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ABSTRACT: Network-based analyses of dynamical systems have become increasingly popular in climate science. Here,
we address network construction from a statistical perspective and highlight the often-ignored fact that the calculated
correlation values are only empirical estimates. To measure spurious behavior as deviation from a ground truth network,
we simulate time-dependent isotropic random fields on the sphere and apply common network-construction techniques.
We find several ways in which the uncertainty stemming from the estimation procedure has a major impact on network
characteristics. When the data have a locally coherent correlation structure, spurious link bundle teleconnections and spuri-
ous high-degree clusters have to be expected. Anisotropic estimation variance can also induce severe biases into empirical
networks. We validate our findings with ERA5 data. Moreover, we explain why commonly applied resampling procedures
are inappropriate for significance evaluation and propose a statistically more meaningful ensemble construction frame-
work. By communicating which difficulties arise in estimation from scarce data and by presenting which design decisions
increase robustness, we hope to contribute to more reliable climate network construction in the future.

SIGNIFICANCE STATEMENT: Network-based approaches have gained renewed attention regarding the predic-
tion of climate phenomena such as El Niño events, extreme regional precipitation patterns, anomalous polar vortex dy-
namics, and regarding understanding the Earth system. Even though climate networks are constructed from a limited
amount of noisy data, they typically are not studied from a statistical perspective. However, such an approach is crucial:
due to sampling uncertainty, climate networks unavoidably contain false and missing edges. We analyze how sampling
artifacts impact the conclusions drawn from the networks and present both pitfalls and statistically robust procedures of
network construction and evaluation. We aim to contribute to understanding the limitations and fully leveraging the
potentials of network methods in climate and Earth system science.
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1. Introduction

Climate networks are constructed to find complex struc-
tures such as teleconnections (Boers et al. 2019), clusters
(Rheinwalt et al. 2015), hubs, regime transitions (Fan et al.
2018), and bottlenecks (Donges et al. 2009a) in the climatic
system. Network-based approaches have shown considerable
improvements in the prediction of several climate phenomena
(Ludescher et al. 2021) such as El Niño events (Ludescher
et al. 2014), extreme regional precipitation patterns (Boers et al.
2014), and anomalous polar vortex dynamics (Kretschmer et al.
2017). Typically, climate networks are constructed using a
three-step procedure. First, choose a dataset of climatic varia-
bles, such as temperature or precipitation, measured on a fixed
spatial grid. Then choose a notion of similarity between pairs of

locations based on the corresponding time series in the dataset.
Finally, construct a network with spatial locations as nodes and
with edges between those pairs of locations that have the stron-
gest similarities. Since we only have access to noisy time series
of finite length, the calculated similarity values between pairs of
locations will be noisy themselves: they are subject to estimation
variability. As a consequence, any climate network that is con-
structed using a finite number of data might contain false edges
(which should not be present) and have missing edges (which
should be present). This leads us to the following important
questions that have not received enough attention so far.Which
kinds of distortions are induced in climate networks due to the
sampling variability of the underlying time series? Which features
of climate networks can be attributed to underlying structure, and
which are random artifacts due to finite-sample variation? These
are the questions we discuss in this paper from a decisively sta-
tistical point of view. First observe that a climate network is
built on a large number of pairwise similarity estimates: if our
grid consists of 104 locations, a naive procedure needs to esti-
mate 108 pairwise similarities. Even extremely well-behaved es-
timators with a small variability will create a nonnegligible
number of wrong edges in the network. But not many “wrong”
or “missing” edges are necessary to distort important structural
network characteristics. Even a single false long-range edge
can substantially distort important network measures such as
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shortest pathlengths, small-world properties, centrality, and be-
tweenness measures, or the emergence of teleconnections. And
through the local correlation structure that is inherent in cli-
mate data, wrong edges can propagate, leading to many wrong
edges, even inducing wrong “link bundles,” that is, distinct re-
gions connected by multiple edges.

To assess the severeness of this problem, we introduce a
new null model for sampling time series that shares important
properties with Earth’s climate system but at the same time is
simple enough that we can control it, understand it, and simu-
late from it. To achieve this, we employ a locally correlated,
isotropic data–generating process: isotropic random fields on
the sphere. The key feature of this model is that the similarity
of two time series only depends on the distance of the respec-
tive locations, nothing else. Locations that are close by tend
to have more similar time series than locations that are far
apart. Our model can thus capture important properties of
real climate networks such as link-length distributions, but
through its isotropic nature it is simple enough that erroneous
patterns in the network can be clearly identified as statistical
distortions. We introduce time dependence via a vector autor-
egression process [VAR(1)], which allows us to adjust the
autocorrelation on each node. Consequently, the temporal au-
tocorrelation structure can depend on the location, but the
spatial correlation structure, and with it the ground truth net-
work, remains approximately isotropic.

Sampling our null model allows us to systematically investi-
gate the connection between noise in the similarity estimates
and distortions in the network. Although the simulated data are
only locally correlated, we find that complex network structures
arise in the estimated networks because of imperfect estimation.
For example, global spatially coherent betweenness patterns
emerge (Fig. 5), which do not represent any ground truth struc-
ture. We also study the influence of choosing different similarity
estimators, the influence of network sparsity on betweenness,
distortions of other popular network measures, the emergence
of spurious link bundles and high-degree clusters, and the biases
introduced through anisotropic estimation variability. For exam-
ple, we find that inappropriate estimators can result in arbitrarily
wrong network estimates (Fig. 2). On the other hand, we illus-
trate that a conscious choice of network-construction techniques
may increase robustness with respect to ground truth networks
and may uncover different dynamics in the system. To filter out
spurious edges, Boers et al. (2019) consider links as significant
that do not appear alone but in bundled form. We show that
when the data are locally highly correlated, the presence of one
spurious long link makes the presence of neighboring links quite
likely as well, leading to entire spurious link bundles.

In addition to our simulation results, we validate our find-
ings with reanalysis data from the ERA5 project. We find that
the tendency to form bundled connections increases with the
strength of local correlations (Fig. 10). The betweenness struc-
ture in temperature-based networks highly depends on the
network density and the used dataset. This raises the question
of whether finding a “betweenness backbone,” as in (Donges
et al. 2009a), is possible and meaningful. For most climatic
variables, we detect severe instability for long links. The no-
des of highest degree tend to have autocorrelation (cf. Paluš

et al. 2011). We conjecture that some edges from these nodes
are spurious and are induced by the increased estimation vari-
ability on these nodes.

The wide range of potential empirical distortions makes a
reassessment of many of the previous findings in the climate
network literature desirable. However, this poses a big chal-
lenge: while our simulation study is based on a model with
known ground truth, such a ground truth is not available for
real-world climate networks. Yet, as our simulations show, it
is extremely important to assess the reliability and robustness
of findings based on empirical climate networks. Typically, re-
searchers use approaches based on nodewise reshuffling of
the time series or edgewise reshuffling of the given network.
But we demonstrate that such techniques are inadequate to
capture the inherent uncertainty of the network. Instead, we
propose to estimate the variability in the network by comput-
ing multiple correlation estimates for each edge, while retain-
ing the original spatial similarity structure. With this approach,
we might get a statistically meaningful sense of the reliability
of network patterns constructed from real, noisy time series.

Our main contributions are summarized as follows:

• We introduce a VAR(1) process of isotropic random fields
on the sphere as a suitable null model for geophysical pro-
cesses, for which deviations from the ground truth are
easily detectable.

• We identify systematically occurring random artifacts and
distortions in empirical networks and analyze why they arise.

• We show which design decisions increase the robustness of
constructed networks.

• We validate our findings with ERA5 data.
• We discuss the shortcomings of common network resam-
pling procedures for significance evaluations and propose a
statistically more meaningful framework based on jointly
resampling the underlying time series.

The rest of the paper is organized as follows. In section 2
we describe typical network-construction steps and introduce
the isotropic data–generating process we employ in our simu-
lations. We present intuitions about the ground truth net-
works and explain when spurious behavior is to be expected
in the empirical networks. Section 3 demonstrates several
common patterns of spurious behavior in typically constructed
networks, categorized into 1) estimator selection, 2) network
measures, 3) link bundles, and 4) anisotropy. Section 4 points
out problematic practices in significance testing and potential
improvements. Finally, section 5 provides conclusions and pos-
sibilities for future work. For readers who are unfamiliar with
climate network methodology, we have assembled an intro-
duction in the online supplemental material (section A).

