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ABSTRACT: Network-based analyses of dynamical systems have become increasingly popular in climate science. Here,
we address network construction from a statistical perspective and highlight the often-ignored fact that the calculated
correlation values are only empirical estimates. To measure spurious behavior as deviation from a ground truth network,
we simulate time-dependent isotropic random fields on the sphere and apply common network-construction techniques.
We find several ways in which the uncertainty stemming from the estimation procedure has a major impact on network
characteristics. When the data have a locally coherent correlation structure, spurious link bundle teleconnections and spuri-
ous high-degree clusters have to be expected. Anisotropic estimation variance can also induce severe biases into empirical
networks. We validate our findings with ERAS data. Moreover, we explain why commonly applied resampling procedures
are inappropriate for significance evaluation and propose a statistically more meaningful ensemble construction frame-
work. By communicating which difficulties arise in estimation from scarce data and by presenting which design decisions
increase robustness, we hope to contribute to more reliable climate network construction in the future.

SIGNIFICANCE STATEMENT: Network-based approaches have gained renewed attention regarding the predic-
tion of climate phenomena such as El Nifio events, extreme regional precipitation patterns, anomalous polar vortex dy-
namics, and regarding understanding the Earth system. Even though climate networks are constructed from a limited
amount of noisy data, they typically are not studied from a statistical perspective. However, such an approach is crucial:
due to sampling uncertainty, climate networks unavoidably contain false and missing edges. We analyze how sampling
artifacts impact the conclusions drawn from the networks and present both pitfalls and statistically robust procedures of
network construction and evaluation. We aim to contribute to understanding the limitations and fully leveraging the
potentials of network methods in climate and Earth system science.

KEYWORDS: Pattern detection; Statistics; Stochastic models; Teleconnections; Data science; Machine learning

1. Introduction

Climate networks are constructed to find complex struc-
tures such as teleconnections (Boers et al. 2019), clusters
(Rheinwalt et al. 2015), hubs, regime transitions (Fan et al.
2018), and bottlenecks (Donges et al. 2009a) in the climatic
system. Network-based approaches have shown considerable
improvements in the prediction of several climate phenomena
(Ludescher et al. 2021) such as El Nifio events (Ludescher
et al. 2014), extreme regional precipitation patterns (Boers et al.
2014), and anomalous polar vortex dynamics (Kretschmer et al.
2017). Typically, climate networks are constructed using a
three-step procedure. First, choose a dataset of climatic varia-
bles, such as temperature or precipitation, measured on a fixed
spatial grid. Then choose a notion of similarity between pairs of
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locations based on the corresponding time series in the dataset.
Finally, construct a network with spatial locations as nodes and
with edges between those pairs of locations that have the stron-
gest similarities. Since we only have access to noisy time series
of finite length, the calculated similarity values between pairs of
locations will be noisy themselves: they are subject to estimation
variability. As a consequence, any climate network that is con-
structed using a finite number of data might contain false edges
(which should not be present) and have missing edges (which
should be present). This leads us to the following important
questions that have not received enough attention so far. Which
kinds of distortions are induced in climate networks due to the
sampling variability of the underlying time series? Which features
of climate networks can be attributed to underlying structure, and
which are random artifacts due to finite-sample variation? These
are the questions we discuss in this paper from a decisively sta-
tistical point of view. First observe that a climate network is
built on a large number of pairwise similarity estimates: if our
grid consists of 10* locations, a naive procedure needs to esti-
mate 10® pairwise similarities. Even extremely well-behaved es-
timators with a small variability will create a nonnegligible
number of wrong edges in the network. But not many “wrong”
or “missing” edges are necessary to distort important structural
network characteristics. Even a single false long-range edge
can substantially distort important network measures such as
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shortest pathlengths, small-world properties, centrality, and be-
tweenness measures, or the emergence of teleconnections. And
through the local correlation structure that is inherent in cli-
mate data, wrong edges can propagate, leading to many wrong
edges, even inducing wrong “link bundles,” that is, distinct re-
gions connected by multiple edges.

To assess the severeness of this problem, we introduce a
new null model for sampling time series that shares important
properties with Earth’s climate system but at the same time is
simple enough that we can control it, understand it, and simu-
late from it. To achieve this, we employ a locally correlated,
isotropic data—generating process: isotropic random fields on
the sphere. The key feature of this model is that the similarity
of two time series only depends on the distance of the respec-
tive locations, nothing else. Locations that are close by tend
to have more similar time series than locations that are far
apart. Our model can thus capture important properties of
real climate networks such as link-length distributions, but
through its isotropic nature it is simple enough that erroneous
patterns in the network can be clearly identified as statistical
distortions. We introduce time dependence via a vector autor-
egression process [VAR(1)], which allows us to adjust the
autocorrelation on each node. Consequently, the temporal au-
tocorrelation structure can depend on the location, but the
spatial correlation structure, and with it the ground truth net-
work, remains approximately isotropic.

