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Abstract
Assume we are given a set of items from a gen-
eral metric space, but we neither have access to
the representation of the data nor to the distances
between data points. Instead, suppose that we
can actively choose a triplet of items (A,B,C)
and ask an oracle whether item A is closer to
item B or to item C. In this paper, we propose
a novel random forest algorithm for regression
and classification that relies only on such triplet
comparisons. In the theory part of this paper, we
establish sufficient conditions for the consistency
of such a forest. In a set of comprehensive ex-
periments, we then demonstrate that the proposed
random forest is efficient both for classification
and regression. In particular, it is even competi-
tive with other methods that have direct access to
the metric representation of the data.

1. Introduction
Assume we are given a set of items from a general metric
space (X , δ), but we neither have access to the represen-
tation of the data nor to the distances between data points.
Instead, we have access to an oracle that we can actively ask
a triplet comparison: given any triplet of items (xi, xj , xk)
in the metric space X , is it true that

δ(xi, xj) < δ(xi, xk) ?

Such a comparison-based framework has become popular in
recent years, for example in the context of crowd-sourcing
applications (Tamuz et al., 2011; Heikinheimo and Ukkonen,
2013; Ukkonen et al., 2015), and more generally, whenever
humans are supposed to give feedback or when constructing
an explicit distance or similarity function is difficult (Wilber
et al., 2015; Zhang et al., 2015; Wah et al., 2015; Balcan
et al., 2016; Kleindessner and von Luxburg, 2017).
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In the present work, we consider classification and regres-
sion problems in a comparison-based setting where we are
given the labels y1, . . . , yn of unknown objects x1, . . . , xn,
and we can actively query triplet comparisons between ob-
jects. An indirect way to solve such problems is to first
construct an “ordinal embedding” of the data points in a
(typically low-dimensional) Euclidean space that satisfies
the set of triplet comparisons, and then to apply standard ma-
chine learning methods to the Euclidean data representation.
However, this approach is often not satisfactory because this
new representation necessarily introduces distortions in the
data. Furthermore, all existing ordinal embedding methods
are painfully slow, even on moderate-sized datasets (Agar-
wal et al., 2007; van der Maaten and Weinberger, 2012;
Terada and von Luxburg, 2014). In addition, one has to
estimate the embedding dimension, which is a challenging
task by itself (Kleindessner and Luxburg, 2015).

As an alternative, we solve the classification/regression prob-
lems by a new random forest algorithm that requires only
triplet comparisons. Standard random forests (Biau and
Scornet, 2016) are one of the most popular and success-
ful classification/regression algorithms in Euclidean spaces
(Fernández-Delgado et al., 2014). However, they heav-
ily rely on the underlying vector space structure. In our
comparison-based setting we need a completely different
tree building strategy. We use the recently described com-
parison tree (Haghiri et al., 2017) for this purpose (which
in Euclidean cases would be distantly related to linear deci-
sion trees (Kane et al., 2017b; Ezra and Sharir, 2017; Kane
et al., 2017a)). A comparison-based random forest (Com-
pRF) consists of a collection of comparison trees built on
the training set.

We study the proposed CompRF both from a theoretical and
a practical point of view. In Section 3, we give sufficient
conditions under which a slightly simplified variant of the
comparison-based forest is statistically consistent. In Sec-
tion 4, we apply the CompRF to various datasets. In the
first set of experiments we compare our random forests to
traditional CART forests on Euclidean data. In the second
set of experiments, the distances between objects are known
while their representation is missing. Finally, we consider a
case in which only triplet comparisons are available.
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2. Comparison-Based Random Forests
Random forests, first introduced in Breiman (2001), are
one of the most popular algorithms for classification and
regression in Euclidean spaces. In a comprehensive study on
more than 100 classification tasks, random forests show the
best performance among many other general purpose meth-
ods (Fernández-Delgado et al., 2014). However, standard
random forests heavily rely on the vector space represen-
tation of the underlying data points, which is not available
in a comparison-based framework. Instead, we propose a
comparison-based random forest algorithm for classification
and regression tasks. The main ingredient is the comparison
tree, which only uses of triplet comparisons and does not
rely on Euclidean representation or distances between items.

Let us recap the CART random forest: The input consists
of a labeled set Dn = {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊂
Rd × R. To build an individual tree, we first draw a ran-
dom subsample Ds of an points from Dn. Second, we
select a random subset Dims of size mtry of all possible
dimensions {1, 2, . . . , d}. The tree is then built based on
recursive, axis-aligned splits along a dimension randomly
chosen from Dims. The exact splitting point along this
direction is determined via the CART criterion, which also
involves the labels of the subset Ds of points (see Biau and
Scornet (2016) for details). The tree is grown until each cell
contains at most n0 points—these cells then correspond to
the leaf nodes of the tree. To estimate a regression function
m(x), each individual tree routes the query point to the
appropriate leaf and outputs the average response over all
points in this leaf. The random forest aggregates M such
trees. Let us denote the prediction of tree i at point x by
mi(x,Θi, Dn), where Θi encodes the randomness in the
tree construction. Then the final forest estimation at x is the
average result over all trees (for classification, the average
is replaced by a majority vote):

mM,n(x; (Θi)1≤i≤M , Dn) =
1

M

M∑
i=1

mi(x,Θi, Dn) .

The general consensus in the literature is that CART forests
are surprisingly robust to parameter choices. Consequently,
people use explicit rules of thumb, for example to set
mtry = dd/3e, and n0 = 5 (resp. n0 = 1) for regres-
sion (resp. classification) tasks.

We now suggest to replace CART trees by comparison trees,
leading to comparison-based random forests (CompRF).
Comparison trees have originally been designed to find
nearest neighbors by recursively splitting the search space
into smaller subspaces. Inspired by the CART criterion, we
propose a supervised variant of the comparison tree, which
we refer to as “supervised comparison tree.”

For classification, the supervised comparison tree construc-

Algorithm 1 CompTree(S, n0):
Supervised comparison tree construction
Input: Labeled data S and maximum leaf size n0
Output: Comparison tree T

1: T.root← S
2: if |S| > n0 then
3: Sample distinct (x1, y1), (x2, y2) ∈ S s.t. y1 6= y2

(if all points have the same label choose randomly)
4: S1 ← {(x, y) ∈ S : δ(x, x1) ≤ δ(x, x2)}
5: T.leftpivot← x1, T.rightpivot← x2
6: T.leftchild← CompTree(S1, n0)
7: T.rightchild← CompTree(S\S1, n0)
8: end if
9: Return T

tion for a labeled set S ⊂ X × {0, 1} is as follows (see
Algorithm 1 and Figure 1): we randomly choose two pivot
points x1 and x2 with different labels y1 and y2 among the
points in S (the case where all the points in S have the same
label is trivial). For every remaining point (x, y) ∈ S, we
request the triplet comparison “δ(x, x1) < δ(x, x2).” The
answer to this query determines the relative position of x
with respect to the generalized hyperplane separating x1
and x2. We assign the points closer to x1 to the first child
node of S and the points closer to x2 to the other one. We
now recurse the algorithm on the child nodes until less
than n0 points remain in every leaf node of the tree.

The supervised pivot selection is analogous to the CART
criterion. However, instead of a costly optimization over
the choice of split, it only requires to choose pivots with
different labels. In Section 4.1, we empirically show that
the supervised split procedure leads to a better performance
than the CART forests for classification tasks.

For regression, it is not obvious how the pivot selection
should depend on the output values. Here we use an unsu-
pervised version of the forest (unsupervised CompRF): we
choose the pivots x1, x2 without considering y1, y2.

The final comparison-based forest consists of M indepen-
dently constructed comparison trees. To assign a label to a
query point, we traverse every tree to a leaf node, then we
aggregate all the items in the leaf nodes of M trees to esti-
mate the label of the query item. For classification, the final
label is the majority vote over the labels of the accumulated
set (in the multiclass case we use a one vs. one approach).
For regression we use the mean output value.

Intuitive comparison: The general understanding is that
the efficiency of CART random forests is due to: (1) the ran-
domness due to subsampling of dimensions and data points
(Breiman, 1996); (2) the CART splitting criterion that ex-
ploits the label information already in the tree construction
(Breiman et al., 1984). A weakness of CART splits is that
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Figure 1. Construction of the comparison tree, illustrated in the Euclidean setting. (i) The current cell contains points with two different
labels. (ii) Two pivot points with opposite labels are chosen randomly from all sample points in the current cell (circled black dots). (iii)
The current cell is split according to whether points are closer to the one or the other pivot; in the Euclidean setting this corresponds to a
hyperplane split. (iv) Result after recursive application of this principle with final leaf size n0 = 10.

Algorithm 2 CompRF (Dn, q,M, n0, r):
CompRF prediction at query q
Input: Labeled dataset Dn ⊂ X × {0, 1}, query q ∈ X ,

leaf size n0, trees M and subsampling ratio r.
Output: yq = label prediction for q

1: Set C = ∅ as the list of predictor items
2: for j=1,. . . ,M do
3: Take a random subsample Ds ⊂ Dn, s.t., |Ds|

|Dn| = r

4: Tj ← CompTree(Ds, n0)
5: Given q, traverse the tree Tj to the leaf node Nj
6: C ← C ∪Nj
7: end for
8: Return MajorityVote({y|(x, y) ∈ C})

they are necessarily axis-aligned, and thus not well-adapted
to the geometry of the data.