2. Network construction for data from spatiotemporal
random fields

To study artifacts that are introduced by estimation proce-
dures, we need access to a “ground truth network,” which is
not available for real-world climate data. We therefore intro-
duce a manageable stochastic process over Earth with known
ground truth structure. We then use the model to evaluate
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how estimation procedures introduce random artifacts into
the network estimates depending on network-construction
steps and the features of the data distribution.

a. Climate network construction

The generic procedure of constructing climate networks
from spatiotemporal data is described in algorithm 1: most
studies deal with univariate real-valued data at each point in
time and space such as temperature, pressure, or precipita-
tion, and so do our experiments. Given a dataset of such time
series on a fixed grid, the similarity between pairs of grid
points is estimated. Popular similarity measures include the
Pearson correlation, mutual information (MI), and event syn-
chronization (Quian Quiroga et al. 2002). There are several
ways to construct a network based on all pairwise similarity
estimates. Most often, unweighted density-threshold graphs
are constructed (Tsonis and Roebber 2004; Yamasaki et al.
2008; Agarwal et al. 2019; Kittel et al. 2021), which means that
an edge of weight 1 is formed between two grid locations y i
and y j when the corresponding similarity estimate Ŝij sur-
passes a certain threshold. This threshold is chosen so that a
desired network density is attained. Another popular ap-
proach is edge formation based on significance tests with re-
spect to reshuffled time series (Paluš et al. 2011; Boers et al.
2013, 2014; Deza et al. 2015). Here, the time series at both
end locations of an edge are reshuffled to get a baseline distri-
bution of how similarity estimates behave when the time series
are independent. The edge is then formed if the original simi-
larity estimate surpasses a predefined significance threshold.

Algorithm 1: Functional network construction from spatially
gridded data

Input: Spatiotemporal data {Xit}i2[p],t2[n],Xi? 5 (Xi1,… , Xin) of
time length nmeasured on p fixed locations V5 {y i|i 2 [p]} in
some metric space (X , d) such as the sphere; similarity mea-
sure of interest S : X 3 X " [0, ‘) between two locations
and estimator S̃ : Rn 3 Rn " [0, ‘) of S based on the finite
time series.

1) Estimate the similarity between two points y i and y j
based on the data and some estimator S̃ of the chosen simi-
larity measure S: Ŝij 5 S̃(Xi ? , Xj ? ).

2) Construct a graph with adjacency matrix Â from the sim-
ilarity estimates Ŝ, parameters u and potentially summary
statistics of the data. For example, in the case of the un-
weighted t-threshold graph,

Âij 5
1, Ŝij $ t,
0, Ŝij , t:

{

b. Stochastic ground truth model for spatiotemporal data

To quantify how the similarity estimation process influen-
ces the induced networks, we specify a ground truth model,
using random fields over the sphere, approximating Earth’s
surface. Our goal is not to give an accurate model of Earth’s

climate, but to point out generic patterns of spurious behavior
in networks constructed from a limited amount of spatiotem-
poral data. The simpler the data-generating model remains, the
more accurately we can attribute spurious behavior to certain
features of the data distribution or the employed network-
construction steps. We use a data-generating process in which
the correlation between data measured at different locations
depends only on the distance between the locations. Such iso-
tropic random fields are common in geostatistics (Cressie 1993;
Lang and Schwab 2015) and they allow us to attribute anisotro-
pies in the estimated networks as erroneous.

Here, we first introduce the spatial stochastic process and,
in a second step, add time dependence. The mathematical
process that we are going to use is an “isotropic Gaussian ran-
dom field.” A random field assigns a real value to every point
of the sphere, imagine a surface temperature field. Centering
(and possibly detrending and normalizing) data on each point
in space yields a zero-mean random field, representing so-
called (detrended standardized) anomalies. When evaluating
a Gaussian random field on finitely many points, its values
are jointly Gaussian distributed. For isotropic random fields,
the covariance between two points is solely determined by the
distance between the points. Hence, a zero-mean isotropic
Gaussian random field is fully characterized by its covariance
function k, which determines how smoothly and to what ex-
tent the random field varies across space.

Formally, a zero-mean isotropic Gaussian random field G on
the sphere with covariance function k : [0, p]" R is defined as
a collection of real-valued random variables {G(y)}y2S2 such
that E[G(y)]5 0 for all y 2 S2 and, given a finite grid
{y i}i51,… , p , S2, the random field’s values on the grid points
are jointly Gaussian distributed,

(
G(y1),…,G(yp)

)
; N(0, S),

with covariance Sij 5 k(|y i 2 y j|).
One popular covariance function is the Matérn covari-

ance function (section B.2 in the supplemental material),
whose smoothness parameter y and scale parameter ‘ make
it flexible as well as interpretable. It allows interpolation
between the absolute exponential kernel and the Gaussian
radial basis function (Stein 1999, chapter 2.10) and mono-
tonically decreases with distance, irrespective of parameter
choice. We introduce the abbreviation MIGRF(y , ‘) for a
zero-mean isotropic Gaussian random field with Matérn co-
variance, smoothness y , and length scale ‘. Figure 1d shows
realizations of an MIGRF with varying parameters, when tra-
versing the sphere from South to North Pole. Low-smoothness
y results in abrupt changes. As expected, processes with smaller
length scales ‘ contain larger fluctuations on a fixed interval.
We choose y 2 {0.5, 1.5} and ‘ 2 {0:1, 0:2} (in radians) to reflect
realistic values for climatic time series (Guinness and Fuentes
2016) (section B.3 in the supplemental material), as well as to
point out their influences on the estimation procedure.

We introduce time dependence via a vector autoregres-
sion VAR(1) (section B.1 in the supplemental material) that
allows us to assign any desired lag-1 autocorrelation to each
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node of the network. Under this basic time dependence, we
will be able to separate the effect of autocorrelation on the
estimation procedure from other influences.

c. Ground truth networks and imprecise estimates

1) GROUND TRUTH NETWORKS

If we fix a grid and a network-construction method, a
ground truth data distribution leads to a “true network” on
this grid. Given the underlying data distribution, as in our
model, we can calculate the true pairwise similarities between
grid points. The network-construction procedure then deter-
mines the ground truth network based on the true similarities.
For example, a ground truth density-threshold graph simply
consists of the edges corresponding to the largest similarity
values. How much ground truth structure of a climatic process
can be captured in the ground truth network depends on the
choice of climatic variable, grid, similarity measure, and
network-construction scheme. Another question is then whether
this ideal network can be approximated with the available em-
pirical data and estimators.

2) ERRORS IN THE ESTIMATED NETWORKS

Given a finite amount of data, we only have access to im-
perfect estimates of the true similarity values. Consequently,
networks constructed from data as well as their characteristics
will only be estimates of the corresponding ground truth
quantities and inherit intrinsic variability. When the chosen

similarity estimator is not suitable for the estimation task, the
constructed graphs can look arbitrarily wrong (Fig. 2). How-
ever, by simple inspection, it is not possible to judge whether
a constructed climate network reflects “true” aspects of the
physical system or whether it is dominated by random arti-
facts introduced through the estimation procedure. For this
reason, in our simulations we mainly address the following
question:How do the estimated networks and their characteris-
tics differ from their corresponding ground truth quantities?
The answer depends on the properties of the random field, the
employed estimator, and the considered network characteristic
(see section 3). To get started, let us discuss how wrong indi-
vidual edges occur and then how wrong link bundles arise.