Sampling our null model allows us to systematically investi-
gate the connection between noise in the similarity estimates
and distortions in the network. Although the simulated data are
only locally correlated, we find that complex network structures
arise in the estimated networks because of imperfect estimation.
For example, global spatially coherent betweenness patterns
emerge (Fig. 5), which do not represent any ground truth struc-
ture. We also study the influence of choosing different similarity
estimators, the influence of network sparsity on betweenness,
distortions of other popular network measures, the emergence
of spurious link bundles and high-degree clusters, and the biases
introduced through anisotropic estimation variability. For exam-
ple, we find that inappropriate estimators can result in arbitrarily
wrong network estimates (Fig. 2). On the other hand, we illus-
trate that a conscious choice of network-construction techniques
may increase robustness with respect to ground truth networks
and may uncover different dynamics in the system. To filter out
spurious edges, Boers et al. (2019) consider links as significant
that do not appear alone but in bundled form. We show that
when the data are locally highly correlated, the presence of one
spurious long link makes the presence of neighboring links quite
likely as well, leading to entire spurious link bundles.

In addition to our simulation results, we validate our find-
ings with reanalysis data from the ERAS project. We find that
the tendency to form bundled connections increases with the
strength of local correlations (Fig. 10). The betweenness struc-
ture in temperature-based networks highly depends on the
network density and the used dataset. This raises the question
of whether finding a “betweenness backbone,” as in (Donges
et al. 2009a), is possible and meaningful. For most climatic
variables, we detect severe instability for long links. The no-
des of highest degree tend to have autocorrelation (cf. Palus
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et al. 2011). We conjecture that some edges from these nodes
are spurious and are induced by the increased estimation vari-
ability on these nodes.

The wide range of potential empirical distortions makes a
reassessment of many of the previous findings in the climate
network literature desirable. However, this poses a big chal-
lenge: while our simulation study is based on a model with
known ground truth, such a ground truth is not available for
real-world climate networks. Yet, as our simulations show, it
is extremely important to assess the reliability and robustness
of findings based on empirical climate networks. Typically, re-
searchers use approaches based on nodewise reshuffling of
the time series or edgewise reshuffling of the given network.
But we demonstrate that such techniques are inadequate to
capture the inherent uncertainty of the network. Instead, we
propose to estimate the variability in the network by comput-
ing multiple correlation estimates for each edge, while retain-
ing the original spatial similarity structure. With this approach,
we might get a statistically meaningful sense of the reliability
of network patterns constructed from real, noisy time series.

Our main contributions are summarized as follows:

¢ We introduce a VAR(1) process of isotropic random fields
on the sphere as a suitable null model for geophysical pro-
cesses, for which deviations from the ground truth are
easily detectable.

e We identify systematically occurring random artifacts and
distortions in empirical networks and analyze why they arise.

e We show which design decisions increase the robustness of
constructed networks.

e We validate our findings with ERAS data.

e We discuss the shortcomings of common network resam-
pling procedures for significance evaluations and propose a
statistically more meaningful framework based on jointly
resampling the underlying time series.

The rest of the paper is organized as follows. In section 2
we describe typical network-construction steps and introduce
the isotropic data—generating process we employ in our simu-
lations. We present intuitions about the ground truth net-
works and explain when spurious behavior is to be expected
in the empirical networks. Section 3 demonstrates several
common patterns of spurious behavior in typically constructed
networks, categorized into 1) estimator selection, 2) network
measures, 3) link bundles, and 4) anisotropy. Section 4 points
out problematic practices in significance testing and potential
improvements. Finally, section 5 provides conclusions and pos-
sibilities for future work. For readers who are unfamiliar with
climate network methodology, we have assembled an intro-
duction in the online supplemental material (section A).

2. Network construction for data from spatiotemporal
random fields

To study artifacts that are introduced by estimation proce-
dures, we need access to a “ground truth network,” which is
not available for real-world climate data. We therefore intro-
duce a manageable stochastic process over Earth with known
ground truth structure. We then use the model to evaluate
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how estimation procedures introduce random artifacts into
the network estimates depending on network-construction
steps and the features of the data distribution.