In comparison trees, randomness is involved in the tree
construction as well. But once a splitting direction has been
determined by choosing the pivot points, the exact splitting
point along this direction cannot be influenced any more,
due to the lack of a vector space representation. On the
other hand, the comparison tree splits are well adapted to
the data geometry by construction, giving some advantage
to the comparison trees.

All in all, the comparison-based forest is a promising candi-
date with slightly different strengths and weaknesses than
CART forest. Our empirical comparison in Section 4.1
reveals that it performs surprisingly well and can even out-
perform CART forests in certain settings.

3. Theoretical Analysis
Despite their intensive use in practice, theoretical ques-
tions regarding the consistency of the original procedure
of Breiman (2001) are still under investigation. Most of
the research focuses on simplified models in which the con-
struction of the forest does not depend on the training set
at all (Biau, 2012), or only via the xis but not the yis (Biau
et al., 2008; Ishwaran and Kogalur, 2010; Denil et al., 2013).

Recent efforts nearly closed this gap, notably Scornet et al.
(2015), where it is shown that the original algorithm is
consistent in the context of additive regression models and
under suitable assumptions. However, there is no previous
work on the consistency of random forests constructed only
with triplet comparisons.

As a first step in this direction, we investigate the consistency
of individual comparison trees, which is the first building
block in the study of random forests consistency. As it
is common in the theoretical literature on random forests,
we consider a slightly modified version of the comparison
tree. We assume that the pivot points are not randomly
drawn from the underlying sample but according to the true
distribution of the data. In this setting, we show that, when
the number of observations grows to infinity, (i) the diameter
of the cells converges to zero in probability, and (ii) each
cell contains an arbitrarily large number of observations.
Using a result of Devroye et al. (1996), we deduce that the
associated classifier is consistent. The challenging part of
the proof is to obtain control over the diameter of the cells.
Intuitively, as in Dasgupta and Freund (2008, Lemma 12),
it suffices to show that each cut has a larger probability to
decrease the diameter of the current cell than that of leaving
it unchanged. To prove this in our case is very challenging
since both the position and the decrease in diameter caused
by the next cut depend on the geometry of the cell.

3.1. Continuous Comparison Tree

As it is the case for most theoretical results on random
forests, we carry out our analysis in a Euclidean setting
(however, the comparison-forest only has indirect access to
the Euclidean metric via triplet queries). We assume that
the input space is X = [0, 1]d with distance δ given by the
Euclidean norm, that is, δ (x, y) = ‖x− y‖. Let X be a
random variable with support included in [0, 1]d. We as-
sume that the observations X1, . . . , Xn ∈ [0, 1]d are drawn
independently according to the distribution of X . We make
the following assumptions:

Assumption 3.1. The random variable X ∈ [0, 1]d has
density f with respect to the Lebesgue measure on [0, 1]d.
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Additionally, f is finite and bounded away from 0.

For any x, y ∈ Rd, let us define

∆(x, y) :=
{
z ∈ Rd | δ (x, z) = δ (y, z)

}
.

In the Euclidean setting, ∆(x, y) is a hyperplane that sepa-
rates Rd in two half-spaces. We call Hx (resp. Hy) the open
half-space containing x (resp. y). The set S1 in Algorithm 1
corresponds to S ∩Hx1 .

We can now define the continuous comparison tree.

Definition 1 (Continuous comparison tree). A continuous
comparison tree is a random infinite binary tree T 0 obtained
via the following iterative construction:

• The root of T 0 is [0, 1]d;

• Assuming that level ` of T 0 has been built already,
then level `+ 1 is built as follows: For every cell C at
height `, drawX1, X2 ∈ C independently according to
the distribution of X restricted to C. The children of C
are defined as the closure of C ∩HX1

and C ∩HX2
.

For any sequence (pn)n≥0, a truncated, continuous compar-
ison tree T 0(pn) consists of the first bpnc levels of T 0.

From a mathematical point of view, the continuous tree has
a number of advantages. (i) Its construction does not depend
on the responses Y1, . . . , Yn. Such a simplification is quite
common because data-dependent random tree structures are
notoriously difficult to analyze (Biau et al., 2008). (ii) Its
construction is formally independent of the finite set of data
points, but “close in spirit”: Rather than sampling the pivots
among the data points in a cell, pivots are independently
sampled according to the underlying distribution. Whenever
a cell contains a large number of sample points, both distri-
butions are close, but they may drift apart when the diameter
of the cells go to 0. (iii) In the continuous comparison tree,
we stop splitting cells at height bpnc, whereas in the dis-
crete setting we stop if there is less than n0 observations
in the current cell. As a consequence, T 0(pn) is a perfect
binary tree: each interior node has exactly 2 children. This
is typically not the case for comparison trees.

3.2. Consistency

To each realization of T 0(pn) is associated a partition of
[0, 1]d into disjoint cells A1,n, A2,n, . . . , A2pn ,n . For any
x ∈ [0, 1]d, letA(x) be the cell of T 0(pn) containing x. Let
us assume that the responses (Yi)1≤i≤n are binary labels.
We consider the classifier defined by majority vote in each
cell, that is,

gn(x) :=

{
1 if

∑
Xi∈A(x) 1Yi=1 ≥

∑
Xi∈A(x) 1Yi=0

0 otherwise.

Define Ln := P (gn(X) 6= Y |Dn) . Following Devroye
et al. (1996), we say that the classifier gn is consistent if

E [Ln] = P (gn(X) 6= Y ) −−−−−→
n→+∞

L? ,

where L? is the Bayes error probability. Our main result is
the consistency of the classifier associated with the continu-
ous comparison tree truncated to a logarithmic height.
Theorem 2 (Consistency of comparison-based trees).
Under Assumption 3.1, the classifier associated to the con-
tinuous, truncated tree T 0(α log n) is consistent for any
constant 0 < α < 1/ log 2.

In particular, since each individual tree is consistent, a ran-
dom forest with base tree T 0(pn) is also consistent. The-
orem 2 is a first step towards explaining why comparison-
based trees perform well without having access to the rep-
resentation of the points. Also note that, even though the
continuous tree is a simplified version of the discrete tree,
they are quite similar and share all important character-
istics. In particular, they roughly have the same depth—
with high probability, the comparison tree has logarithmic
depth (Haghiri et al., 2017, Theorem 1).

3.3. Sketch of the Proof

Since the construction of T 0(pn) does not depend on the
labels, we can use Theorem 6.1 of Devroye et al. (1996). It
gives sufficient conditions for classification rules based on
space partitioning to be consistent. In particular, we have
to show that the partition satisfies two properties: first, the
leaf cells should be small enough, so that local changes
of the distribution can be detected; second, the leaf cells
should contain a sufficiently large number of points so that
averaging among the labels makes sense. More precisely,
we have to show that (1) diamA(X) → 0 in probability,
where diamA := supx,y∈A δ (x, y) is the diameter of A,
and (2) N(X) → ∞ in probability, where N(X) is the
number of sample points in the cell containing X . The
second point is simple, because it is sufficient to show that
the number of cells in the partition associated to T 0(α log n)
is o (n) (according to Lemma 20.1 in Devroye et al. (1996)
and the remark that follows). Proving (1) is much more
challenging. A sketch of the proof of (1) follows—note
that the complete version of the proof of Theorem 2 can be
found in the supplementary material.

The critical part in proving (1) is to show that, for any
cell of the continuous comparison tree, the diameter of
its descendants at least k levels below is halved with high
probability. More precisely, the following proposition shows
that this probability is lower bounded by 1− δ, where δ is
exponentially decreasing in k.
Proposition 3 (Diameter control). Let C be a cell of
T 0(X) such that diamC ≤ D. Then, under Assump-
tion 3.1, the probability that there exists a descendant of C
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Table 1. Average and standard deviation of classification error for the CompRF vs. other methods. The first three rows describe datasets.

MNIST Gisette UCIHAR Isolet

Dataset Size 70000 7000 10229 6238
Variables 728 5000 561 617
Classes 10 2 5 26

KNN 2.91 3.50 12.15 8.27
CART RF 2.90 (± 0.05) 3.04 (± 0.26) 7.47 (± 0.32) 5.48 (± 0.27)

CompRF unsupervised 4.21 (± 0.05) 3.28 (± 0.19) 8.70 (± 0.32) 6.65 (± 0.14)
CompRF supervised 2.50 (± 0.05) 2.48 (± 0.13) 6.54 (± 0.11) 4.43 (± 0.26)
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Figure 2. Average classification error of the CompRF algorithm on classification datasets. X-Axis shows the number of trees used in the
forest. The title denotes the dataset and each curve corresponds to a fixed value of n0.

which is more than k levels below and yet has diameter
greater than D/2 is at most δ = cγk, where c > 0 and
γ ∈ (0, 1) are constants depending only on the dimension d
and the density f .

The proof of Proposition 3 amounts to showing that the
probability of decreasing the diameter of any given cell is
higher than the probability of keeping it unchanged—see
the supplementary material.