3) ERRORS IN INDIVIDUAL EDGES

Errors in the network occur because the similarity esti-
mates between locations vary around the ground truth simi-
larity values. False-positive edges are wrongly included in the
empirical network but are not present in the ground truth
network; false-negative edges appear in the ground truth net-
work but are missing in the empirical network. Let us under-
stand when these two cases arise in threshold graphs. Assume
that the similarity estimate Ŝ over an edge with ground truth cor-
relation S is imprecise and follows the distribution N (E[Ŝ], s2)
(we consider the normal distribution for simplicity; other distri-
butions lead to qualitatively similar behavior). The probability
that this edge is formed in the t-threshold graph is then given by

FIG. 1. Isotropic Gaussian random fields. (a) The Matérn correlation function for different parameter choices.
(b) TrueMatérn correlation with respect to the green point for y 5 1.5 and ‘5 0:2. (c) A realization of anMIGRF(y 5 1.5,
‘5 0:2), representing anomalies at a fixed time point. The correlation function induces smoothly varying values. The
dashed black line shows the geodesic path from South Pole to North Pole used in (d). (d) Random realizations of
MIGRFs with different parameters evaluated on the geodesic path shown in (c).
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F
(
(E[Ŝ]2 t)/s

)
, where F denotes the cumulative distribution

function of the standard normal distribution. A false positive
can only occur when the true similarity S is smaller than the
threshold t. Then the error probability is not negligible when the
similarity estimates are upward biased (E[Ŝ].. S), or when
the estimation variance s2 is large. Analogously, the probabil-
ity of a false negative is not negligible when the estimate is
downward biased or when the estimation variance s2 is large.
As we will see in section 3f, the variability in the estimates
grows, or in other words, their signal-to-noise ratio decreases,
with data scarcity and increasing autocorrelation in the obser-
vations. A bias in the similarity estimates can be introduced by
the estimator. Taken together, finding an estimator with a
good bias-variance trade-off for the given similarity mea-
sure can significantly reduce the number of false edges. In
particular, when the desired graph density is chosen so large
that many ground truth correlation values of included and
excluded edges are similarly small, the likelihood of spuri-
ous behavior increases as these edges cannot be well distin-
guished under the estimation variance. We see this in our
experiments below when we construct dense graphs over a
small-scale correlation structure (Fig. 3).

4) HOW ERRORS SPREAD LOCALLY DUE
TO COVARIANCE

When the data are locally highly correlated, as is typical for
climatic variables, this correlation may carry over to the joint
distribution of similarity estimates. As a result, an error may
propagate from one edge to edges on neighboring nodes in
the following way: when the similarity estimate on one false
edge is spuriously large, it is likely that the correlation esti-
mates on edges on neighboring nodes are similarly large, so
that these neighboring edges are also falsely included in the
empirical network, resulting in false bundles of edges. In density-
threshold graphs, this makes some regions spuriously appear
denser than others. A formal argument is given in section C in
the supplemental material. Combining the thoughts above,
false bundles of edges occur with high probability when meas-
urements from close by points are highly correlated and the sim-
ilarity estimates are imprecise. Find related simulation results
in section 3e.

3. Spurious behavior in networks from finite samples

In this section, we explore the effects that imprecise esti-
mates impose on commonly constructed climate networks.
We do so by simulating the isotropic Gaussian random fields
introduced above.

a. Network construction

We construct networks following algorithm 1. To approxi-
mately remove the effects of anisotropic grids, we generate a
Fekete grid (Bendito et al. 2007) after 1000 iterations with
5981 points, approximately realizing an isotropic grid of 2.58 res-
olution. If not stated differently, we sample an MIGRF(y , ‘) in-
dependently in time with n 5 100. From the ERA5 dataset
between 1979 and 2019, we consider monthly temperature of
air 2 m above the surface (t2m), surface pressure (sp), total pre-
cipitation (pr), and geopotential height at 250, 500, or 850 hPa
(z250, z500, z850) as well as daily t2m (dt2m). We linearly
detrend all ERA5 variables and subtract the monthly climatol-
ogy. Finally, real and simulated datasets are centered and nor-
malized in each grid point to result in detrended anomalies.
In some simulations, time dependence is introduced, amplifying
our findings (see section 3f and section D in the supplemental
material). Many studies construct correlation networks from
sliding windows (Radebach et al. 2013; Hlinka et al. 2014; Fan
et al. 2017; Kittel et al. 2021). Typically, these windows
cover at most a year of daily observations. While more
measurements in time increase the accuracy of estimated
networks, our findings also hold for larger n (section E in
the supplemental material).

b. Visualizations

For network visualizations we use a Fekete grid with 1483
points, approximately realizing a 58 resolution. In our figures,
dashed lines always denote ground truth values. Uncertainty
bands cover the range between the empirical 0.025 and 0.975
quantile from 30 independent repetitions. The letter x and the
circle denote 95% and 99% quantiles of a distribution, respec-
tively, and the triangles, the minimal and maximal values of a
distribution.

FIG. 2. (a) Ground truth network of density 0.005 for monotonically decreasing correlation structure. The shortest links possess the larg-
est ground truth correlation values. The graph is not perfectly isotropic because an isotropic grid does not exist. (b) Empirical estimate of
the left ground truth network with the same network density given lognormal data based on an MIGRF(y 5 1:5, ‘5 0:2) with variance 10
and n 5 100 using empirical Pearson correlation [see section 3c(1)]. Many false links arise due to high estimation variance. Many long
links clutter the image. Observe (strong) spurious bundled teleconnections. (c) Empirical estimate over the same data using Spearman cor-
relation. No long links are formed, but we can observe spuriously dense regions.
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c. Estimation

1) UNSUITABLE ESTIMATORS CAN INDUCE MANY

WRONG EDGES

(i) Problem

When the marginal distribution on the nodes is heavy
tailed, as in the case of precipitation data, commonly applied
estimators become inadequate if they are sensitive to outliers.
For instance, the naive correlation estimator has unusably
large variance under heavy-tailed distributions; yet it has been
applied to precipitation data in several studies (Scarsoglio et al.
2013; Ekhtiari et al. 2019, 2021).

(ii) Simulation results

We simulate heavy-tailed data by exponentiating the MIGRF
data. Let G be a centered MIGRF with correlation function
k(?) and variance s 2. By setting H(x) 5 exp[G(x)], H defines
a lognormal isotropic random field. For each point x on the
sphere, we get

Cor[H(x), H(y)] 5 es
2k(|x2y|) 2 1
es 2 2 1

:

Choosing s 2 allows to continuously adjust the heaviness
of the tails: while small values of s2 approximately recover
the original correlation function k, increasing s exponen-
tially enhances the tail strength. For large s 2, the correla-
tion between grid points quickly drops to 0 with distance.
We choose s2 5 10, which is the correct order of magnitude
to fit precipitation tails on global mean (Papalexiou 2018).
Note that the precipitation distribution on Earth crucially
depends on the location. Here, we solely aim to illustrate
the intricacy of handling heavy-tailed data through isotro-
pic simulations. Figure 2 demonstrates that the empirical
correlation fails as a correlation estimator of data sampled
from H. Because the empirical covariance is an average of
lognormal random variables, it will be a large variance esti-
mator of the population covariance. The large estimation

variability induces many (possibly bundled) false and miss-
ing links. For short time series, you can imagine single
events dominating on each node. When these events occur
at the same time for a pair of nodes, the nodes will show
high empirical correlation, although the true correlation
may be zero.

(iii) Consequences

Removing outliers or finding a suitable data transformation
reduces this problem. By design, log(?) would transform the
random field back to a Gaussian random field. Alternatively,
we can employ an estimator that is robust to heavy-tailed distri-
butions (Minsker and Wei 2017). Since the Spearman correlation
is invariant under monotonous transformations, it produces ex-
actly the same results for the normal and lognormal data. An al-
ternative to Spearman correlation with faster convergence rates
is Kendall’s tau (Gilpin 1993). Barber et al. (2019) consider sev-
eral of the above ideas to estimate correlation in the context of
hydrologic data.

2) COMPARING SIMILARITY MEASURES AS WELL

AS ESTIMATORS

(i) Problem

While the empirical Pearson correlation estimator has often
been equated with the corresponding similarity measure, we
can strictly reduce the estimation variance in Pearson correla-
tion networks by considering a different estimator}even for
Gaussian data. Radebach et al. (2013) have shown that many
characteristic network patterns are already visible in Pearson
correlation networks, and historically, the Pearson correlation
has been the most popular similarity measure (e.g., Tsonis
and Roebber 2004; Tsonis et al. 2008; Yamasaki et al. 2008;
Paluš et al. 2011; Fan et al. 2022). As estimators of mutual in-
formation need to be able to capture arbitrarily complex
dependence structures, they tend to require even larger sample
size to achieve reliable accuracy than do correlation estimators,
resulting in more spurious behavior given the same sample size.