a. Climate network construction

The generic procedure of constructing climate networks
from spatiotemporal data is described in algorithm 1: most
studies deal with univariate real-valued data at each point in
time and space such as temperature, pressure, or precipita-
tion, and so do our experiments. Given a dataset of such time
series on a fixed grid, the similarity between pairs of grid
points is estimated. Popular similarity measures include the
Pearson correlation, mutual information (MI), and event syn-
chronization (Quian Quiroga et al. 2002). There are several
ways to construct a network based on all pairwise similarity
estimates. Most often, unweighted density-threshold graphs
are constructed (Tsonis and Roebber 2004; Yamasaki et al.
2008; Agarwal et al. 2019; Kittel et al. 2021), which means that
an edge of weight 1 is formed between two grid locations v;
and v; when the corresponding similarity estimate S ; sur-
passes a certain threshold. This threshold is chosen so that a
desired network density is attained. Another popular ap-
proach is edge formation based on significance tests with re-
spect to reshuffled time series (Palu$ et al. 2011; Boers et al.
2013, 2014; Deza et al. 2015). Here, the time series at both
end locations of an edge are reshuffled to get a baseline distri-
bution of how similarity estimates behave when the time series
are independent. The edge is then formed if the original simi-
larity estimate surpasses a predefined significance threshold.

Algorithm 1: Functional network construction from spatially
gridded data

Input: Spatiotemporal data {X;}c()c[n, Xio = (Xit, ..., Xj,) of
time length n measured on p fixed locations V = {vji € [p]} in
some metric space (X, d) such as the sphere; similarity mea-
sure of interest §: X X X — [0, ©) between two locations
and estimator S : R” X R”" — [0, ) of S based on the finite
time series.

1) Estimate the similarity between two points v; and v;
based on the data and some estimator S of the chosen simi-
larity measure S: Sij = S’(X,, s X] ).

2) Construct a graph with adjacency matrix A from the sim-
ilarity estimates S, parameters 6 and potentially summary
statistics of the data. For example, in the case of the un-
weighted 7-threshold graph,

b. Stochastic ground truth model for spatiotemporal data

To quantify how the similarity estimation process influen-
ces the induced networks, we specify a ground truth model,
using random fields over the sphere, approximating Earth’s
surface. Our goal is not to give an accurate model of Earth’s
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climate, but to point out generic patterns of spurious behavior
in networks constructed from a limited amount of spatiotem-
poral data. The simpler the data-generating model remains, the
more accurately we can attribute spurious behavior to certain
features of the data distribution or the employed network-
construction steps. We use a data-generating process in which
the correlation between data measured at different locations
depends only on the distance between the locations. Such iso-
tropic random fields are common in geostatistics (Cressie 1993;
Lang and Schwab 2015) and they allow us to attribute anisotro-
pies in the estimated networks as erroneous.

Here, we first introduce the spatial stochastic process and,
in a second step, add time dependence. The mathematical
process that we are going to use is an “isotropic Gaussian ran-
dom field.” A random field assigns a real value to every point
of the sphere, imagine a surface temperature field. Centering
(and possibly detrending and normalizing) data on each point
in space yields a zero-mean random field, representing so-
called (detrended standardized) anomalies. When evaluating
a Gaussian random field on finitely many points, its values
are jointly Gaussian distributed. For isotropic random fields,
the covariance between two points is solely determined by the
distance between the points. Hence, a zero-mean isotropic
Gaussian random field is fully characterized by its covariance
function k, which determines how smoothly and to what ex-
tent the random field varies across space.

Formally, a zero-mean isotropic Gaussian random field G on
the sphere with covariance function & : [0, 7] — R is defined as
a collection of real-valued random variables {G(v)}, s such
that E[G(v)] =0 for all v € §* and, given a finite grid
{vifi=1,...» C §?, the random field’s values on the grid points
are jointly Gaussian distributed,

(G, ... G(w,)) ~ N, 3),

with covariance 3; = k(|v; — v})).

One popular covariance function is the Matérn covari-
ance function (section B.2 in the supplemental material),
whose smoothness parameter v and scale parameter ¢ make
it flexible as well as interpretable. It allows interpolation
between the absolute exponential kernel and the Gaussian
radial basis function (Stein 1999, chapter 2.10) and mono-
tonically decreases with distance, irrespective of parameter
choice. We introduce the abbreviation MIGRF(v, ¢) for a
zero-mean isotropic Gaussian random field with Matérn co-
variance, smoothness v, and length scale ¢. Figure 1d shows
realizations of an MIGRF with varying parameters, when tra-
versing the sphere from South to North Pole. Low-smoothness
v results in abrupt changes. As expected, processes with smaller
length scales ¢ contain larger fluctuations on a fixed interval.
We choose v € {0.5, 1.5} and ¢ € {0.1, 0.2} (in radians) to reflect
realistic values for climatic time series (Guinness and Fuentes
2016) (section B.3 in the supplemental material), as well as to
point out their influences on the estimation procedure.

