd can
be written as u =

∑d+1
i=1 λi(u)ui for some (unique) coefficients λi(u) ∈ R with

∑d+1
i=1 λi(u) = 1.

However, sinceK is bounded, there existsC > 0 such that |λi(u)| ≤ C, u ∈ K, i ∈ {1, . . . , d+1}.
Choose ε̃ > 0 such that 2(d+ 1)Cε̃+ ε̃ < ε. Choose N1 ∈ N such that

‖S1
n − ϕn|{x1,...,xn}∩(K1∪...∪Kj)‖∞({x1,...,xn}∩(K1∪...∪Kj)) < ε̃, n ≥ N1,

which is possible by the induction hypothesis. Choose N2 ∈ N such that

‖Sj+1
n − ϕn|{x1,...,xn}∩Kj+1

‖∞({x1,...,xn}∩Kj+1) < ε̃, n ≥ N2,

which is possible because of (19). For n ≥ max{N̂ ,N1, N2} and x ∈ {x1, . . . , xn} ∩ (K1 ∪ . . . ∪
Kj+1) we then have:
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• if x ∈ K1 ∪ . . . ∪Kj , then clearly ‖S1
n(x)− ϕn(x)‖ < ε̃ < ε

• if x ∈ Kj+1, then ‖S1
n(x)− ϕn(x)‖ ≤ ‖S1

n(x)− Sj+1
n (x)‖+ ‖Sj+1

n (x)− ϕn(x)‖ < ‖S1
n(x)−

Sj+1
n (x)‖+ ε̃

Since x =
∑d+1

i=1 λiui with
∑d+1

i=1 λi = 1 and |λi| ≤ C, i = 1, . . . , d+ 1, we have

‖S1
n(x)− Sj+1

n (x)‖ =

∥∥∥∥∥
d+1∑

i=1

λiS
1
n(ui)−

d+1∑

i=1

λiS
j+1
n (ui)

∥∥∥∥∥

≤
d+1∑

i=1

|λi|‖S1
n(ui)− Sj+1

n (ui)‖

≤ (d+ 1)C max
i=1,...,d+1

‖S1
n(ui)− Sj+1

n (ui)‖.

Since ‖S1
n(ui)−Sj+1

n (ui)‖ ≤ ‖S1
n(ui)−ϕn(ui)‖+‖ϕn(ui)−Sj+1

n (ui)‖ < 2ε̃ for i ∈ {1, . . . , d+
1}, this yields

‖S1
n(x)− ϕn(x)‖ ≤ 2(d+ 1)Cε̃+ ε̃ < ε.

Appendix C. Detailed versions of Lemma 11 and Lemma 12

Lemma 11 Let d ≥ 2. Let N ∈ N such that

ω = 24

(
Γ(d2 + 1)

π
d
2

) 1
d ( 1

2N − 1

) 1
d

<
1

2(d− 1)

be fixed. Let r, r̃, α, α̃ ∈ Rd, let µ > 0 and let (εk)1≤k≤N , (δk)1≤k≤N be real sequences with

r, r̃ > 0, α, α̃ ≥ 0, εk > 0, δk > 0,
α < r, α̃ < r̃, εk+1 > εk, δk+1 ≤ δk,
r1 = r̃1 = 1, δ1 < µ, δ1 < ε1,
rj ≤ 1, r̃j ≤ 1, j = 2, . . . , d, α1 + δ1 + dµ < ε1,
α̃1 < ω, maxs=1,...,d α̃s <

1
2 , 4εN + 4δ1 + dµ < 1

2N
,

ρ = maxj=2,...,d
α̃j(r̃j+3

√
d−1)

r̃j−α̃j
< ω, εk+1 > εk + 2δ1 + dµ+ α1,

4µrj − 4αj
√

1 + (d− 1)µ2 − 4rjαj − 4rjδ1 − 4αjδ1 − α2
j > 0, j = 2, . . . , d,

(21)

and such that all the balls U lk,i, U
r
k,i and U jk,i, which we define below, lie in the convex hull of the

points X+
1 , X

−
1 , . . . , X

+
d , X

−
d defined in the next paragraph.
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Define the points m+
s ,m