Assuming Proposition 3, the rest of the proof goes as follows.
Let us set ε ∈ (0, 1). We are going to show that

P (diamA(X) > ε) −→ 0 when n→ +∞ .

Let Γ be the path in T 0(α log n) that goes from the root to
the leaf A of maximum diameter. This path has length bpnc
according to the definition of T 0(α log n). The root, which
consists of the set [0, 1]d, has diameter

√
d. This means that

we need to divide the diameter of this cell π =
⌈
log2

√
d/ε
⌉

times to obtain cells with diameter smaller than ε. Let us
set k = bpn/πc and pick cells

(
C(j)

)
0≤j≤π along Γ such

that C(0) = [0, 1]d, C(π) = A, and such that there are more
than k levels between C(j) and C(j+1). Then we can prove
that P (diamA > ε) is smaller than

π∑
j=1

P

(
diamC(j) >

√
d

2j

∣∣∣∣∣diamC(j−1) ≤
√
d

2j−1

)
.

Furthermore, according to Prop. 3, the quantity in the last
expression is upper bounded by πcγk. Since k = O (log n)
and γ ∈ (0, 1), we can conclude.

4. Experiments
In this section, we first examine comparison-based forests
in the Euclidean setting. Secondly, we apply the CompRF
method to non-Euclidean datasets with a general metric
available. Finally we run experiments in the setting where
we are only given triplet comparisons.

4.1. Euclidean Setting

Here we examine the performance of CompRF on classi-
fication and regression tasks in the Euclidean setting, and
compare it against CART random forests as well as the
KNN classifier as a baseline. As distance function for KNN
and CompRF we use the standard Euclidean distance. Since
the CompRF only has access to distance comparisons, the
amount of information it uses is considerably lower than the
information available to the CART forest. Hence, the goal
of this experiment is not to show that comparison-based
random forests can perform better, but rather to find out
whether the performance is still acceptable.

To emphasize the role of supervised pivot selection, we
report the performance of the unsupervised CompRF algo-
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Table 2. Average and standard deviation of the RMSE for the CompRF vs. CART regression forest.

ONP Boston ForestFire WhiteWine

Dataset Size 39644 506 517 4898
Variables 58 13 12 11

CART RF 1.04 (± 0.50) ·104 3.02 (± 0.95) 45.32 (± 4.89) 59.00 (± 2.94)·10−2

CompRF 1.05 (± 0.50) ·104 6.16 (± 1.00) 45.37 (± 4.69) 72.46 (± 3.16) ·10−2

10
0

10
1

10
2

M: Number of trees

6

6.5

7

7.5

8

8.5

A
v
e
ra

g
e
 R

M
S

E

Boston

10
0

10
1

10
2

M: Number of trees

0.7

0.75

0.8

0.85

0.9

0.95

A
v
e

ra
g

e
 R

M
S

E
Wine

10
0

10
1

10
2

M: Number of trees

30

32

34

36

38

40

42

44

A
v
e

ra
g

e
 R

M
S

E

ForestFire

10
0

10
1

10
2

M: Number of trees

1

1.1

1.2

1.3

1.4

1.5

A
v
e
ra

g
e
 R

M
S

E

10
4 ONP

n
0
=1

n
0
=4

n
0
=16

n
0
=64

n
0
=256

Figure 3. Average RMSE of the CompRF algorithm on regression datasets. X-Axis shows the number of trees used in the forest. The title
denotes dataset and each curve corresponds to a fixed value of n0.

rithm in classification tasks as well. The tree structure in the
unsupervised CompRF chooses the pivot points uniformly
at random without considering the labels.

For the sake of simplicity, we do not perform subsampling
when building the CompRF trees. We report some experi-
ments concerning the role of subsampling in Section 3.2 of
supplementary material. All other parameters of CompRF
are adjusted by cross-validation.

4.1.1. CLASSIFICATION

We use four classification datasets. MNIST (LeCun et al.,
1998) and Gisette are handwritten digit datasets. Isolet
and UCIHAR are speech recognition and human activity
recognition datasets respectively (Lichman, 2013). Details
of the datasets are shown in the first three rows of Table 1.

Parameters of CompRF: We examine the behaviour of the
CompRF with respect to the choice of the leaf size n0 and
the number of treesM . We perform 10-fold cross-validation
over n0 ∈ {1, 4, 16, 64} and M ∈ {1, 4, 16, 64, 256}. In
Figure 2 we report the resulting cross validation error. Sim-
ilar to the recommendation for CART forests (Biau and
Scornet, 2016), we achieve the best performance when the
leaf size is small, that is (n0 = 1). Moreover, there is no
significant improvement for M greater than 100.

Comparison between CompRF, CART and KNN: Ta-
ble 1 shows the average and standard deviation of classifica-
tion error for 10 independent runs of CompRF, CART forest
and KNN. Training and test sets are given in the respective

datasets. The parameters n0 and M of CompRF and CART,
and k of KNN are chosen by 10-fold cross validation on the
training set. Note that KNN is not randomized, thus there is
no standard deviation to report.

The results show that, surprisingly, CompRF can slightly
outperform the CART forests for classification tasks even
though it uses considerably less information. The reason
might be that the CompRF splits are better adapted to the
geometry of the data than the CART splits. While the CART
criterion for selecting the exact splitting point can be very
informative for regression (see below), for classification it
seems that a simple data dependent splitting criterion as
in the supervised CompRF can be as efficient. Conversely,
we see that unsupervised splitting as in the unsupervised
CompRF is clearly worse than supervised splitting.

4.1.2. REGRESSION

Next we consider regression tasks on four datasets. On-
line news popularity (ONP) is a dataset of articles with the
popularity of the article as target (Fernandes et al., 2015).
Boston is a dataset of properties with the estimated value
as target variable. ForestFire is a dataset meant to predict
the burned area of forest fires, in the northeast region of
Portugal (Cortez and Morais, 2007). WhiteWine (Wine) is a
subset of wine quality dataset (Cortez et al., 2009). Details
of the datasets are shown in the first two rows of Table 2.

Since the regression datasets have no separate training and
test set, we assign 90% of the items to the training and the
remaining 10% to the test set. In order to remove the effect
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Table 3. Average and standard deviation of the classification error for the CompRF in comparison with kernelSVM on graph datasets with
two graph kernels: WL-subtree and WL-edge.

MUTAG ENZYMES NCI1 NCI109

Train Size 188 600 4110 4127
Classes 2 6 2 2

WL-subtree kernel

Kernel SVM 17.77 (± 7.31) 47.16 (± 5.72) 15.96 (± 1.56) 15.55 (± 1.40)
KNN 14.00 (± 8.78) 48.17 (± 4.48) 18.13 (± 2.27) 18.74 (± 1.97)

CompRF unsupervised 14.44 (± 7.94) 39.33 (± 6.49) 17.96 (± 1.85) 19.10 (± 2.22)
CompRF supervised 13.89 (± 7.97) 39.83 (± 5.00) 17.35 (± 1.98) 18.71 (± 2.61)

WL-edge kernel

Kernel SVM 15.55 (± 6.30) 53.67 (± 6.52) 15.13 (± 1.44) 15.38 (± 1.69)
KNN 12.78 (± 7.80) 51.00 (± 4.86) 18.56 (± 1.36) 18.30 (± 1.82)

CompRF unsupervised 11.67 (± 7.15) 38.50 (± 4.19) 17.91 (± 1.42) 19.56 (± 1.61)
CompRF supervised 11.11 (± 8.28) 38.17 (± 5.35) 18.05 (± 1.63) 18.40 (± 2.27)

of the fixed partitioning, we repeat the experiments 10 times
with random training/test set assignments. Note that we use
CompRF with unsupervised tree construction for regression.

Parameters of CompRF: We report the behaviour of the
CompRF with respect to the parameters n0 and M . We per-
form 10-fold cross-validation with the same range of param-
eters as in the previous section. Figure 3 shows the average
root mean squared error (RMSE) over the 10 folds. The
cross-validation is performed for 10 random training/test
set assignments. The figure corresponds to the first assign-
ment out of 10 (the behaviour for the other training/test set
assignments is similar). The CompRF algorithm shows the
best performance with n0 = 1 for the Boston and ForestFire
datasets, however larger values of n0 lead to better perfor-
mance for other datasets. We believe that the main reason
for this variance is the unsupervised tree construction in the
CompRF algorithm for regression.

Comparison between CompRF and CART: Table 2
shows the average and standard deviation of the RMSE
for the CompRF and CART forests over the 10 runs with
random training/test set assignment. For each combination
of training and test sets we tuned parameters independently
by cross validation. CompRF is constructed with unsuper-
vised splitting, while the CART forests are built using a
supervised criterion. We can see that on the Boston and
Wine datasets, the performance of the CART forest is sub-
stantially better than the CompRF. In this case, ignoring the
Euclidean representation of the data and just relying on the
comparison-based trees leads to a significant decrease in
performance. However the performance of our method on
the other two datasets is quite the same as CART forests.
We can conclude that in some cases the CART criterion can
be essential for regression. However, note that if we are just

given a comparison-based setting—without actual vector
space representation—it is hardly possible to propose an
efficient supervised criterion for splitting.