FIG. 3. Errors in empirical networks. (a) False discovery rate (FDR) for various similarity measures and different estimators of the
same similarity measures for a nonsmooth MIGRF with short length scale y 5 0.5 and ‘5 0:1. Sparse networks have a better FDR. Em-
pirical Pearson correlation and the Ledoit–Wolf estimator coincide in unweighted density-threshold networks (see main text). (b) As in
(a), but for a smooth MIGRF with long length scale y 5 1.5 and ‘5 0:2. Estimation performance remains reasonably good up to larger
network density. (c) Error of estimated correlation matrix from ground truth in Frobenius norm, which is proportional to the root-mean-square
error per edge weight estimate. The number of errors in empirical networks is alarming for all hyperparameter settings. Suitable
estimators, such as the Ledoit–Wolf estimator, drastically reduce the error in the edge weight estimates compared with empirical
Pearson correlation.
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(ii) Simulation results

We consider the following similarity measures and their es-
timators. For MI, we use a simple binning estimator as applied
in the complex network python package pyunicorn (Donges
et al. 2015), where we use !n/5" bins as suggested in Cellucci
et al. (2005) [a more conservative criterion than Cochran’s,
which was applied in Donges et al. (2009b)]. To evaluate the
importance of the estimator, we also employ a bias-corrected
version of the popular Kraskov, Stögbauer, and Grassberger
(KSG) mutual information estimator (Gao et al. 2018; Kraskov
et al. 2004) with k5 5. As an alternative to mutual information,
we explore an estimator of the Hilbert–Schmidt independence
criterion (HSIC) for random processes (Chwialkowski and
Gretton 2014). For correlation, we employ the linear Ledoit–
Wolf estimator (Ledoit and Wolf 2004), which counteracts the
distortion of high-dimensional empirical correlation matrices by
shrinking their eigenvalues.

Figure 3 shows the false discovery rate (FDR), which meas-
ures the fraction of false links, as a function of network density.
Although fewer true links are available for small densities,
sparse graphs are more accurate in terms of the FDR, because
the correlation values of ground truth links can be empirically
distinguished with high certainty from most false links under
estimation variability. For random fields with long length scales,
this empirical separability remains intact for longer edges. There-
fore, the FDR remains low up to larger network densities (see
also Fig. 9). Given the same amount of data, more complex simi-
larity measures perform worse. For sparse graphs, the Hilbert–
Schmidt independence criterion shows promising performance
compared with the mutual information estimators. The bias-
corrected KSG estimator is computationally expensive with
fluctuating performance, and the binned MI estimator is strictly
worse than HSIC. Unweighted empirical Pearson and Ledoit–
Wolf density-threshold networks coincide because they pro-
duce the same ranking of edge weights. Figure 3c shows the er-
ror of the estimated correlation matrix compared with the
ground truth in Frobenius norm under various hyperparameter
settings. The ground truth correlations grow monotonously
from left to right. Note that the empirical correlation matrix

makes large estimation errors irrespective of the parameters of
the random field. The linear Ledoit–Wolf estimator improves
the estimation in all cases. Consequently, fixed-threshold net-
works, as well as weighted networks, are better approximated
by the Ledoit–Wolf estimator. The less correlated the grid
points are, the lower the error of the Ledoit–Wolf estimator as
it shrinks the correlation estimates toward an identity matrix.

For real data, we cannot calculate the FDR as we do not
know which links are false. Instead, we generate bootstrap
samples of all time points and create perturbed datasets by in-
cluding the measurements on the entire grid at these time
points. We then construct several networks with the same
density from these perturbed datasets and finally compute the
fraction of differing links between pairs of sampled Pearson
correlation networks (Fig. 4a). With this procedure, we ap-
proximate the network distribution induced by the dataset
(see section 4b). High autocorrelation causes the need for
blockwise bootstrapping to receive consistent estimates, as
the network variability is increasingly underestimated with
increasing autocorrelation. The results should be seen as a
conservative preliminary insight into the intrinsic network
variability and the number of unstable edges. A robust network-
construction procedure should yield a low fraction of fluctu-
ating links across bootstrap draws. Narrow uncertainty bands
indicate that varying weighting of climatic regimes among the
bootstrap samples has limited influence on the networks. Ob-
serve that in t2m and pr networks, an alarming fraction of
links fluctuate (Fig. 4a), while networks from smooth varia-
bles with long length scale, such as sp and z850, fluctuate less
(consistent with Fig. 9). In contrast to the synthetic data,
the curves do not grow monotonically in the sparse regime.
Therefore, resampled networks may be helpful in choosing a
maximally robust density, minimizing the fraction of varying
edges in the empirical networks. Density up to 0.01 seems to
be an appropriate choice for t2m; larger densities dramati-
cally decrease the network robustness. The differing links do
not contain short edges (Fig. 4b), as the correlation values on
short edges are consistently large. Longer links heavily de-
pend on the sampled time points and are sensitive to slight
perturbations of the correlation estimates. Hence, the decision

FIG. 4. Fluctuating edges in real networks. (a) Fraction of differing edges between pairs of empirical Pearson corre-
lation networks from various climatic variables obtained by bootstrapping in time. As we divide by the number of
links in one of both compared networks, the fraction of differing edges varies between 0, when no link differs, and 2,
when all links differ. (b) Total link-length distribution (light) vs link-length distribution of differing edges (dark) be-
tween bootstrap networks of t2m. The link-length distribution is similar to the one from our MIGRF (cf. Fig. 7c). The
short edges do not differ among bootstrap samples; long edges fluctuate heavily.
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as to which long links to include should not be based on
a single correlation estimate. Geopotential heights behave
differently and become more stable at larger densities as
they have a correlation structure with an extremely large
length scale.

(iii) Consequences

The selection of appropriate similarity measures depends on
how much data are available. Mutual information estimators
require much more data to yield reliable results than do corre-
lation estimators. HSIC shows promising performance in our
experiments. It may be worth exploring other alternatives to
MI, such as Romano et al. (2018), in the future. Although not
particularly well suited for random field data, the Ledoit–Wolf
estimator is a uniform improvement over naive empirical cross
correlation when estimating weighted Pearson correlation net-
works. Future work should put more focus on which estima-
tors perform best on meteorological data.

For most climatic observables, we detect severe network
variability for long links. To quantify the structural and
link robustness of constructed networks, we need resam-
pling procedures that adequately capture the intrinsic net-
work variability (section 4b). Small network densities yield
more robust networks in terms of differing/fluctuating links
in resampled networks.

d. Network measures

1) EXTREME BETWEENNESS VALUES ARE UNRELIABLE
IN SPARSE NETWORKS

(i) Problem

The betweenness centrality of a node yk is given by the
expression ∑i,jÞksi,j(k)/si,j, where si,j is the total number of
shortest paths from node y i to node y j and si,j(k) is the num-
ber of those paths that pass through yk. In climate networks,
high betweenness indicates that a location connects different
regions. In temperature-based networks, such locations have
been interpreted as key pathways of energy flow (Donges
et al. 2009a). When interested in nodes of highest between-
ness, it is tempting to construct sparse networks, because the
most important points stand out more distinctly. However, we
find that variability in betweenness also increases drastically

when sparsifying the network. Donges et al. (2009a) operate
exactly in this unreliable regime. Let us explain the influence
of sparsity on betweenness in climate networks.

(ii) Simulation results

Figure 5 shows betweenness maps of networks, constructed
as in Donges et al. (2009a), from independent draws of our lo-
cally correlated, isotropic model. Because of the standard
Gaussian grid, randomly fluctuating betweenness “backbones”
emerge that form global pathways but do not represent ground
truth structure. The density is chosen such that there exist few
pathways between the well-intraconnected poles. Which exact
nodes lie on the few shortest paths between the node-dense po-
lar regions depends on which false links are formed in the re-
gion between the poles. Phrased differently, the supposedly
important nodes with high betweenness are precisely the ones
with false edges and alter between different realizations of the
process. The difference map (Fig. 2 of Donges et al. 2009a)
between networks from different datasets shows strikingly
similar north–south pathways. The latticelike structure makes
the sparse ground truth network highly susceptible in terms
of betweenness. Since the data-generating process is isotro-
pic and the Gaussian grid is symmetric with respect to longi-
tudinal rotations, nodes on the same latitude have equal
betweenness values in the ground truth network. The empir-
ical networks consistently show systematically different be-
tweenness distributions. While the maximal betweenness
value in the ground truth network is 1.68 3 1023, the empiri-
cal networks have much more pronounced extreme between-
ness values of 2.36 3 1022 6 8.23 3 1024. A visualization of
the heavy-tailed betweenness distribution, as well as an anal-
ysis of Forman curvature, can be found in section F.1 in the
supplemental material. Even sparse ground truth networks
are highly sensitive to slight perturbations of the grid and
network density, as there exist few important pathways
connecting different regions in a sparse, locally connected
network.