We introduce time dependence via a vector autoregres-
sion VAR(1) (section B.1 in the supplemental material) that
allows us to assign any desired lag-1 autocorrelation to each
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FIG. 1. Isotropic Gaussian random fields. (a) The Matérn correlation function for different parameter choices.
(b) True Matérn correlation with respect to the green point for v = 1.5 and ¢ = 0.2. (c) A realization of an MIGRF(v = 1.5,
¢ =0.2), representing anomalies at a fixed time point. The correlation function induces smoothly varying values. The
dashed black line shows the geodesic path from South Pole to North Pole used in (d). (d) Random realizations of
MIGRFs with different parameters evaluated on the geodesic path shown in (c).

node of the network. Under this basic time dependence, we
will be able to separate the effect of autocorrelation on the
estimation procedure from other influences.

¢. Ground truth networks and imprecise estimates
1) GROUND TRUTH NETWORKS

If we fix a grid and a network-construction method, a
ground truth data distribution leads to a “true network” on
this grid. Given the underlying data distribution, as in our
model, we can calculate the true pairwise similarities between
grid points. The network-construction procedure then deter-
mines the ground truth network based on the true similarities.
For example, a ground truth density-threshold graph simply
consists of the edges corresponding to the largest similarity
values. How much ground truth structure of a climatic process
can be captured in the ground truth network depends on the
choice of climatic variable, grid, similarity measure, and
network-construction scheme. Another question is then whether
this ideal network can be approximated with the available em-
pirical data and estimators.

2) ERRORS IN THE ESTIMATED NETWORKS

Given a finite amount of data, we only have access to im-
perfect estimates of the true similarity values. Consequently,
networks constructed from data as well as their characteristics
will only be estimates of the corresponding ground truth
quantities and inherit intrinsic variability. When the chosen
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similarity estimator is not suitable for the estimation task, the
constructed graphs can look arbitrarily wrong (Fig. 2). How-
ever, by simple inspection, it is not possible to judge whether
a constructed climate network reflects “true” aspects of the
physical system or whether it is dominated by random arti-
facts introduced through the estimation procedure. For this
reason, in our simulations we mainly address the following
question: How do the estimated networks and their characteris-
tics differ from their corresponding ground truth quantities?
The answer depends on the properties of the random field, the
employed estimator, and the considered network characteristic
(see section 3). To get started, let us discuss how wrong indi-
vidual edges occur and then how wrong link bundles arise.

3) ERRORS IN INDIVIDUAL EDGES

Errors in the network occur because the similarity esti-
mates between locations vary around the ground truth simi-
larity values. False-positive edges are wrongly included in the
empirical network but are not present in the ground truth
network; false-negative edges appear in the ground truth net-
work but are missing in the empirical network. Let us under-
stand when these two cases arise in threshold graphs. Assume
that the similarity estimate S over an edge with ground truth cor-
relation S is imprecise and follows the distribution A(E[S], 6?)
(we consider the normal distribution for simplicity; other distri-
butions lead to qualitatively similar behavior). The probability
that this edge is formed in the 7-threshold graph is then given by
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FIG. 2. (a) Ground truth network of density 0.005 for monotonically decreasing correlation structure. The shortest links possess the larg-
est ground truth correlation values. The graph is not perfectly isotropic because an isotropic grid does not exist. (b) Empirical estimate of
the left ground truth network with the same network density given lognormal data based on an MIGRF(v = 1.5, ¢ = 0.2) with variance 10
and n = 100 using empirical Pearson correlation [see section 3c(1)]. Many false links arise due to high estimation variance. Many long
links clutter the image. Observe (strong) spurious bundled teleconnections. (c) Empirical estimate over the same data using Spearman cor-

relation. No long links are formed, but we can observe spuriously dense regions.

O((E[S] - 7)/0), where @ denotes the cumulative distribution
function of the standard normal distribution. A false positive
can only occur when the true similarity S is smaller than the
threshold 7. Then the error probability is not negligible when the
similarity estimates are upward biased (E[S]>>S), or when
the estimation variance o” is large. Analogously, the probabil-
ity of a false negative is not negligible when the estimate is
downward biased or when the estimation variance o” is large.
As we will see in section 3f, the variability in the estimates
grows, or in other words, their signal-to-noise ratio decreases,
with data scarcity and increasing autocorrelation in the obser-
vations. A bias in the similarity estimates can be introduced by
the estimator. Taken together, finding an estimator with a
good bias-variance trade-off for the given similarity mea-
sure can significantly reduce the number of false edges. In
particular, when the desired graph density is chosen so large
that many ground truth correlation values of included and
excluded edges are similarly small, the likelihood of spuri-
ous behavior increases as these edges cannot be well distin-
guished under the estimation variance. We see this in our
experiments below when we construct dense graphs over a
small-scale correlation structure (Fig. 3).