4.2. Metric, non-Euclidean Setting

In this set of experiments we aim to demonstrate the perfor-
mance of the CompRF in general metric spaces. We choose
graph-structured data for this experiment. Each data-point
is a graph, and as a distance between graphs we use graph-
based kernel functions. In particular, the Weisfeiler-Lehman
graph kernels are a family of graph kernels that have promis-
ing results on various graph datasets (Shervashidze et al.,
2011). We compute the WL-subtree and WL-edge kernels
on four of the datasets reported in Shervashidze et al. (2011):
MUTAG, ENZYMES, NCI1 and NCI109. In order to evalu-
ate triplet comparisons based on the graph kernels, we first
convert the kernel matrix to a distance matrix in the standard
way (expressing the Gram matrix in terms of distances).

We compare supervised and unsupervised CompRF with the
Kernel SVM and KNN classifier in Table 3. Note that in
this setting, CART forests are not applicable as they would
require an explicit vector space representation. Parameters
of the Kernel SVM and k of the KNN classifier are adjusted
with 10-fold cross-validation on training sets.

We set the parameters of the CompRF to n0 = 1 and
M = 200, as it shows acceptable performance in the Eu-
clidean setting. We assign 90% of the items as training
and the remaining 10% as the test set. The experiment is
repeated 10 times with random training/test assignments.
The average and standard deviation of classification error is
reported in Table 3. The CompRF algorithm outperforms
the kernel SVM on the MUTAG and ENZYMES datasets.
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CompRF

EmbKNN-Same

EmbCART-Same

EmbKNN-Rand

EmbCART-Rand

Figure 4. Average classification error of the CompRF in comparison with embedding approach on classification datasets with less than
1000 items. EmbKNN-Same (resp. EmbCART-Same) denotes the TSTE+KNN using the same triplets as CompRF, while EmbKNN-Rand
(resp. EmbCART-Rand) stands for using TSTE with the same number of random triplets. X-Axis show the number of trees (M) used for
the CompRF and the corresponding number of triplets (T ) for the embedding. Each set of bars corresponds to a fixed M . Note that by
increasing M , the number of triplets used by CompRF will be increased, as it appears in the X-Axis.

However, it has slightly lower performance on the other two
datasets. However, note that the kernel SVM requires a lot
of background knowledge (one has to construct a kernel in
the first place, which can be difficult), whereas our Com-
pRF algorithm neither uses the explicit distance values nor
requires them to satisfy the axioms of a kernel function.

4.3. Comparison-Based Setting

Now we assume that the distance metric is unknown and
inaccessible directly, but we can actively ask for triplet
comparisons. In this setting, the major competitors to
comparison-based forests are indirect methods that first use
ordinal embedding to a Euclidean space, and then classify
the data in the Euclidean space. As practical active ordinal
embedding methods do not really exist we settle for a batch
setting in this case. After embedding, we use CART forests
and the KNN classifier in the Euclidean space.

Comparing various ordinal embedding algorithms, such
as GNMDS (Agarwal et al., 2007), LOE (Terada and von
Luxburg, 2014) and TSTE (van der Maaten and Weinberger,
2012) shows that the TSTE in combination with a classi-
fier consistently outperforms the others (see Section 3.1 in
the supplement). Therefore, we here only report the com-
parison with the TSTE embedding algorithm. We choose
the embedding dimension by 2-fold cross-validation in the
range of d ∈ {10, 20, 30, 40, 50} (embedding in more than
50 dimensions is impossible in practice due to the running
time of the TSTE). We also adjust k of the KNN classifier
in the cross-validation process.

We design a comparison-based scenario based on Euclidean
datasets. First, we let CompRF choose the desired triplets to
construct the forest and classify the test points. The embed-
ding methods are used in two different scenarios: once with
exactly the same triplets as in the CompRF algorithm, and

once with a completely random set of triplets of the same
size as the one used by CompRF.

The size of our datasets by far exceeds the number of points
that embedding algorithms, particularly TSTE, can handle.
To reduce the size of the datasets, we choose the first two
classes, then we subsample 1000 items. Isolet has already
less than 1000 items in first two classes. We assign half of
the dataset as training and the other half as test set. Bar plots
in Figure 4 show the classification error of the CompRF in
comparison with embedding methods with various numbers
of trees in the forests (M ). We set n0 = 1 for the CompRF.

In each set of bars, which corresponds to a restricted
comparison-based regime, CompRF outperforms embed-
ding methods or has the same performance. Another signifi-
cant advantage of CompRF in comparison with the embed-
ding is the low computation cost. A simple demonstration
is provided in Section 3.3 of the supplementary material.

5. Conclusion and Future Work
We propose comparison-based forests for classification and
regression tasks. This method only requires comparisons
of distances as input. From a practical point of view, it
works surprisingly well in all kinds of circumstances (Eu-
clidean spaces, metric spaces, comparison-based setting)
and is much simpler and more efficient than some of its
competitors such as ordinal embeddings.

We have proven consistency in a simplified setting. As
future work, this analysis should be extended to more re-
alistic situations, namely tree construction depending on
the sample; forests with inconsistent trees, but the forest is
still consistent; and finally the supervised splits. In addi-
tion, it would be interesting to propose a comparison-based
supervised tree construction for the regression tasks.
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Supplementary material for the article:

Comparison-Based Random Forests

Siavash Haghiri, Damien Garreau, Ulrike von Luxburg

In this supplementary material, we provide a complete proof of Theorem 2 and additional
experiments. The main arguments of this proof are collected in Section 1, while all auxiliary
results can be found in Section 2. Section 3 contains the supplemental experiments.

1 Main proofs

Let us recall our main assumptions on the data and the central result regarding the consis-
tency of the continuous comparison tree.

Assumption 1.1 (Bounded density on the unit cube). The random variable X ∈
[0, 1]d has density f with respect to the Lebesgue measure on [0, 1]d. Additionally, there
exist constants 0 < fmin ≤ fmax < +∞ such that

∀x ∈ X , fmin ≤ f (x) ≤ fmax .

Theorem 1.1 (Consistency of comparison trees). Assume that X satisfies Assump-
tion 1.1. Then the partitioning classification rule associated to T 0(α log n) is consistent for
any 0 < α < 1/ log 2.

As explained in the paper, the proof of Theorem 1.1 follows from Devroye et al. (1996,
Theorem 6.1). It first requires control on the number of samples in the leaves of the tree.
This is resolved in Section 1.2. Second, we need to bound the diameter of the leaves of the
tree, which is achieved in Section 1.3. Before turning to these proofs, we state and prove
the key result used to control the diameter (Proposition 1.1) in the next section.
Let us now introduce some additional notation. For any convex compact subset A, we define
πA as the orthogonal projection on A. For any given x ∈ Rd and r > 0, we define B (x, r)
as the closed ball of center x and radius x. Namely,

B (x, r) :=
{
y ∈ Rd | ‖x− y‖ ≤ r

}
.

The sphere of center x and radius r is the boundary of B (x, r), that is,

S (x, r) :=
{
y ∈ Rd | ‖x− y‖ = r

}
.

When working in dimension 2, S (x, r) is simply the circle of center x and radius r, denoted
by C (x, r). We call annulus the (closed) set of points comprised between two concentric
spheres, that is, for any x ∈ Rd, r1, r2 > 0,

A (x, r1, r2) :=
{
y ∈ Rd | r1 ≤ ‖x− y‖ ≤ r2

}
.

If r1 ≤ 0, we set A (x, r1, r2) = B (a, r2).

1



1.1 Control of the cell diameter

Let us recall Proposition 1.1, the key result needed for proving that the diameter of the
comparison-tree leaves goes to zero in probability.

Proposition 1.1 (Diameter control). Assume that Assumption 1.1 holds. Let C be a
cell of T 0(X) such that diam (C) ≤ D. Then the probability that there exists a descendant
of C which is more than k levels below and yet has diameter greater than D/2 is at most
Nf,d(Nf,d + 1)γkf,d/2, where 0 < Nf,d and 0 < γf,d < 1 are constants depending only on d,
fmin, and fmax.

Proposition 1.1 is an analogous of Lemma 12 in Dasgupta and Freund (2008). In plain
words, it states that for any cell of the continuous comparison tree, the diameter of any
descendant at least k levels below is halved with high probability depending on k. Our
proof follows closely that of Dasgupta and Freund (2008, Lemma 12), the main difference
being in the auxiliary lemmas used to control the probability of certain events, due to the
radically different nature of the random tree that we consider.

Proof. Consider a cover of C by balls of radius r = D/cr, with cr := 26 · d · 25d · f
2
max

f2
min

.