Figure 6 shows betweenness maps of networks, constructed
from daily t2m as in Donges et al. (2009a), but on the approxi-
mately isotropic Fekete grid. The betweenness “backbone”
fluctuates more in the sparse than in the dense networks. The
maps in Fig. 6 and the maps presented in the original study

FIG. 5. Betweenness maps of simulated networks. Transformed betweenness maps [log10(BC 1 1)] of empirical networks with density
0.005 on a Gaussian grid. The maps depict independent realizations of the same data-generating process MIGRF(y 5 1:5, ‘5 0:2). Be-
cause of the anisotropic grid, the poles are highly intraconnected. The density is chosen such that there exist few random shortest paths
connecting the poles, resulting in pronounced spurious global betweenness pathways, which alter in location and extent among indepen-
dent realizations of the data and do not represent ground truth structure.
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all look different because betweenness is unstable with re-
spect to grid choice, dataset, and network density. This raises
the question of which, if any, map shows a true betweenness
“backbone.” The dense networks (Figs. 6d–f) are more stable
than the sparse networks (Figs. 6a–c) with respect to network
density perturbation. But only after validating that the finite-
sample network variability is also low (see section 4b) should
patterns uncovered by network methods be interpreted with
domain knowledge to generate novel insights. Here, a domain
expert might point out stable ENSO-like patterns in the east-
ern Pacific in the stable dense networks (Figs. 6d–f) and get
the inspiration to more closely investigate surprising patterns
revealed by the betweenness map.

(iii) Consequences

Although forming sparse networks yields a better false discov-
ery rate, some network characteristics become extremely sensi-
tive to small perturbations of the networks and their explanatory
power diminishes, even in ground truth networks. For each net-
work measure of interest, the choice of network density consti-
tutes a trade-off between the false discovery rate and the
robustness of the measure. Here too, independent ensemble
members can help to identify stable patterns (see section 4b).
When a network measure fluctuates too much, as betweenness
does in sparse networks, results should not be overinterpreted.

2) EMPIRICAL DISTRIBUTIONS OF NETWORK

CHARACTERISTICS ARE DISTORTED

(i) Problem

Here, we present further perspectives on systematic empiri-
cal distortions of network measures. Most studies focus on the
extremal nodes for any network measure, interpreting these

as particularly important. Our simulation results show that,
under data scarcity, random nodes appear spuriously impor-
tant in the empirical networks, not representing important
nodes in the ground truth network. Several studies have con-
structed Pearson correlation networks from sliding windows
with 2.58 and finer resolution (Radebach et al. 2013; Hlinka
et al. 2014; Fan et al. 2017, 2018, 2022). Our simulation results
suggest that the naive correlation estimator and the short
time scale are risk factors for false edges and distortions in
global measures and extreme values of the networks.

(ii) Simulation results

Although all nodes have roughly the same degree/clustering
coefficient in the ground truth graph, the observed degree/
clustering coefficient distribution is more spread out in empiri-
cal networks (Fig. 7). The random distortions in empirical net-
works are similar in type and extent for different independent
realizations. Spuriously extreme nodes in the empirical net-
works vary between independent realizations and do not re-
flect important or clustered nodes in ground truth graphs.
While the average unweighted degree is consistent by con-
struction, the weighted degree is systematically upward biased,
as more links of low ground truth correlation are available
that can be overestimated than links of large ground truth cor-
relation that can be underestimated. The empirical (weighted)
clustering coefficient is strongly downward biased, as spurious
links connect otherwise disconnected regions and bundled
connections are not formed between entire neighborhoods.
Spurious teleconnections serve as shortcuts in the networks
and lead to systematically smaller shortest pathlengths. An-
other network measure related to the clustering coefficient
and shortest pathlengths is small-worldness. Since both net-
work measures are extremely distorted in the empirical

FIG. 6. Betweenness maps of temperature networks. Transformed betweenness [log10(BC 1 1)] for daily t2m in a mutual information
network (using the binning estimator) with various densities, as shown in (Donges et al. 2009a), but with (asymptotically isotropic) Fekete
grid and ERA5 data between 1979 and 2019. (a)–(c) Network density5 0.004, 0.005, and 0.006, respectively. (d)–(f) Network density5 0.08,
0.1, and 0.12, respectively. Sparse networks fluctuate much more and have few pronounced extreme points. Sparse and dense networks look
very different. The results in Donges et al. (2009a) also look very different from ours.
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networks, a reliable conclusion about ground truth small-
worldness cannot be drawn from the empirical networks in
our setting. A more detailed treatment of small-worldness in
spatially extended systems can be found in Bialonski et al.
(2010) and Hlinka et al. (2017). The conclusions of both stud-
ies resemble ours. The length distribution of the spurious
links (longer than the dashed lines in Fig. 7c) behaves as the
number of available links at each distance: sinusoidal. This
occurs when the corresponding true correlation values are
empirically indistinguishable and has also been found in cli-
mate networks based on event synchronization (Boers et al.
2019). Under large length scales, empirical networks contain
fewer erroneous edges and a more accurate link-length distri-
bution up to higher network densities. On the other hand,
empirical networks show larger spreads of degree, clustering
coefficient, and shortest pathlength distributions, as false links
occur in bundles (see section 3e). Under small length scales,
bundling behavior is less pronounced, so that the amount of
spurious links averages out, resulting in a more concentrated
degree distribution, although more false links occur.

(iii) Consequences

When empirical networks are constructed with scarce data,
they possess systematically different characteristics compared
with the ground truth structure. In our setting, distributions of
popular node measures are more spread out as well as system-
atically biased. These distortions do not become apparent
by considering empirical summary statistics based on time
series resampling because the empirical behavior remains
consistent between independent repetitions. However, given
multiple sufficiently independent network estimates, spurious

and ground truth extreme nodes can be distinguished, de-
pending on how systematically they reappear in several net-
works. Consequently, the distribution as well as the extreme
values of network measures in empirical networks can pri-
marily be the result of estimation errors and should not
be overinterpreted. In particular, whenever the number of
formed links scales with the number of available links, large
estimation variability can be the cause, so researchers should
make additional efforts to justify the correctness of their net-
work when this link-length distribution arises, as in Boers
et al. (2019).

e. Local correlations give rise to spurious link bundles
and high-degree clusters

1) PROBLEM

As single false links occur with high probability in esti-
mated networks, Boers et al. (2019) considered teleconnec-
tions in a climate network as significant only when a bundle of
edges from one region to another is formed. As discussed in
section 2c, this approach is unreliable when the underlying
data are locally correlated, because edges tend to be formed
in bundles. Spuriously dense regions in density-threshold
graphs are another possible repercussion. Here, we provide
empirical evidence of spurious bundling behavior.

2) SIMULATION RESULTS

Let us first define a link bundle between two locations. In-
tuitively, we demand that a sufficient portion of edge weight
is formed between neighborhoods of both locations. Formally,
let B«(y):5 {u 2 V|d(u, y) # «} be the «-ball around location y

FIG. 7. Empirical vs ground truth distributions of node/edge measures. Empirical distributions of nodewise graph characteristics
using Pearson correlation for an MIGRF(y 5 0:5, ‘5 0:2). (a) Normalized unweighted degree, (b) unweighted clustering coefficient,
(c) unweighted link-length distribution, (d) weighted normalized degree, (e) weighted clustering coefficient (Onnela et al. 2005), and
(f) unweighted shortest pathlength. Dashed lines denote the ground truth; solid lines denote the respective distribution in the empirical
networks. Triangles denote the empirical extreme values; the 3 symbol and circle denote the 95% and 99% quantiles of a distribution
averaged between independent realizations. The vertical lines in (c) denote the maximal link length in the ground truth graph; all longer
links are false by design. Empirical distributions are more spread out; some measures such as the clustering coefficient or the shortest path-
length are heavily biased.
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and let A be the graph adjacency matrix. We denote the cu-
mulative weights between neighborhoods of y i and y j by

W«(y i, y j) :5 ∑
k, l: y k2B«(y i), y l2B«(y j)

|Akl |:

The number of edges between the regions B«(y i) and B«(y j)
in the complete graph is denoted by r«(y i, y j). We say that
there is a («, c)-many-to-many link bundle between y i and y j
in (V, E, A), if

W«(y i, y j)
r«(y i, y j)

$ c,

for some minimal connectivity c. 0. Of interest also might be
a one-to-many and a locally weighted version of this notion
(defined in section A.3 in the supplemental material).