4) HOW ERRORS SPREAD LOCALLY DUE
TO COVARIANCE

When the data are locally highly correlated, as is typical for
climatic variables, this correlation may carry over to the joint
distribution of similarity estimates. As a result, an error may
propagate from one edge to edges on neighboring nodes in
the following way: when the similarity estimate on one false
edge is spuriously large, it is likely that the correlation esti-
mates on edges on neighboring nodes are similarly large, so
that these neighboring edges are also falsely included in the
empirical network, resulting in false bundles of edges. In density-
threshold graphs, this makes some regions spuriously appear
denser than others. A formal argument is given in section C in
the supplemental material. Combining the thoughts above,
false bundles of edges occur with high probability when meas-
urements from close by points are highly correlated and the sim-
ilarity estimates are imprecise. Find related simulation results
in section 3e.
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3. Spurious behavior in networks from finite samples

In this section, we explore the effects that imprecise esti-
mates impose on commonly constructed climate networks.
We do so by simulating the isotropic Gaussian random fields
introduced above.

a. Network construction

We construct networks following algorithm 1. To approxi-
mately remove the effects of anisotropic grids, we generate a
Fekete grid (Bendito et al. 2007) after 1000 iterations with
5981 points, approximately realizing an isotropic grid of 2.5° res-
olution. If not stated differently, we sample an MIGRF (v, ¢) in-
dependently in time with n = 100. From the ERAS dataset
between 1979 and 2019, we consider monthly temperature of
air 2 m above the surface (t2m), surface pressure (sp), total pre-
cipitation (pr), and geopotential height at 250, 500, or 850 hPa
(250, 7500, z850) as well as daily 2m (dt2m). We linearly
detrend all ERAS variables and subtract the monthly climatol-
ogy. Finally, real and simulated datasets are centered and nor-
malized in each grid point to result in detrended anomalies.
In some simulations, time dependence is introduced, amplifying
our findings (see section 3f and section D in the supplemental
material). Many studies construct correlation networks from
sliding windows (Radebach et al. 2013; Hlinka et al. 2014; Fan
et al. 2017; Kittel et al. 2021). Typically, these windows
cover at most a year of daily observations. While more
measurements in time increase the accuracy of estimated
networks, our findings also hold for larger n (section E in
the supplemental material).

b. Visualizations

For network visualizations we use a Fekete grid with 1483
points, approximately realizing a 5° resolution. In our figures,
dashed lines always denote ground truth values. Uncertainty
bands cover the range between the empirical 0.025 and 0.975
quantile from 30 independent repetitions. The letter x and the
circle denote 95% and 99% quantiles of a distribution, respec-
tively, and the triangles, the minimal and maximal values of a
distribution.
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FIG. 3. Errors in empirical networks. (a) False discovery rate (FDR) for various similarity measures and different estimators of the

same similarity measures for a nonsmooth MIGRF with short length

scale v = 0.5 and ¢ = 0.1. Sparse networks have a better FDR. Em-

pirical Pearson correlation and the Ledoit-Wolf estimator coincide in unweighted density-threshold networks (see main text). (b) As in

(a), but for a smooth MIGRF with long length scale v = 1.5 and ¢ =

0.2. Estimation performance remains reasonably good up to larger

network density. (c) Error of estimated correlation matrix from ground truth in Frobenius norm, which is proportional to the root-mean-square

error per edge weight estimate. The number of errors in empiric
estimators, such as the Ledoit-Wolf estimator, drastically reduce
Pearson correlation.

c. Estimation

1) UNSUITABLE ESTIMATORS CAN INDUCE MANY
WRONG EDGES

(i) Problem

When the marginal distribution on the nodes is heavy
tailed, as in the case of precipitation data, commonly applied
estimators become inadequate if they are sensitive to outliers.
For instance, the naive correlation estimator has unusably
large variance under heavy-tailed distributions; yet it has been
applied to precipitation data in several studies (Scarsoglio et al.
2013; Ekhtiari et al. 2019, 2021).

(ii) Simulation results

We simulate heavy-tailed data by exponentiating the MIGRF
data. Let G be a centered MIGRF with correlation function
k(-) and variance ¢%. By setting H(x) = exp[G(x)], H defines
a lognormal isotropic random field. For each point x on the
sphere, we get

ekl —

Cor[H(x), H(y)] = —

e’

Choosing o? allows to continuously adjust the heaviness
of the tails: while small values of ¢ approximately recover
the original correlation function k, increasing o exponen-
tially enhances the tail strength. For large o2, the correla-
tion between grid points quickly drops to 0 with distance.
We choose o = 10, which is the correct order of magnitude
to fit precipitation tails on global mean (Papalexiou 2018).
Note that the precipitation distribution on Earth crucially
depends on the location. Here, we solely aim to illustrate
the intricacy of handling heavy-tailed data through isotro-
pic simulations. Figure 2 demonstrates that the empirical
correlation fails as a correlation estimator of data sampled
from H. Because the empirical covariance is an average of
lognormal random variables, it will be a large variance esti-
mator of the population covariance. The large estimation
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al networks is alarming for all hyperparameter settings. Suitable
the error in the edge weight estimates compared with empirical

variability induces many (possibly bundled) false and miss-
ing links. For short time series, you can imagine single
events dominating on each node. When these events occur
at the same time for a pair of nodes, the nodes will show
high empirical correlation, although the true correlation
may be zero.