According to Shalev-Shwartz and Ben-David (2014, Section 27.1), at most(
2D
√
d

r

)d
=

(
27 · d3/2 · 25d · f

2
max

f2min

)d
=: Nd,f

such balls are needed, since diam (C) ≤ D.
Fix any pair of balls B,B′ from this cover whose centers are at distance at least D/2 − r
from one another. Given any x and y, we say that the split according to ∆(x, y) is a good
cut if it cleanly separates B from B′, i.e., if B ⊂ Hx and B′ ⊂ Hy or B′ ⊂ Hx and B ⊂ Hy.
If the split cuts both B and B′, that is, B ∩∆(x, y) 6= ∅ and B′ ∩∆(x, y) 6= ∅, we say that
it is a bad cut. See Figure 1 for illustration.
For any k ≥ 1, let pk be the probability that there is some cell k levels below C which
contains points from both B and B′. We write

pk ≤ P (top split is a good cut) · 0 + P (top split is a bad cut) · 2pk−1
+ P (all other split configurations) · pk−1
≤ (1 + P (top split is a bad cut)− P (top split is a good cut)) pk−1 .

Since d ≥ 1 and cr > 50, according to Lemma 2.1 and 2.2,

P (top split is a bad cut)− P (top split is a good cut) ≤ fmax

fmin
· 64d

cr
− 2 · fmin

fmax
· 1

25d

= − fmin

fmax
· 1

25d
< 0 .

Set γf,d := 1− fmin

fmax
· 1
25d

, we just showed that

pk ≤ γf,dpk−1 . (1.1)

Since p0 = 1, we deduce that pk ≤ γkf,d. We conclude by a union bound over all the pairs
from the cover that are at the prescribed minimum distance from each other.

2



A

B

B′

good cut

bad cut

Figure 1: Good cuts and bad cuts. The current cell A contains B and B′, two faraway
balls of small radius—with respect to the diameter of A. A good cut (in green) cleanly
separates B and B′, whereas a bad cut (in red) intersects both.
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Note that the main difference with the proof of Lemma 12 in Dasgupta and Freund (2008)
comes from Eq. (1.1). Namely, in the setting of Dasgupta and Freund (2008), γf,d is a
constant that does not depend on the dimension. The dependency on the dimension in
our case is due to the lower bound on the probability of a good cut that we obtain in
Lemma 2.1, which is decreasing exponentially with the dimension. Improving this bound,
namely obtaining a bound without exponential dependency in the dimension, would yield a
“more reasonable” number of levels required to divide the diameter by two in Proposition 1.1.

1.2 N(X) −→ +∞ in probability

According to Lemma 20.1 in Devroye et al. (1996) and the remark that follows, it is sufficient
to show that the number of regions is o (n). For each n, by construction, T 0(α log n) has
2α logn = nα log 2 leafs. Since α log 2 < 1, 2α logn = o (n) as n→ +∞.

1.3 diam (A(X)) −→ 0 in probability

Let 0 < ε < 1. In this section, we show that

P (diam (A(X)) > ε) −→ 0 when n→ +∞ .

We first notice that

P (diam (A(X)) > ε) ≤ max
i

P (diam (Ai,n) > ε) .

Let A be the leaf of T 0(pn) with maximal diameter and define π :=
⌈
log(
√
d)−log ε
log 2

⌉
, so that

ε >
√
d/2π. We write

P (diam (A) > ε) ≤ P

(
diam (A) >

√
d

2π

)
.

Define C1, . . . , Cpn the path from C0 = [0, 1]d to Cpn = A in the tree T 0(pn). Set k =
⌊
pn
π

⌋
.

Set A(0) = C0, A(1) = Ck, A(2) = C2k, . . . , A(π−1) = C(π−1)k and A(π) = A. We define the

event Ej :=
{

diam
(
A(j)

)
>
√
d/2j

}
. Then

P

(
diam (A) >

√
d

2π

)
= P (Eπ|Eπ−1) · P (Eπ−1) + P

(
Eπ
∣∣Ec

π−1
)
· P
(
Ec
π−1
)

(law of total probability)

≤ P
(
Eπ
∣∣Ec

π−1
)

+ P (Eπ−1) .

Repeating π times this reasoning, and since diam
(
A(0)

)
≤
√
d almost surely, we deduce that

P
(

diam
(
A(π)

)
> ε
)
≤

π∑
t=1

P

(
diam

(
A(t)

)
>

√
d

2t

∣∣∣∣∣diam
(
A(t−1)

)
≤
√
d

2t−1

)
.

There are always more than k levels between A(tk) and A((t−1)k) by construction. Hence,
according to Proposition 1.1,

P (diam (A) > ε) ≤ π · Nf,d(Nf,d + 1)

2
· γkf,d .

Since k = O (log n) and γf,d ∈ (0, 1), we can conclude the proof.
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2 Auxiliary results

The key in proving Proposition 1.1 is to show that, for a given cell, the probability of a
“good cut” is greater than the probability of a “bad cut.” We thus proceed to prove a
lower bound for the probability of a good cut (Section 2.1) and an upper bound for the
probability of a bad cut (Section 2.2). Since the first cell is the unit cube and all subsequent
cells are obtained by intersection with half-spaces, note that any cell of the comparison tree
is a full-dimensional convex polytope almost surely. Thus we state and prove our results for
such objects.

2.1 Good cuts

The following Lemma is an analogous of Lemma 10 in Dasgupta and Freund (2008). It
provides a lower bound on the probability of cleanly separating faraway balls.

Lemma 2.1 (Probability of good cut is lower bounded). Suppose that Assumption 1.1
holds. Let A ⊂ Rd be a full-dimensional convex polytope such that diam (A) ≤ D < +∞.
Let cr > 10 be a constant. Pick any two balls B := B (z, r) and B′ := B (z′, r) such that

(i) both B and B′ intersect A;

(ii) their radius is at most D/cr;

(iii) the distance between their centers satisfies ‖z − z′‖ ≥ D/2− r.

Then, if X1 and X2 are chosen independently from A according to the distribution of X,

P (A ∩B ⊂ A ∩HX1
and A ∩B′ ⊂ A ∩HX2

) ≥ 2
fmin

fmax

(
cr − 10

4cr

)2d

.

As a direct consequence, if cr > 50,

P (A ∩B ⊂ A ∩HX1 and A ∩B′ ⊂ A ∩HX2) ≥ fmin

fmax

2

25d
.

While the statement of Lemma 2.1 is close to that of of Lemma 10 in Dasgupta and Freund
(2008), a major difference lies in the quality of the bound we obtain. Indeed, our bound
depends exponentially in the dimension, therefore becoming arbitrarily loose for large values
of d.

Proof. The proof follows the following scheme. First, we conveniently restrict ourselves to
the case where the centers of B and B′ both belong to A by geometric arguments. We then
use Lemma 2.5 to lower bound the probability of a good split by the probability that x and y
belong to certain balls γ and γ′. We conclude the proof by finding an upper bound for the
volume of A and a lower bound for the volume of γ ∩ A. We refer to Figure 2 throughout
this proof.

Preliminary computations. Set a := πA(z), a′ := πA(z′), β := B (a, r), and β′ :=
B (a′, r). Then, according to Lemma 2.3, A∩B ⊂ β and A∩B′ ⊂ β′. For any x, y ∈ A such
that β ⊂ Hx and β′ ⊂ Hy. Since A∩B ⊂ β, we have A∩B ⊂ Hx. Furthermore, A∩B ⊂ A,
thus A ∩B ⊂ A ∩Hx. A similar reasoning shows that A ∩B′ ⊂ A ∩Hy. Hence

P (A ∩B ⊂ A ∩HX1
and A ∩B′ ⊂ A ∩HX2

) ≥ P (β ⊂ HX1
and β′ ⊂ HX2

) .
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•
a

•
a′

Ω
Γ′ ΓΣ

γ ∩Π

γ = B (a, ρ) γ′ = B (a′, ρ)

ΠΠ′

Figure 2: Construction of Ω, Π and Σ. The central thick line represents Ω, the intersection
between A and the hyperplane ∆(a, a′). The half-cone Π is the union for all ω ∈ Ω of the
half-lines [a, ω). Finally, the spherical cap Σ is defined as the intersection between S (a, ρ)
and Π. In dotted lines we draw the counter-parts of these objects for a′. The gray area
represents γ ∩Π.

Set δ := ‖a− a′‖. Since a ∈ B and a′ ∈ B′, by the triangle inequality, ‖a− a′‖ ≥ ‖z − z′‖−
2r. By hypothesis, ‖z − z′‖ ≥ D/2− r and r ≤ D/cr, thus

‖a− a′‖ ≥ D

2
− 3r ≥ cr − 6

2cr
·D .

Define ρ := ‖a− a′‖ /2− r. We have ρ ≥ cr−10
4cr

·D. In particular, as cr > 10, ρ > 0. Then,
according to Lemma 2.5,

P (β ⊂ HX1 and β′ ⊂ HX2) ≥ P (X1 ∈ γ and X2 ∈ γ′ or X2 ∈ γ and X1 ∈ γ′) ,

where γ := B (a, ρ) and γ′ := B (a′, ρ). Since X1 and X2 are independent and identically
distributed and γ ∩ γ′ = ∅,

P (X1 ∈ γ and X2 ∈ γ′ or X2 ∈ γ and X1 ∈ γ′) ≥ 2P (X1 ∈ γ)P (X2 ∈ γ′) .

Since we sample X1 and X2 according to the law of X restricted to A and since Assump-
tion 1.1 holds,

P (X1 ∈ γ) ≥ fmin

fmax

Vold (γ ∩A)

Vold (A)
.