−
s , m̃

+
s , m̃

−
s ∈ Rd, s = 1, . . . , d, by

m+
1 = (r1/0/0/0/ . . .) , m−1 = (−r1/0/0/0/ . . .) ,

m̃+
1 = (r̃1/0/0/0/ . . .) , m̃−1 = (−r̃1/0/0/0/ . . .) ,

m+
2 = (0/r2/0/0/ . . .) , m−2 = (0/− r2/0/0/ . . .) ,

m̃+
2 = (0/r̃2/0/0/ . . .) , m̃−2 = (0/− r̃2/0/0/ . . .) ,

and so forth.

Let X+
s , X

−
s ∈ Rd, s = 1, . . . , d, be arbitrary elements of Uαs(m

+
s ) and Uαs(m

−
s ), respectively.

For k ∈ {1, . . . , N}, i ∈ {1, 3, . . . , 2k − 1} and j ∈ {2, . . . , d} set

xk,i = −1 +
i

2k−1
, ojk,i = (xk,i/− µ/ . . . /− /µ/ +µ︸︷︷︸

jth entry

/− µ/ . . . /− µ) ∈ Rd,

ulk,i = (xk,i − εk/− µ/− µ/ . . . /− µ) ∈ Rd, urk,i = (xk,i + εk/− µ/− µ/ . . . /− µ) ∈ Rd,

and define the open balls

U jk,i = Uδk(ojk,i), U lk,i = Uδk(ulk,i), U rk,i = Uδk(urk,i).

Let zjk,i be an arbitrary element of U jk,i and ylk,i, y
r
k,i be arbitrary elements of U lk,i and U rk,i, respec-

tively.

Let ϕ : {X+
1 , X

−
1 , . . . , X

+
d , X

−
d } ∪ {z

j
k,i : k ≤ N, i ∈ {1, 3, . . . , 2k − 1}, j ∈ {2, . . . , d}} ∪

{ymk,i : m ∈ {l, r}, k ≤ N, i ∈ {1, 3, . . . , 2k − 1}} → Rd be an isotonic function and assume that

ϕ(X+
s ) ∈ Uα̃s(m̃

+
s ), ϕ(X−s ) ∈ Uα̃s(m̃

−
s ), s = 1, . . . , d. (?)

Set γ(−1) = γ(1) = α̃1 and γ(0) = α̃1 + d−1
2 (ω + ρ), and define for k ∈ {2, . . . , N} and

i ∈ {1, 3, . . . , 2k − 1} the positive expression γ(−1 + i/2k−1) recursively by

γ

(
−1 +

i

2k−1

)
=

1

2

(
γ

(
−1 +

i− 1

2k−1

)
+ γ

(
−1 +

i+ 1

2k−1

)
+ (d− 1)(ω + 2ρ)

)
.

Let N∗ < N such that N∗ · 2N∗ < 1
5(d+1)(ω+ρ+α̃1) . Then we have

ϕ(ylk,i) ∈ (xk,i − γ(xk,i)− ω, xk,i + γ(xk,i))× (−ρ− ω, ρ)d−1 ,

ϕ(yrk,i) ∈ (xk,i − γ(xk,i), xk,i + γ(xk,i) + ω)× (−ρ− ω, ρ)d−1

and hence
∥∥ymk,i − ϕ

(
ymk,i
)∥∥ < γ(xk,i) + ω + (d− 1)(ω + ρ) < 3d

√
ω, m ∈ {l, r},

for all 1 ≤ k ≤ N∗ and i ∈ {1, 3, . . . , 2k − 1}.
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Remark 14 It is straightforward to see that for any N ∈ N there exist r, r̃, α, α̃ ∈ Rd, a positive
constant µ and sequences (εk)1≤k≤N , (δk)1≤k≤N satisfying (21) and which have the property that
the balls U lk,i, U

r
k,i and U jk,i lie in the convex hull of X+

1 , X
−
1 , . . . , X

+
d , X

−
d for any choice of these

points within the balls Uαs(m
+
s ) and Uαs(m

−
s ), respectively. At the same time, we can choose all

components αs, α̃s to be strictly positive.