(iii) Consequences

Removing outliers or finding a suitable data transformation
reduces this problem. By design, log(-) would transform the
random field back to a Gaussian random field. Alternatively,
we can employ an estimator that is robust to heavy-tailed distri-
butions (Minsker and Wei 2017). Since the Spearman correlation
is invariant under monotonous transformations, it produces ex-
actly the same results for the normal and lognormal data. An al-
ternative to Spearman correlation with faster convergence rates
is Kendall’s tau (Gilpin 1993). Barber et al. (2019) consider sev-
eral of the above ideas to estimate correlation in the context of
hydrologic data.

2) COMPARING SIMILARITY MEASURES AS WELL
AS ESTIMATORS

(i) Problem

While the empirical Pearson correlation estimator has often
been equated with the corresponding similarity measure, we
can strictly reduce the estimation variance in Pearson correla-
tion networks by considering a different estimator—even for
Gaussian data. Radebach et al. (2013) have shown that many
characteristic network patterns are already visible in Pearson
correlation networks, and historically, the Pearson correlation
has been the most popular similarity measure (e.g., Tsonis
and Roebber 2004; Tsonis et al. 2008; Yamasaki et al. 2008;
Palus et al. 2011; Fan et al. 2022). As estimators of mutual in-
formation need to be able to capture arbitrarily complex
dependence structures, they tend to require even larger sample
size to achieve reliable accuracy than do correlation estimators,
resulting in more spurious behavior given the same sample size.
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FIG. 4. Fluctuating edges in real networks. (a) Fraction of differing edges between pairs of empirical Pearson corre-
lation networks from various climatic variables obtained by bootstrapping in time. As we divide by the number of
links in one of both compared networks, the fraction of differing edges varies between 0, when no link differs, and 2,
when all links differ. (b) Total link-length distribution (light) vs link-length distribution of differing edges (dark) be-
tween bootstrap networks of t2m. The link-length distribution is similar to the one from our MIGRF (cf. Fig. 7c). The
short edges do not differ among bootstrap samples; long edges fluctuate heavily.

(ii) Simulation results

We consider the following similarity measures and their es-
timators. For M1, we use a simple binning estimator as applied
in the complex network python package pyunicorn (Donges
et al. 2015), where we use |#n/5] bins as suggested in Cellucci
et al. (2005) [a more conservative criterion than Cochran’s,
which was applied in Donges et al. (2009b)]. To evaluate the
importance of the estimator, we also employ a bias-corrected
version of the popular Kraskov, Stogbauer, and Grassberger
(KSG) mutual information estimator (Gao et al. 2018; Kraskov
et al. 2004) with k = 5. As an alternative to mutual information,
we explore an estimator of the Hilbert-Schmidt independence
criterion (HSIC) for random processes (Chwialkowski and
Gretton 2014). For correlation, we employ the linear Ledoit—
Wolf estimator (Ledoit and Wolf 2004), which counteracts the
distortion of high-dimensional empirical correlation matrices by
shrinking their eigenvalues.