In the next paragraphs, we find an upper bound for Vold (A) and a lower bound for
Vold (γ ∩A). We will see that the latter also holds for γ′.
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Upper bound for Vold (A). We refer to Figure 2 for the geometric constructions that
follow. Let us first define Ω := ∆(a, a′)∩A the intersection between the convex polytope A
and the hyperplane ∆(a, a′). We also need to define Π the set of all half-lines going from a
through Ω, namely,

Π :=
{
a+ t(w − a) | ω ∈ Ω and t > 0

}
,

and the conic section Γ := B (a,diam (A)) ∩ Π. We claim that A ∩ Ha′ ⊂ Γ. Indeed, let
ξ ∈ A ∩Ha′ . Since ξ ∈ Ha′ , [a, ξ] intersects ∆(a, a′) in a unique point, say ζ. By convexity,
the segment [a, ξ] is contained into A. In particular, ζ ∈ A. Thus ζ ∈ ∆(a, a′)∩A = Ω, and

ξ = a+
‖ξ − a‖
‖ζ − a‖

(ζ − a) ∈ A .

Moreover, since ξ ∈ A,
‖a− ξ‖ ≤ sup

s∈A
‖a− s‖ = diam (A) ,

and ξ ∈ B (a,diam (A)). A similar reasoning shows that A ∩ Ha ⊂ Γ′, where Γ′ is the
symmetric of Γ with respect to ∆(a, a′). Therefore,

Vold (A) ≤ 2 Vold (Γ) .

Define the hyperspherical cap Σ := S (a, ρ) ∩ Π. Then we can express the volume of the
conic section Γ as

Vold (Γ) =
Vold−1 (Σ)

Vold−1 (S (a, ρ))
Vold (B (a,diam (A))) ,

which leads to

Vold (A) ≤ 2 Vold−1 (Σ)

Vold−1 (S (a, ρ))
Vold (B (a,diam (A))) . (2.2)

Lower bound for Vold (γ ∩A). By convexity, γ ∩Π ⊂ γ ∩A. Moreover,

Vold (γ ∩Π) =
Vold−1 (Σ)

Vold−1 (S (a, ρ))
Vold (B (a, ρ)) .

Hence the following lower bound holds:

Vold (γ ∩A) ≥ Vold−1 (Σ)

Vold−1 (S (a, ρ))
Vold (B (a, ρ)) . (2.3)

Conclusion. Putting together Eq. (2.2) and (2.3), we obtain

P (X1 ∈ γ) ≥ fmin

fmax

Vold (B (a, ρ))

Vold (B (a,diam (A)))
=
fmin

fmax

(
ρ

diam (A)

)d
.

Since ρ ≥ (cr − 10)/(4Dcr) and diam (A) ≤ D, we deduce that

P (X1 ∈ γ) ≥ fmin

fmax

(
cr − 10

4cr

)d
.

We conclude the proof by using the preliminary computations.
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2.2 Bad cuts

We now focus on the probability of a “bad split,” that is, ∆(x, y) intersects both B (z, r)
and B (z′, r). The following result is an analogous of Lemma 11 in Dasgupta and Freund
(2008).

Lemma 2.2 (Probability of bad cut is upper bounded). Suppose that assumption 1.1
holds. Let A ⊂ Rd be a full-dimensional convex polytope such that diam (A) ≤ D < +∞.
Let cr > 10 be a constant. Pick any two balls B := B (z, r) and B′ := B (z′, r) such that

(i) both B and B′ intersect A;

(ii) their radius is at most D/cr;

(iii) the distance between their centers satisfies ‖z − z′‖ ≥ D/2− r.

Then, if X1 and X2 are chosen independently from A according to the distribution of X,

P (A ∩B ∩∆(X1, X2) 6= ∅ and A ∩B′ ∩∆(X1, X2) 6= ∅) ≤ fmax

fmin

32dcr
(cr − 2)(cr − 6)

.

As a direct consequence, if cr > 15,

P (A ∩B ∩∆(X1, X2) 6= ∅ and A ∩B′ ∩∆(X1, X2) 6= ∅) ≤ fmax

fmin

64d

cr
.

Note that, as in Lemma 2.1, the bound we obtain worsens as the dimension increases.

Proof. We first restrict ourselves to the case where the centers of B and B′ both belong
to A with the same argument than in the proof of Lemma 2.1. Namely, define a := πA(z),
a′ := πA(z′), β := B (a, r), β′ := B (a′, r). According to Lemma 2.3, A ∩ B ⊂ β and
A ∩B′ ⊂ β′. Thus

P (A ∩B ∩∆(X1, X2) 6= ∅ and A ∩B′ ∩∆(X1, X2) 6= ∅)
≤ P (β ∩∆(X1, X2) 6= ∅ and β′ ∩∆(X1, X2) 6= ∅) .

For any x ∈ Rd, define Bx the set of points y such that ∆(x, y) is a bad cut, that is,

Bx :=
{
y ∈ Rd | β ∩∆(x, y) 6= ∅ and β′ ∩∆(x, y) 6= ∅

}
.

Then, since we sample X1 according to the law of X restricted to A and since we assume
Assumption 1.1 to be true,

P (β ∩∆(X1, X2) 6= ∅ and β′ ∩∆(X1, X2) 6= ∅) ≤ fmax

fmin

E [Vold (BX1
∩A)]

Vold (A)
,

where the expectation is relative to the random variable X1.

Upper bound for Vold (Bx ∩A). Let x ∈ A and y ∈ Bx. By Lemma 2.4,{
(‖x− a‖ − 2r)

+ ≤ ‖y − a‖ ≤ ‖x− a‖+ 2r

(‖x− a′‖ − 2r)
+ ≤ ‖y − a′‖ ≤ ‖x− a′‖+ 2r .
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•
a

•
a′

•
x

Bx

C1

C2

C ′1

C ′2

β β′

Figure 3: Sketch of Bx in R2. For a fixed x, Bx is the set of all y such that ∆(x, y) cuts
both β and β′ (border marked in red). We show that Bx is the intersection of two geometric
loci (solid lines border). In particular, Bx is included in the intersection of two annuli
(border in dotted lines).

Equivalently, Bx ⊂ A (a, r1, r2) ∩ Bx ⊂ A (a′, r′1, r
′
2), where we defined r1 := ‖x− a‖ − 2r,

r2 := ‖x− a‖+ 2r, r′1 := ‖x− a′‖ − 2r and r′2 := ‖x− a′‖+ 2r. Recall that A (a, r1, r2) =
B (a, r2) whenever r1 ≤ 0. See Figure 3 for an illustration.
For any ξ ∈ (a, a′), denote by Dξ the hyperplane orthogonal to (a, a′) and passing through ξ.
According to Lemma 2.6, the width ofA (a, r1, r2)∩A (a′, r′1, r

′
2) along the (a, a′) axis is upper

bounded by 16D/(cr − 2), hence there exists ξ− and ξ+ ∈ (a, a′) such that ‖ξ+ − ξ−‖ ≤
16D/(cr − 2) and Bx ∩ A is contained between Dξ− and Dξ+ . For each ξ ∈ (a, a′), set
Ωξ := Dξ ∩A. There exists ξ? ∈ [ξ−, ξ+] such that Vold−1 (Ωξ?) is maximal, and

Vold (Bx ∩A) =

∫
ξ∈[ξ−,ξ+]

Vold−1 (Ωξ) d ξ

≤
∥∥ξ+ − ξ−∥∥ ·Vold−1 (Ωξ?)

Vold (Bx ∩A) ≤ 16

cr − 2
·DVold−1 (Ωξ?) . (2.4)
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Lower bound for Vold (A). Suppose that ξ? belongs to the segment [a, a′]. By con-
vexity, A contains the (disjoint) union of the two hyperpyramids of apexes a and a′ with
(d− 1)-dimensional basis Ωξ? , which we denote by Q and Q′. Therefore,

Vold (A) ≥ Vold (Q) + Vold (Q′)

=
‖a− ξ?‖Vold−1 (Ωξ?)

d
+
‖a′ − ξ?‖Vold−1 (Ωξ?)

d

=
δVold−1 (Ωξ?)

d
.

Since δ ≥ (cr − 6)D/(2cr),

Vold (A) ≥ cr − 6

2dcr
·DVold−1 (Ωξ?) . (2.5)

A similar reasoning holds whenever ξ? does not belong to [a, a′].

Conclusion. Putting together Eq. (2.4) and (2.5), we obtain

P (β ∩∆(X1, X2) 6= ∅ and β′ ∩∆(X1, X2) 6= ∅) ≤ fmax

fmin

32dcr
(cr − 2)(cr − 6)

,

which concludes the proof.

Note that in the plane defined by a, a′ and x, we can actually describe precisely the shape of
the curves defining the border of Bx—see Figure 3. These curves correspond to the images
of x by all the symmetries with respect to a line tangent to β or β′. Individually, they are
called the orthotomics of a circle, or second caustic (Lawrence, 2013, p. 60).

2.3 Technical results

This first lemma is used in the proofs of Lemma 2.1 and 2.2 to deal with cases where the
center of B or B′ does not belong to A. See Figure 4 for an illustration of such a situation.