Lemma 12 Let d ≥ 2. Let N ′ ∈ N such that

ω′ = 32

(
Γ(d2 + 1)

π
d
2

) 1
d 1

d
√
N ′

< 1

and all denominators of fractions in

A(ω′) =
1

4
d

(
20ω′ + 810dω′

4d−1 (4d)d−1

2− ω′ − 10dω′
4d−1 (4d)d−1

)2

+ 2
√
d

20ω′ + 810dω′
4d−1 (4d)d−1

2− ω′ − 10dω′
4d−1 (4d)d−1

+ 5ω′

are larger than one be fixed.

Let r < 1 and µ, δ, ε > 0 be real numbers such that

r ≥ 1

2
, r > 1−

√
A(ω′)/2,

√
1 + r2 >

√
2−

√
A(ω′), 2(r + µ)− 2ε >

2N ′ − 1

N ′
+ δ,

2(r + µ) + 2ε < 2, δ <
1

3N ′
,
√

2 + µ
√
d+ ε < 2, δ + 2µ

√
d+ 2ε <

1

N ′
,

√
(1− µ)2 + (−µṽ −mr)2 + (d− 2)µ2 + ε <

√
(1 + µ)2 + (−µṽ −mr)2 + (d− 2)µ2 − ε

for ṽ,m ∈ {−1,+1},

√
(−1− µṽ)2 + (r − µ)2 + (d− 2)µ2 + ε <

√
(−1− µṽ)2 + (r + µ)2 + (d− 2)µ2 − ε

for ṽ ∈ {−1,+1},

√√√√(r + µ(ṽ − ṽ′))2 + (r − 2µ)2 +
d−2∑

k=1

µ2(vk − v′k)2 + 2ε <

√√√√(r + µ(ṽ − ṽ′))2 + (r + 2µ)2 +
d−2∑

k=1

µ2(vk − v′k)2 − 2ε

for ṽ, ṽ′, vk, v′k ∈ {−1,+1} (k = 1, . . . , d− 2).

(22)
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Define points A,B ∈ Rd and Z−s , Z
+
s ∈ Rd, s ∈ {2, . . . , d}, by

A = (−1/0/ . . . /0), B = (1/0/ . . . /0), Z−2 = (0/− r/0/0/ . . .) ,
Z+

2 = (0/r/0/0/ . . .) , Z−3 = (0/0/− r/0/ . . .) , Z+
3 = (0/0/r/0/ . . .) , and so forth.

For s ∈ {2, . . . , d} and v ∈ {−1, 1}d set E−s,v = Z−s + µv, E+
s,v = Z+

s + µv and let e−s,v, e
+
s,v ∈ Rd

be arbitrary elements of Uε(E−s,v) and Uε(E+
s,v), respectively. For i ∈ {1, . . . , 2N ′− 1} let xi ∈ Rd

be an arbitrary element of Uδ((−1 + i
N ′ /0/ . . . /0)).

Let ϕ : {A,B}∪{e−s,v, e+
s,v : s ∈ {2, . . . , d}, v ∈ {−1, 1}d}∪{xi : i = 1, . . . , 2N ′− 1} → Rd

be an isotonic function with ‖ϕ(A) − ϕ(B)‖ = 2. Then there exist a constant C (depending only
on d) and an isometry S : Rd → Rd such that

‖A− S(ϕ(A))‖ ≤ C
√
A(ω′), ‖B − S(ϕ(B))‖ ≤ C

√
A(ω′),

‖Zms − S(ϕ(ems,v))‖ ≤ C
√
A(ω′), m ∈ {−,+}, s ∈ {2, . . . , d},

where v = (1/1/1/ . . . /1).

Remark 15 For any N ′ ∈ N there exist real numbers r < 1 and µ, δ, ε > 0 satisfying (22). We can
even choose them in such a way that all the considered open balls are contained in U1(0).
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