Figure 3 shows the false discovery rate (FDR), which meas-
ures the fraction of false links, as a function of network density.
Although fewer true links are available for small densities,
sparse graphs are more accurate in terms of the FDR, because
the correlation values of ground truth links can be empirically
distinguished with high certainty from most false links under
estimation variability. For random fields with long length scales,
this empirical separability remains intact for longer edges. There-
fore, the FDR remains low up to larger network densities (see
also Fig. 9). Given the same amount of data, more complex simi-
larity measures perform worse. For sparse graphs, the Hilbert—
Schmidt independence criterion shows promising performance
compared with the mutual information estimators. The bias-
corrected KSG estimator is computationally expensive with
fluctuating performance, and the binned MI estimator is strictly
worse than HSIC. Unweighted empirical Pearson and Ledoit—
Wolf density-threshold networks coincide because they pro-
duce the same ranking of edge weights. Figure 3c shows the er-
ror of the estimated correlation matrix compared with the
ground truth in Frobenius norm under various hyperparameter
settings. The ground truth correlations grow monotonously
from left to right. Note that the empirical correlation matrix
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makes large estimation errors irrespective of the parameters of
the random field. The linear Ledoit-Wolf estimator improves
the estimation in all cases. Consequently, fixed-threshold net-
works, as well as weighted networks, are better approximated
by the Ledoit-Wolf estimator. The less correlated the grid
points are, the lower the error of the Ledoit-Wolf estimator as
it shrinks the correlation estimates toward an identity matrix.
For real data, we cannot calculate the FDR as we do not
know which links are false. Instead, we generate bootstrap
samples of all time points and create perturbed datasets by in-
cluding the measurements on the entire grid at these time
points. We then construct several networks with the same
density from these perturbed datasets and finally compute the
fraction of differing links between pairs of sampled Pearson
correlation networks (Fig. 4a). With this procedure, we ap-
proximate the network distribution induced by the dataset
(see section 4b). High autocorrelation causes the need for
blockwise bootstrapping to receive consistent estimates, as
the network variability is increasingly underestimated with
increasing autocorrelation. The results should be seen as a
conservative preliminary insight into the intrinsic network
variability and the number of unstable edges. A robust network-
construction procedure should yield a low fraction of fluctu-
ating links across bootstrap draws. Narrow uncertainty bands
indicate that varying weighting of climatic regimes among the
bootstrap samples has limited influence on the networks. Ob-
serve that in t2m and pr networks, an alarming fraction of
links fluctuate (Fig. 4a), while networks from smooth varia-
bles with long length scale, such as sp and z850, fluctuate less
(consistent with Fig. 9). In contrast to the synthetic data,
the curves do not grow monotonically in the sparse regime.
Therefore, resampled networks may be helpful in choosing a
maximally robust density, minimizing the fraction of varying
edges in the empirical networks. Density up to 0.01 seems to
be an appropriate choice for t2m; larger densities dramati-
cally decrease the network robustness. The differing links do
not contain short edges (Fig. 4b), as the correlation values on
short edges are consistently large. Longer links heavily de-
pend on the sampled time points and are sensitive to slight
perturbations of the correlation estimates. Hence, the decision
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FIG. 5. Betweenness maps of simulated networks. Transformed betweenness maps [log;o(BC + 1)] of empirical networks with density
0.005 on a Gaussian grid. The maps depict independent realizations of the same data-generating process MIGRF(v = 1.5, ¢ = 0.2). Be-
cause of the anisotropic grid, the poles are highly intraconnected. The density is chosen such that there exist few random shortest paths
connecting the poles, resulting in pronounced spurious global betweenness pathways, which alter in location and extent among indepen-

dent realizations of the data and do not represent ground truth structure.

as to which long links to include should not be based on
a single correlation estimate. Geopotential heights behave
differently and become more stable at larger densities as
they have a correlation structure with an extremely large
length scale.

(iii) Consequences

The selection of appropriate similarity measures depends on
how much data are available. Mutual information estimators
require much more data to yield reliable results than do corre-
lation estimators. HSIC shows promising performance in our
experiments. It may be worth exploring other alternatives to
MI, such as Romano et al. (2018), in the future. Although not
particularly well suited for random field data, the Ledoit-Wolf
estimator is a uniform improvement over naive empirical cross
correlation when estimating weighted Pearson correlation net-
works. Future work should put more focus on which estima-
tors perform best on meteorological data.

For most climatic observables, we detect severe network
variability for long links. To quantify the structural and
link robustness of constructed networks, we need resam-
pling procedures that adequately capture the intrinsic net-
work variability (section 4b). Small network densities yield
more robust networks in terms of differing/fluctuating links
in resampled networks.

d. Network measures

1) EXTREME BETWEENNESS VALUES ARE UNRELIABLE
IN SPARSE NETWORKS

(i) Problem

The betweenness centrality of a node vy is given by the
expression zi,j 10 J.(k)/crl. P where o;; is the total number of
shortest paths from node v; to node v; and o;(k) is the num-
ber of those paths that pass through vy. In climate networks,
high betweenness indicates that a location connects different
regions. In temperature-based networks, such locations have
been interpreted as key pathways of energy flow (Donges
et al. 2009a). When interested in nodes of highest between-
ness, it is tempting to construct sparse networks, because the
most important points stand out more distinctly. However, we
find that variability in betweenness also increases drastically
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when sparsifying the network. Donges et al. (2009a) operate
exactly in this unreliable regime. Let us explain the influence
of sparsity on betweenness in climate networks.