Figure 8 shows the maximal distance of occurring link bun-
dles (Figs. 8a,c) and the fraction of false links that belong to
some bundle (Figs. 8b,d) for various notions of link bundles
and for unweighted (Figs. 8a,b) and weighted (Figs. 8c,d) net-
works. The hyperparameters y 5 0.5 and ‘5 0:1 amount to a
weak local correlation structure and hence constitute an ad-
versarial choice for bundling behavior. There is no unique

definition in climate science literature of when an edge consti-
tutes a teleconnection. Boers et al. (2019) calls an edge a tele-
connection when it is longer than 2500 km or 0.12p radians;
Kittel et al. (2021) sets the threshold at 5000 km or 0.25p radi-
ans. Irrespective of the exact distance, long 1-to-many link
bundles already arise in unweighted networks with low den-
sity, while many-to-many link bundles consistently arise for
intermediate network densities. Utilizing edge weights and
tuning the minimal connectivity parameter c can reduce the
number of spurious long-range link bundles by several orders
of magnitude, because spuriously included links tend to lie
marginally above the threshold and can therefore be distin-
guished from strong links. However, there is no hope of remov-
ing all spurious link bundles without removing true bundles as
well. Since both true and false links naturally occur in bundles
when the data are locally correlated, bundling properties cannot
answer questions of significance. Results for other hyperpara-
meters and mutual information are provided in section F in the
supplemental material.

While for the FDR (Fig. 9a), large smoothness and length
scale have a positive impact (because the random field varies
less in total), the links that are being formed tend to occur in
bundles. The essential distributional parameter for sparse net-
works is the smoothness of the random field, as mostly short

FIG. 8. Spurious link bundles frequently occur. (a),(c) Maximal length for which there exists at least one link bundle
in the empirical Pearson network from an MIGRF(y 5 0:5, ‘5 0:1). The dashed line denotes the maximal length in
the ground truth network. The definition of 1-to-many and locally weighted many-to-many (loc. w. mtm) link bundles
can be found in section A.3 in the supplemental material. (a),(b) Unweighted and (c),(d) weighted link bundle
notions. For weighted bundles, we choose c 5 0.5; for unweighted 1-to-many bundles, c 5 0.9; and for unweighted
many-to-many bundles, c 5 0.8. The radius of neighborhoods is chosen as « 5 58, which corresponds to roughly
556 km. In our 2.58-grid, the «-balls contain 11.4 6 1.1 nodes. (b),(d) The fraction of false links that belong to some
link bundle among all false links; same setting as in (a) and (c). Many spurious long-range link bundles occur with
high probability when the data are locally correlated, which is typically the case for spatiotemporal data. Strong tele-
connections appear less frequently, so using edge weights can be helpful.
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links are formed. Varying the length scale has a larger impact
on denser graphs as it determines the radius of spurious link
bundles and the distance/network density at which ground
truth correlations become empirically indistinguishable from
0. To measure whether there are regions of spuriously high
degree due to the dependence between nodes, we find the
«-ball of maximal average degree (MAD) among all «-balls
B«(y i) (Fig. 9b). Then we compute the same quantity for ran-
domly permuted degree values so that nodes with spuriously
high degree are not spatially clustered anymore. The MAD
values of the empirical networks are consistently larger than
the MAD values of shuffled nodes, so a clustering of high-
degree nodes occurs irrespective of the hyperparameters of
the random field. The pronounced bundling behavior for
larger length scales is reflected in larger MAD values.

For real data, observe a strikingly monotonous relationship
between the average local correlation and the fraction of long
links (longer than 5000 km or 0.25p radians) that belong to
some link bundle (Fig. 10). Most differing links do not belong

to a bundle, but under large local correlations the number of
fluctuating long links in bundles can become nonnegligible.
Also observe that our simulated data, at a given local correla-
tion level, show a tendency to underestimate the fraction of
links in bundles, indicating the existence of true bundled tele-
connections in climatic variables.

3) CONSEQUENCES

We have seen that bundled connections do not necessarily
represent ground truth structure but can occur spuriously
when the similarity estimates are locally correlated. Even
without teleconnections, random regions can appear spuri-
ously dense. These experiments also explain the distortion of
the degree distribution in Fig. 7. Using edge weights can be
helpful to distinguish strong from weak connections, as spuri-
ous connections tend to lie marginally above the threshold.
We conclude that when the data are locally correlated, questions
of edge significance cannot be easily addressed by considering

FIG. 9. Influence of random field parameters. (a) The fraction of false links (FDR) in empirical Pearson correlation
networks for various hyperparameter choices of the random field. Sparse networks are more accurate in this sense
(low FDR). For sparse networks, the smoothness is the essential parameter, while for denser networks, only the
length scale matters. (b) Maximal average degree (MAD) in «-balls divided by the same quantity under shuffled no-
des in unweighted networks for various hyperparameter choices of the random field. Values above 1 indicate that
high-degree nodes tend to be clustered. The weighted equivalent looks very similar.

FIG. 10. Bundling behavior against local correlation. (a) Fraction of long links (longer than 5000 km or 0.25p radi-
ans) that belong to a many-to-many link bundle with c 5 0.8 as a function of the average correlation in such a ball in
Pearson correlation networks of density 0.05. A tuple a, b with a black plus symbol indicates simulated data with
y 5 a and ‘5 b. With larger average local correlation, a larger fraction of long links is part of some bundle. Real data
show even more bundling behavior than our simulated data; this indicates ground truth teleconnections. (b) Fraction
of how many long links that differ between bootstrap samples belong to some bundle. Fewer differing links belong to
some bundle, but their number is not negligible, especially under strong local correlation structure. Again, geopoten-
tial heights behave differently. Their correlation structure is so widespread that edge formation is highly codependent,
but not very localized.
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bundling behavior. Only bundling behavior that exceeds the
effects of the localized correlation structure can be considered
significant. Given multiple sufficiently independent empirical net-
works, only ground truth connections would reappear in many
networks with high probability.

f. Anisotropy

1) ANISOTROPIC AUTOCORRELATION ON THE NODES

CAUSES BIASED EMPIRICAL DEGREE

(i) Problem

Given two nodes with lag-1 autocorrelation a 2 (0, 1) and
b 2 (0, 1), the asymptotic variance s2

a,b of their empirical
Pearson correlation scales as

s 2
a,b :# 1 1 2

ab

1 2 ab
, (1)

which explodes for a, b " 1 (detailed explanation in section D
in the supplemental material). Conversely, time length n is ef-
fectively only worth n/s2

a,b independent observations. The same
principle applies to other estimators. Under anisotropic auto-
correlation on the nodes, similarity estimates have different
variability depending on the edge. While unweighted density-
threshold networks are not biased by isotropic autocorrelation,
anisotropic estimation variability introduces biases during the
estimation procedure. Paluš et al. (2011) have already observed
such biases in climate networks. Here, we explain them from a
statistical perspective using our null model.

In practice, different locations have different autocorrelation
patterns. Due to higher effect heat capacity, temperature over
oceans has higher autocorrelation than over land (Eichner et al.
2003; Vallis 2011). Guez et al. (2014) argue that disagreement
between their similarity measures is primarily caused by high
autocorrelation. Our simulation results suggest that the cause of
this disagreement might more fundamentally be estimation er-
rors that vary between similarity measures.