Lemma 2.3 (Construction of β). Let A ⊂ Rd be a convex compact set and B (z, r) be a
ball that intersects A. Define β := B (πA(z), r). Then A ∩B ⊂ β.

Proof. Set a := πA(z). Let x be an element of A ∩B. Then,

‖x− a‖2 = 〈x− a, x− a〉
= 〈x− z + z − a, x− z + z − a〉

= ‖x− z‖2 + 2〈x− z, z − a〉+ ‖z − a‖2

‖x− a‖2 = ‖x− z‖2 + 2〈x− a, z − a〉 − ‖z − a‖2 .

Since πA is a the orthogonal projection, given that x ∈ A, we have 〈x − a, z − a〉 ≤ 0.

Moreover, ‖z − a‖ ≥ 0, thus ‖x− a‖2 ≤ ‖x− z‖2. But x also belongs to B, hence ‖x− z‖ ≤
r. As a consequence, ‖x− a‖ ≤ r, that is, x ∈ β.

The next lemma shows that, for a given x, the set of every possible y such that ∆(x, y)
intersects B (a, r) is contained into an annulus centered in a. We refer to Figure 5 for an
illustration.
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z
•

a
•

B (z, r) β = B (a, r)

A

A ∩ B (z, r)

Figure 4: Construction of β. The point a is the image of z by the orthogonal projection
on A. The ball β has the same radius than B (z, r) and contains A∩B (z, r), which is marked
in gray.

Lemma 2.4 (Localization of Bx). Let a, x ∈ Rd and r > 0. Then, for any y ∈ Rd such
that ∆(x, y) ∩ B (a, r) is non-empty,

(‖x− a‖ − 2r)
+ ≤ ‖y − a‖ ≤ ‖x− a‖+ 2r .

Proof. Let y ∈ Rd such that ∆(x, y)∩B (a, r) is non-empty. In particular, there exists b ∈ Rd
such that ‖y − b‖ = ‖x− b‖ and ‖a− b‖ ≤ r. By the triangle inequality,

|‖y − a‖ − ‖y − b‖| ≤ ‖a− b‖ ≤ r .

Hence {
‖y − a‖ ≤ r + ‖y − b‖ = r + ‖x− b‖
‖y − a‖ ≥ −r + ‖y − b‖ = −r + ‖x− b‖ .

Since |‖x− b‖ − ‖a− b‖| ≤ ‖x− a‖ (again by the triangle inequality), we have{
‖y − a‖ ≤ ‖x− a‖+ 2r

‖y − a‖ ≥ ‖x− a‖ − 2r .

We now present a result stating that, for any two points a, a′ ∈ Rd, there exists a simple set
of possible x and y such that balls with center a and a′ are well-separated by ∆(x, y). It is
the key element in the proof of Lemma 2.1.
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•
a

B (a, r)

•x

•
y

∆(x, y)

•b

Figure 5: Bx is included in the intersection of two annuli. As in the proof of Lemma 2.4, a
and x are fixed, and y is such that ∆(x, y) intersects B (a, r). Then y belongs to an annulus
of radii (‖x− a‖ − 2r)

+
and ‖x− a‖+ 2r.

Lemma 2.5 (Sufficient condition for a good cut). Let a, a′ ∈ Rd. Let 0 < r <
‖a− a′‖ /2 and set ρ := ‖a− a′‖ /2 − r. Then, for any x ∈ B (a, ρ) and y ∈ B (a′, ρ), we
have B (a, r) ⊂ Hx and B (a′, r) ⊂ Hy.

Remark 2.1. Note that Lemma 2.5 holds in any metric space (X , δ) since the proof only
uses the triangle inequality.

Proof. We refer to Figure 6 for this proof. We have to prove that for any s ∈ B (a, r),
δ (s, x) ≤ δ (s, y) (the case t ∈ B (a′, r) is identical up to notations). We first write

δ (s, x) ≤ δ (s, a) + δ (a, x) ≤ r + ρ = δ (a, a′) /2 ,

where we used (i) the triangle inequality, (ii) s ∈ B (a, r) and x ∈ B (a, ρ), (iii) the definition
of ρ. Then,

δ (a, a′) ≤ δ (a, y) + δ (a′, y) ≤ δ (a, y) + ρ ,

where we used (i) triangle inequality, (ii) y ∈ B (a′, ρ). Thus δ (a, y) ≥ δ (a, a′)−ρ. Moreover,

δ (a, y) ≤ δ (a, s) + δ (s, y) ≤ r + δ (s, y) ,

where we used (i) triangle inequality, (ii) s ∈ B (a, r). Combining the two, we get

δ (s, y) ≥ δ (a, a′)− (r + ρ) = δ (a, a′) /2 .

Therefore δ (s, y) ≥ δ (s, x) and we can conclude.

Finally, we state and prove a technical lemma used in the proof of Lemma 2.2 to control the
size of the intersection of two annuli.

Lemma 2.6 (Bx has small width). Assume the set of hypotheses of Lemma 2.2 and
define r1, r2, r′1 and r′2 as in the proof of Lemma 2.2. Then there exist two hyperplanes Lx
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a
•

a′
•

∆(a, a′)

B (a, r)

B (a′, r)

B (a, ρ) B (a′, ρ)

•
x

•
y

∆(x, y)

Figure 6: Guaranteed good cut. Set a, a′ ∈ Rd and ρ = ‖a− a′‖ /2 − r. Then, for any
x ∈ B (a, ρ) and y ∈ B (a′, ρ), the hyperplane ∆(x, y) separates cleanly B (a, r) from B (a′, r).
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and L′x, orthogonal to (a, a′), such that the intersection of A (a, r1, r2) and A (a′, r′1, r
′
2) is

included between Lx and L′x. Additionally,

δ (Lx, L
′
x) ≤ 16D

cr − 2
. (2.6)

Even though the statement of Lemma 2.6 may seem intuitive at first sight (since the inter-
section is contained in two annuli of width O (D/cr), one would expect its width to be of the
same order), we do not know of a simpler proof. We believe that it is necessary to describe
precisely the intersection of the two annuli depending on the radii in order to make sure
that the situation where the two annuli are overlapping is excluded. Indeed, in this case the
width of the intersection is not bounded by a quantity depending on D/cr but rather on D,
since it has the same order than the diameter of the annuli.

Proof. By rotational symmetry around (a, a′), it suffices to prove the result in a 2-plane
containing a and a′. Hence from now on we work in the plane P defined by the triple
(x, a, a′). We first describe the shape of the intersection between the two annuli depending
on the position of x relatively to a and a′. Then, in each case, we bound the width of the
intersection in the direction of the (a, a′) axis.

Shape of A (a, r1, r2) ∩ A (a′, r′1, r
′
2). Let us equip P with an orthogonal frame such that

a = (0, 0), a′ = (δ, 0) and x = (x1, x2). The width of the intersection is invariant by
line symmetry with respect to ∆(a, a′) and (a, a′), thus we can restrict our analysis to the
quadrant defined by x1 ≤ δ/2 and x2 > 0. In particular, ‖x− a‖ ≤ ‖x− a′‖. Define Ci :=
C (a, ri) and C ′i := C (a′, r′i) for i ∈ {1, 2}. The shape of A (a, r1, r2) ∩ A (a′, r′1, r

′
2) depends

on the mutual intersections between C1, C2, C
′
1 and C ′2. Recall that C (a, ρ) ∩ C (a′, ρ) 6= ∅

if, and only if,
|ρ− ρ′| ≤ δ ≤ ρ+ ρ′ .

We now proceed to describe these intersection depending on the position of x relatively to a
and a′.

• Since r > 0, r1 < r2 and r′1 < r′2 and thus C1 ∩ C2 = C ′1 ∩ C ′2 = ∅;

• By the triangle inequality, |r2 − r′2| = |‖x− a‖ − ‖x− a′‖| ≤ δ and r2+r′2 = ‖x− a‖+
‖x− a′‖+ 4r ≥ δ, hence C2 ∩ C ′2 is always non-empty;

• By the triangle inequality, |r1 − r′1| = |‖x− a‖ − ‖x− a′‖| ≤ δ. Hence C1 ∩ C ′1 is
non-empty if, and only if, r1 +r′1 ≥ δ, that is, ‖x− a‖+‖x− a′‖ ≥ δ−4r. The border
is an ellipse with focal points a, a′ and semi-major axis (δ + 4r)/2.

• By the triangle inequality, r1 +r′2 = ‖x− a‖+‖x− a′‖ ≤ δ. Since ‖x− a‖ ≤ ‖x− a′‖,
|r1 − r′2| = 4r − ‖x− a‖ + ‖x− a′‖. Thus C1 ∩ C ′2 is non-empty if, and only if,
‖x− a′‖ − ‖x− a‖ ≤ δ − 4r. The border is a hyperbola with focal points a, a′ and
semi-major axis (δ − 4r)/2.

• By the triangle inequality, r′1 + r2 = ‖x− a′‖ + ‖x− a‖ ≥ δ. Moreover, |r′1 − r2| =
|‖x− a′‖ − ‖x− a‖ − 4r|. Again, the triangle inequality yields ‖x− a′‖ − ‖x− a‖ ≤
δ ≤ δ+4r. On the other side, ‖x− a‖−‖x− a′‖ ≤ 0 ≤ δ−4r because r < δ/4. Hence
C2 ∩ C ′1 is always non-empty.