(ii) Simulation results

Figure 5 shows betweenness maps of networks, constructed
as in Donges et al. (2009a), from independent draws of our lo-
cally correlated, isotropic model. Because of the standard
Gaussian grid, randomly fluctuating betweenness “backbones”
emerge that form global pathways but do not represent ground
truth structure. The density is chosen such that there exist few
pathways between the well-intraconnected poles. Which exact
nodes lie on the few shortest paths between the node-dense po-
lar regions depends on which false links are formed in the re-
gion between the poles. Phrased differently, the supposedly
important nodes with high betweenness are precisely the ones
with false edges and alter between different realizations of the
process. The difference map (Fig. 2 of Donges et al. 2009a)
between networks from different datasets shows strikingly
similar north-south pathways. The latticelike structure makes
the sparse ground truth network highly susceptible in terms
of betweenness. Since the data-generating process is isotro-
pic and the Gaussian grid is symmetric with respect to longi-
tudinal rotations, nodes on the same latitude have equal
betweenness values in the ground truth network. The empir-
ical networks consistently show systematically different be-
tweenness distributions. While the maximal betweenness
value in the ground truth network is 1.68 X 1073, the empiri-
cal networks have much more pronounced extreme between-
ness values of 2.36 X 1072 + 8.23 X 10~*. A visualization of
the heavy-tailed betweenness distribution, as well as an anal-
ysis of Forman curvature, can be found in section F.1 in the
supplemental material. Even sparse ground truth networks
are highly sensitive to slight perturbations of the grid and
network density, as there exist few important pathways
connecting different regions in a sparse, locally connected
network.

Figure 6 shows betweenness maps of networks, constructed
from daily t2m as in Donges et al. (2009a), but on the approxi-
mately isotropic Fekete grid. The betweenness “backbone”
fluctuates more in the sparse than in the dense networks. The
maps in Fig. 6 and the maps presented in the original study
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FIG. 6. Betweenness maps of temperature networks. Transformed betweenness [log;o(BC + 1)] for daily t2m in a mutual information
network (using the binning estimator) with various densities, as shown in (Donges et al. 2009a), but with (asymptotically isotropic) Fekete
grid and ERAS data between 1979 and 2019. (a)—(c) Network density = 0.004, 0.005, and 0.006, respectively. (d)—(f) Network density = 0.08,
0.1, and 0.12, respectively. Sparse networks fluctuate much more and have few pronounced extreme points. Sparse and dense networks look
very different. The results in Donges et al. (2009a) also look very different from ours.

all look different because betweenness is unstable with re-
spect to grid choice, dataset, and network density. This raises
the question of which, if any, map shows a true betweenness
“backbone.” The dense networks (Figs. 6d—f) are more stable
than the sparse networks (Figs. 6a—c) with respect to network
density perturbation. But only after validating that the finite-
sample network variability is also low (see section 4b) should
patterns uncovered by network methods be interpreted with
domain knowledge to generate novel insights. Here, a domain
expert might point out stable ENSO-like patterns in the east-
ern Pacific in the stable dense networks (Figs. 6d—f) and get
the inspiration to more closely investigate surprising patterns
revealed by the betweenness map.

(iii) Consequences

Although forming sparse networks yields a better false discov-
ery rate, some network characteristics become extremely sensi-
tive to small perturbations of the networks and their explanatory
power diminishes, even in ground truth networks. For each net-
work measure of interest, the choice of network density consti-
tutes a trade-off between the false discovery rate and the
robustness of the measure. Here too, independent ensemble
members can help to identify stable patterns (see section 4b).
When a network measure fluctuates too much, as betweenness
does in sparse networks, results should not be overinterpreted.

2) EMPIRICAL DISTRIBUTIONS OF NETWORK
CHARACTERISTICS ARE DISTORTED

(i) Problem

Here, we present further perspectives on systematic empiri-
cal distortions of network measures. Most studies focus on the
extremal nodes for any network measure, interpreting these
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as particularly important. Our simulation results show that,
under data scarcity, random nodes appear spuriously impor-
tant in the empirical networks, not representing important
nodes in the ground truth network. Several studies have con-
structed Pearson correlation networks from sliding windows
with 2.5° and finer resolution (Radebach et al. 2013; Hlinka
et al. 2014; Fan et al. 2017, 2018, 2022). Our simulation results
suggest that the naive correlation estimator and the short
time scale are risk factors for false edges and distortions in
global measures and extreme values of the networks.

(ii) Simulation results

Although all nodes have roughly the same degree/clustering
coefficient in the ground truth graph, the observed degree/
clustering coefficient distribution is more spread out in empiri-
cal networks (Fig. 7). The random distortions in empirical net-
works are similar in type and extent for different independent
realizations. Spuriously extreme nodes in the empirical net-
works vary between independent realizations and do not re-
flect important or clustered nodes in ground truth graphs.
While the average unweighted degree is consistent by con-
struction, the weighted degree is systematically upward biased,
as more links of low ground truth correlation are available
that can be overestimated than links of large ground truth cor-
relation that can be underestimated. The empirical (weighted)
clustering coefficient is strongly downward biased, as spurious
links connect otherwise disconnected regions and bundled
connections are not formed between entire neighborhoods.
Spurious teleconnections serve as shortcuts in the networks
and lead to systematically smaller shortest pathlengths. An-
other network measure related to the clustering coefficient
and shortest pathlengt