(ii) Simulation results

We simulate anisotropic autocorrelation (Fig. 11) by em-
ploying our VAR(1) model (section B.1 in the supplemental
material). We initialize a random half of the points with low
lag-1 autocorrelation of 0.2 and the other half with a high lag-1
autocorrelation of 0.7. On average, empirical Spearman corre-
lation estimates do not depend on the autocorrelation of ad-
jacent nodes (Fig. 11a). However, the increased variance on
highly autocorrelated nodes leads to both an increase of spuri-
ously low similarity estimates for edges with high ground truth
correlation, as well as more spuriously high estimates on edges
with small ground truth correlation. Since most ground truth cor-
relations are small (Fig. 11b), overall, the number of high similar-
ity values increases. Thus, nodes of higher autocorrelation show
an increased average degree in threshold graphs (Fig. 11c).

In real climate networks, the nodes of highest degree consis-
tently have high lag-1 autocorrelation (Fig. 12). Together with
our simulations, this suggests that anisotropic autocorrelation
has nonnegligible spurious effects on the networks. Recalling
Eq. (1), forming false links between highly autocorrelated no-
des is much more likely than between nodes of small or inter-
mediate autocorrelation. Hence, both false edges at nodes
with high autocorrelation and missing edges at nodes with low
autocorrelation have to be expected when some nodes attain
autocorrelation values close to one, as for t2m.

(iii) Consequences

Under large isotropic autocorrelation, density-threshold
networks have an increased variability but no degree bias.
When the variability differs across locations, nodes with high
variability receive more false edges than nodes with informa-
tive time series. State-of-the-art corrections are discussed in
the next section. Using k-nearest neighbor (kNN) graphs pre-
vents disregarding weakly autocorrelated locations. In kNN
graphs, each node forms an edge to the k nodes with highest
similarity. Although highly autocorrelated locations may still
have more spuriously high empirical similarity values, weakly

FIG. 11. Anisotropic variability of empirical estimates induces degree bias in empirical networks. We initialize a random half of the
points with low lag-1 autocorrelation of 0.2 and the other half with high lag-1 autocorrelation of 0.7. Then, we analyze the distribution of
Spearman correlation estimates for strongly and weakly autocorrelated nodes in an empirical network from an MIGRF(y 5 1:5, ‘5 0:2).
(a) 5%, 50%, and 95% quantiles of the empirical Spearman correlations given the true correlation values. High autocorrelation does not
introduce a bias in the correlation estimates but leads to larger variance. (b) Kernel density estimate of the edge distributions with
high and low autocorrelation, respectively, at the levels 0.001, 0.01, 0.05, 0.1, and 0.5. Since most true correlation values are small, a larger
variance causes a larger part of the edge distribution of the highly autocorrelated nodes to lie above the thresholds. This leads to a higher
average degree for nodes with correlation estimates of higher variance. (c) Average degrees for threshold (blue), unweighted kNN
(orange), and weighted kNN graphs (green) for nodes of high (light colors) and low (dark colors) autocorrelation normalized by the aver-
age degree in the network. Although kNN graphs cannot eliminate this bias, they can reduce it.
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autocorrelated points attain more similar importance in terms
of degree in unweighted as well as weighted kNN graphs.

2) FOURIER TRANSFORM-BASED RESHUFFLING

REVERSES THE AUTOCORRELATION-INDUCED

DEGREE BIAS IN SPARSE NETWORKS

(i) Problem

Instead of constructing density-threshold networks some,
studies only include links that are significant with respect to
similarity values from reshuffled data (Boers et al. 2014; Deza
et al. 2015; Boers et al. 2019). For this purpose, the time series
on each node is shuffled independently multiple times, and
similarity values between these shuffled time series are calcu-
lated to determine the internal variability of the similarity es-
timates on each edge. High quantiles of this edgewise baseline
distribution of similarity estimates impose restrictive thresh-
olds above which ground truth dependence is likely. If the
quantile and variance estimates are themselves noisy, yet one
more source of randomness is introduced into the network
estimation procedure.

(ii) Simulation results

We follow the popular approach to construct density-
threshold networks not from the correlation estimates Ŝij di-
rectly but from z scores (Ŝij 2 m̂0

ij)/ŝ0
ij, where the edgewise

mean m̂0
ij and variance ŝ0

ij are based on different reshuffling
procedures. We compare completely random reshuffling of
the time series, as in for example, Fan et al. (2022), and re-
shuffling with the iterative amplitude-adjusted Fourier trans-
form (IAAFT) (Schreiber and Schmitz 1996), as proposed by
Paluš et al. (2011). The IAAFT algorithm was developed by
Schreiber and Schmitz (1996) to generate phase-randomized

surrogate time series, which share their amplitude distribution
and power spectrum with the original time series. We also
construct “quantile networks” by including edges for which
the empirical correlation value exceeds a high quantile of the
edgewise baseline distribution. To measure the effect of auto-
correlation on empirical correlation estimates, we simulate in-
dependent pairs of Gaussian time series of length n 5 100
with varying autocorrelation and calculate the 95% quantile
of empirical Pearson correlation (Fig. 13a). Naive reshuffling
of the time series (blue) produces a baseline distribution of
correlation estimates that does not adapt to the increased esti-
mation variance (black line) under high autocorrelation, result-
ing in a too-permissive threshold and uncalibrated uncertainty.
The IAAFT-based quantile estimates adapt to the increased
variability but contain a large variance between independent
realizations. To measure the impacts of anisotropic estimation
variability on entire networks, we simulate a spatially anisotropic
autocorrelation, as in the previous section. Since completely ran-
dom reshuffling produces the same m̂0

ij and ŝ0
ij for every edge,

the unweighted density-threshold network of z scores from ran-
dom reshuffling exactly coincides with the unweighted density-
threshold network from the original estimates Ŝij. The IAAFT
surrogates remove the autocorrelation-induced degree bias for
large densities (Fig. 13b). For sparse IAAFT z-score networks,
the autocorrelation-induced degree bias is reversed: because the
variance estimates ŝ0

ij of nodes with high autocorrelation are sys-
tematically larger (section F.8 in the supplemental material), the
highest z scores are formed for nodes with low autocorrelation.
Since no edges are formed between nodes of high autocorrela-
tion, the fraction of false links explodes in sparse IAAFT z-score
networks (Fig. 13c). The IAAFT-based z-score networks fulfill
the objective of only forming edges with small estimation vari-
ance, but then the resulting network does not represent the

FIG. 12. Nodes of highest degree have high autocorrelation. (a),(d) The autocorrelation on the node and (b),(e) the degree in a Pearson
correlation network of density 0.005 for (a), (b) monthly t2m and (d), (e) pr. (c), (f) The degree of each grid point as a function of lag-1 au-
tocorrelation for (c) t2m and (f) pr. Observe exploding degrees for autocorrelation above 0.7 for t2m, as predicted by the variance scaling
formula (1). For pr, degrees increase even earlier at autocorrelation 0.2. This suggests that the most connected nodes have many spurious
edges, induced through high autocorrelation.
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spatial ground truth correlation structure. Quantile networks
perform slightly better than z-score networks given the same
density, but there is no reasonable significance value # 0.999
that achieves a network sparsity necessary for minimal FDR.

In the following way, perfect quantile estimates allow us to
determine network densities that lead to empirical networks
containing few false edges. Under isotropic autocorrelation,
perfect quantile estimates induce a common threshold on the
entire network. Applying this threshold to the ground truth cor-
relation matrix induces a density in the ground truth network.
For our range of hyperparameters, the densities, induced by the
0.95 quantile, range from 0.007 (for y 5 0.5, ‘ 5 0:1) to 0.032
(for y 5 1.5, ‘ 5 0:2) without autocorrelation and from 0.001 to
0.01 given isotropic autocorrelation of 0.9. Choosing larger net-
work densities leads to unreliable empirical networks, as ground
truth correlations of longer links are not empirically distin-
guishable from 0 with sufficient certainty. Generally, empirical
significance-based networks have a larger density than they
should, because the number of spuriously high correlation esti-
mates exceeds the number of spuriously low ones.

(iii) Consequences

In settings of low autocorrelation, completely random reshuf-
fling yields reliable estimates of empirical correlation quantiles,
resulting in a controlled false discovery rate. However, it is not
able to detect anisotropic autocorrelation and can therefore not
correct autocorrelation-induced degree bias. The IAAFT-based
empirical networks correct this bias in dense networks, but
are very biased toward edges with low estimation variance in
sparse z-score networks, which results in many false links. The
empirical density of significance-based networks only yields an
upper bound on a desirable network density. Since no consid-
ered network-construction technique reduces the variance in
the edge estimates, they cannot vastly improve on density-
threshold networks.