The different cases are summarized in Figure 7, and we provide a visual depiction of the
intersection for each case in Figure 8. Note that in Case III, ‖x− a‖ ≤ 2r is a possibility,
implying r1 < 0. In this event, we see in Figure 8 that the extremal points are the same.
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•
a

•
(δ/2, 0)

•
(2r, 0)

•
(−2r, 0)

•( δ2 ,
√

2rδ + 4r2)

I

II

III
IV

Figure 7: Shape of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) (I). Depending on the relative position of x

with respect to a and a′, the shape of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) changes. Case I: C1 ∩ C ′1

and C1 ∩C ′2 are both non-empty. Case II: C1 ∩C ′1 is non-empty, whereas C1 ∩C ′2 is. Case
III: C1∩C ′1 and C1∩C ′2 are both empty. Case IV: C1∩C ′2 is non-empty whereas C1∩C ′1 is.
The shape of Bx as well as A (a, r1, r2)∩A (a′, r′1, r

′
2) in this last case is depicted in Figure 3.
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Case I Case II

Case III Case IV

• • • •

• • • •

Figure 8: Shape of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) (II). For each case described in Figure 7,

we sketch A (a, r1, r2) ∩ A (a′, r′1, r
′
2). Note that the points realizing the minimum and

maximum abscissa in each case are different, leading to different bounds on the width of
A (a, r1, r2) ∩ A (a′, r′1, r

′
2).
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Width of A (a, r1, r2)∩A (a′, r′1, r
′
2). For each case, we show that Eq. (2.6) holds. Recall

that we assumed r/δ ≤ 2/(cr − 2) and diam (A) ≤ D. We will use the fact that

‖x− a‖2 − ‖x− a′‖2

2δ
=
x21 + x22 − x21 + 2δx1 + δ2 + x22

2δ
= x1 −

δ

2
.

• Case I: The left-most points of A (a, r1, r2)∩A (a′, r′1, r
′
2) belong to C1 ∩C ′2. We solve{

ξ21 + ξ22 = r21 = (‖x− a‖ − 2r)
2

(ξ1 − δ)2 + ξ22 = r′22 = (‖x− a′‖+ 2r)
2
.

and find

ξ1 = x1 −
2r

δ
(‖x− a‖+ ‖x− a′‖) .

The right-most points of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) belong to C2 ∩ C ′1. We solve{

ζ21 + ζ22 = r22 = (‖x− a‖+ 2r)
2

(ζ1 − δ)2 + ζ22 = r′21 = (‖x− a′‖ − 2r)
2
.

and find

ζ1 = x1 +
2r

δ
(‖x− a‖+ ‖x− a′‖) .

Thus the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) along (a, a′) is given by

|ζ1 − ξ1| =
4r

δ
(‖x− a‖+ ‖x− a′‖) ≤ 16D

cr − 2
.

• Case II: The left-most point of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) belongs to C ′2 ∩ (a, a′), and

we have
ξ1 = δ − r′2 = δ − ‖x− a′‖ − 2r .

The right-most points belongs to C2 ∩ C ′1, and we have, as in Case I,

ζ1 = x1 +
2r (‖x− a‖+ ‖x− a′‖)

δ
.

Thus the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) along (a, a′) is given by

|ζ1 − ξ1| =
2r

δ
(‖x− a‖+ ‖x− a′‖) + ‖x− a′‖+ x1 − δ − 2r .

The equation of the asymptotes of the hyperbola ‖x− a′‖−‖x− a‖ = δ−4r are given
by

x2 = ±2
√

2rδ − 4r2

δ − 4r
(x1 − δ/2) ,

and considering the lines parallel to these asymptotes passing through (δ, 0) we deduce
that, in case II,

x22
(x1 − δ)2

≤ 4(2rδ − 4r2)

(δ − 4r)
2 ≤ 8rδ

(δ − 4r)
2 ≤ 8

r

δ

1(
1− 4 rδ

)2 ≤ 16 (cr − 10)
2

(cr − 2)
3 .
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Thus

‖x− a′‖ =
√

(x1 − δ)2 + x22 ≤ |x1 − δ|

√
1 +

16 (cr − 10)
2

(cr − 2)
3 ,

and we have

‖x− a′‖+ x1 − δ ≤ |x1 − δ|

(√
1 +

16 (cr − 10)
2

(cr − 2)
3 − 1

)
≤ 8D (cr − 10)

2

(cr − 2)
3 ,

where we used
√

1 + x2 − 1 ≤ x/2 in the last inequality. Finally,

|ζ1 − ξ1| ≤
8D(cr − 10)2

(cr − 2)3
+

8D

cr − 2
.

• Case III: The left-most point of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) belongs to C2 ∩ C ′2. We

solve {
ξ21 + ξ22 = r22 = (‖x− a‖+ 2r)

2

(ξ1 − δ)2 + ξ22 = r′22 = (‖x− a′‖+ 2r)
2
,

which yields

ξ1 = x1 +
2r

δ
(‖x− a‖ − ‖x− a′‖) .

The right-most points belongs to C2 ∩ C ′1, and we have, as in Case I,

ζ1 = x1 +
2r (‖x− a‖+ ‖x− a′‖)

δ
.

Thus the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) along (a, a′) is given by

|ζ1 − ξ1| =
4r

δ
‖x− a′‖ ≤ 8D

cr − 2
.

• Case IV: as in Case I, the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) is given by

|ξ1 − ζ1| =
4r (‖x− a‖+ ‖x− a′‖)

δ
.

Since in this case ‖x− a‖+ ‖x− a′‖ ≤ δ − 4r, we have

|ξ1 − ζ1| ≤ 4r ≤ 4D

cr
.

Overall, since cr > 10, we have shown that the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) along

(a, a′) is upper bounded by 16D/(cr − 2).

3 Additional experiments

3.1 Comparison of embedding methods

Here we report the results of the comparison between embedding methods. The results
are provided as a supplement to Section 4.3. We use a subsample of n = 500 points
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Figure 9: Classification error of the various embedding methods and the KNN algorithm.

from the Gisette dataset (half as training set and half as test set). The dimension d ∈
{10, 20, 30, 40, 50} and k ∈ {2, 6, 10, 14, 18} of the KNN are adjusted with 2-fold cross-
validation on the training set. Figure 9 shows the classification error of the four embed-
ding methods: GNMDS (Agarwal et al., 2007), LOE (Terada and von Luxburg, 2014) and
STE/TSTE (van der Maaten and Weinberger, 2012).
The TSTE consistently outperforms other methods. Therefore, we use it as the main com-
petitor against our proposed random forest.

3.2 CompRF and subsampling

In this section we investigate the role of subsampling in the performance of the CompRF.
To construct each tree of the CompRF, we randomly pick a subsample of r|S| points among
the set of training points (S) without replacement and make the tree only based on the
subsample. We use the following range for the subsampling ratio: r ∈ {0.1, 0.2, 0.4, 1}. The
left panel of Figure 10 shows the average classification error of the CompRF for various
values of r. The right plot in this figure shows the normalized average MSE of the CompRF
for regression datasets. Note that the range of MSE depends on the dataset. To make a
unified figure, for each dataset, we divided all average values of the MSE by the maximum
value of the MSE on that particular dataset.
Our results hardly show any significant positive effect of subsampling. On the contrary, in
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Figure 10: (Left) Average classification error of the CompRF algorithm on four classifica-
tion datasets and various subsampling ratios (r). (Right) Normalized average MSE of the
CompRF algorithm on four regression datasets and various subsampling ratios (r). The
X-axis denotes the datasets. Note that for each dataset we divided all MSE values by the
maximum value of the dataset. In this way bars can be plotted together.

classification tasks we see a significant decrease in error when the whole dataset is used.
Only in case of ForestFire dataset do we see some slight improvement.

3.3 Running time of CompRF vs. Embedding procedures

Here we report the running time of CompRF in comparison with TSTE embedding combined
with KNN. Note that if we apply CART forest after embedding, it can be even more time
consuming. In addition, the running time of embedding does not change significantly if we
apply the same triplets as the CompRF or a random subsample of triplets, therefore we
report the running time based on the same triplets as the CompRF.
We use the subsample of Gisette dataset with n = 1000 point, similar to the Section 4.3.
We perform the embedding with d = 10 and d = 50 dimensions and fixed k = 5. Table 1
shows the running time of the experiments. Since the running time of embedding can change
significantly based on the initial conditions, we run embedding algorithms five times and
we report the average running time. The algorithms are implemented on a single core CPU
and the running times are reported in seconds.

Table 1: Comparison of computation time between CompRF and TSTE+KNN. The re-
ported values are in seconds.

Number of trees (M) 1 5 10 20

CompRF 1 4 8 16
TSTE+KNN (d=10) 148 236 350 595
TSTE+KNN (d=50) 185 654 1214 2398

The required running time for the embedding algorithm is orders of magnitude longer than

20



the CompRF. Moreover, the embedding algorithms need a cross-validation step to adjust
the number of dimensions and other parameters of the classifier.
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