3) ANISOTROPIC NOISE LEVELS ON THE NODES CAUSE
NODES TO BE DISCONNECTED

(i) Problem

Observational data are generally affected by measurement
errors or other sources of noise. Under isotropic additive
white noise, variance in the graph construction increases (see
section F.3 in the supplemental material). Even worse, aniso-
tropic noise levels crucially distort how well nodes are con-
nected in the graph.

A central difficulty in recovering ground truth structure is dis-
tinguishing which part of the noise is inherent to the dynamical
system (aleatoric noise) and which part could be reduced
through more sophisticated measurement, preprocessing, and
estimation procedures (epistemic noise). While aleatoric noise
affects ground truth networks and can be seen as an offset of
the ground truth correlation function, everything else is an em-
pirical distortion. Nodes over land are commonly less connected
in climate networks (Donges et al. 2009b) because the underly-
ing distributional characteristics differ across sea and different
geological conditions over land. This distributional difference is
at least partially aleatoric. Varying availability and reliability of
measurements, on the other hand, induce epistemic noise.1 In
cases where we acknowledge that we cannot satisfactorily judge

FIG. 13. Effects of (anisotropic) autocorrelation on significance-based networks. (a) Comparison of the true 0.95 quantile of empirical
correlation values (black) [cf. Eq. (1)] with the 0.95 quantile obtained from naive nodewise shuffling (blue) and IAAFT nodewise shuffling
(orange) on a single edge of zero ground truth correlation. We therefore calculate 10000 shuffles of 1000 pairs of independent Gaussian
time series of length n5 100 for each autocorrelation value. The growth of quantiles under high autocorrelation is not detected by the na-
ive shuffling estimates. The IAAFT-based procedure detects increased variance but introduces another large source of variance between
edge estimates. (b) Average normalized degrees of nodes with high (light colors) and low (dark colors) autocorrelation for unweighted
threshold/z scores from random reshuffling (blue) vs networks from IAAFT-based z scores (orange) vs quantile networks from IAAFT
surrogates (green) with density determined by the quantiles 0.9, 0.95, 0.99, and 0.999. The z scores from random reshuffling induce the
original density-threshold network. The IAAFT surrogates correct the degree bias for large densities, but only form edges between nodes
with low autocorrelation in sparse networks. (c) False discovery rates for unweighted threshold/z scores from random reshuffling (blue) vs
IAAFT-based z scores (orange) vs IAAFT-based quantile networks (green). IAAFT-based z scores form many false edges in sparse
networks. Quantile networks outperform z-score networks given the same density but do not reach sufficient sparsity.

1 In reanalysis datasets, data over nodes in regions of high mea-
surement density can be extrapolated with higher certainty. The
density of weather stations in the United States or Europe, for ex-
ample, is much higher than in parts of Africa or South America.
The effort of estimating the measurement/extrapolation error in
each node could alleviate the effects of an anisotropic data col-
lection and extrapolation process. Anisotropic measurement/
extrapolation noise remains to distort the constructed climate net-
works, and efforts should be made to gather more reliable meas-
urements in neglected regions [cf. overview of WMO weather
stations (ArcGIS 2022)].
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how much our data are affected by epistemic noise, a conserva-
tive approach is to reduce the effects of anisotropy in the net-
work construction. kNN graphs may offer a useful inductive
bias in such uncertain settings.

(ii) Simulation results

By adding white noise on the Northern Hemisphere, we de-
crease the population correlation for these nodes. As a result,
we find that (especially sparse) threshold graphs mostly form
edges on the nodes with less noise (Fig. 14). To represent all
nodes equally in the graph, we propose to use kNN graphs in-
stead. By using weighted edges, the spectrum of node and link
importance in terms of weighted degree does not get lost.

(iii) Consequences

When the available data are affected by epistemic noise,
the connectivity structure in the network is spuriously altered.
Effects of anisotropic noise on the empirical networks can be
reduced by using kNN graphs. When the ground truth corre-
lations are higher in some regions than in others (anisotropic
aleatoric noise), kNN graphs can also be more informative be-
cause weakly correlated nodes are not well represented in
density-threshold networks. kNN graphs pose a different in-
ductive bias, which may be useful to detect different patterns.
Although ground truth kNN graphs severely differ from
ground truth density-threshold networks in anisotropic set-
tings, given useful weights, they have shown to be useful and
robust in machine-learning applications (von Luxburg 2007),
while not sacrificing interpretability.

4) GROUND TRUTH NETWORKS ON ANISOTROPIC GRIDS

(i) Problem

Anisotropic grids usually introduce biases in networks that
are not intentional, so that differing node connectivity does
not reflect differing correlation structure in the data. Given an
anisotropic grid, the nodes will have unequal characteristics in

the ground truth network under isotropic correlation struc-
ture. It is well known that a regular Gaussian grid is geometri-
cally undesirable due to its two singularities at the poles. Area
weighting (Heitzig et al. 2011) becomes crucial to correct the
distortions in the network. Another effect of anisotropy does
not stem from anisotropic grid choice but from geographical
reality. If we consider an isotropic field with a monotonically
decaying correlation function on an approximately isotropic
grid only defined over oceans, then the nodes in the popula-
tion network will not be isotropic but will encode geometric
information about the distribution of land and sea across
Earth (Fig. 15). For example, sea surface temperatures are
only defined over oceans.

(ii) Simulation results

The ground truth networks constructed from a monotoni-
cally decaying isotropic correlation structure simply consist of
the shortest possible links. The anisotropic distribution of grid
points introduces a bias to the networks that is visible in vari-
ous network measures. For example, points on paths connect-
ing different regions and points in geometric bottlenecks
show higher betweenness values in sparse networks, points
with large uninterrupted surroundings show higher degree,
and points in inlets show larger clustering coefficient, because
neighbors toward similar directions are often close to each
other and thus also connected. The network density functions
as a scale parameter similar to a bandwidth in kernel-density
estimation, since the connection radius increases with net-
work density.

(iii) Consequences

Estimated networks suggest misleading conclusions when
false edges distort their characteristics. Even the ground truth
network is a result of many design decisions that can lead to
prominent behavior, readily misinterpreted when its cause is
not correctly identified. For betweenness, even the ground
truth values are very sensitive to small variations in network

FIG. 14. Threshold vs kNN networks given anisotropic noise levels. (a) Unweighted threshold graph and (b) weighted kNN graph with
approximately 0.005 of possible edges formed from an MIGRF(y 5 1:5, ‘5 0:2) and 58 resolution with additive 0.7 3 N(0, 1) white noise
on the Northern Hemisphere. Higher measurement noise on the Northern Hemisphere leads to smaller correlation values. These nodes
are less connected in the empirical as well as ground truth threshold graph. A kNN graph over the same data ensures similar total connect-
edness. Nodes on the Northern and Southern Hemispheres can still be differentiated in terms of weighted degree. Additionally, spurious
high-degree clusters in the empirical threshold graph are not present in the weighted kNN graph.
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density. Even in ground truth, conclusions are not necessar-
ily robust. Boundary correction (Rheinwalt et al. 2012) has
been proposed for networks that do not cover the entire Earth.
A similar correction, using locally connected networks, could
be proposed to remove the influence of the distribution of
land and sea across Earth to quantify anisotropic correlation
behavior.

4. Assessing significance from network ensembles

In practice, researchers are usually confronted with datasets
of limited size from an unknown distribution. Based on a sin-
gle network constructed with state-of-the-art climate network
techniques, they cannot judge how many edges are included
or excluded because of estimation errors. Given time length n
and number of grid points p, the regime of “small sample
size,” where the observed networks significantly differ from
the ground truth, can mean any order of magnitude for n and
any ratio n/p, depending on the dynamics of the spatiotempo-
ral system, measurement error, the employed estimator, and
the subsequent network construction and evaluation steps.
This makes general rules of thumb prohibitive, and solid uncer-
tainty estimation based on unrestrictive assumptions crucial for
the value of the study. Constructing networks with various simi-
larity measures, datasets, resolutions, and network-construction
steps (see, e.g., Radebach et al. 2013) can offer qualitative reas-
surance that observed patterns do not just occur under a
specific setting. Significance tests offer a more quantitative
approach. Here, we first discuss the shortcomings of com-
mon procedures to quantify significance in section 4a, and
then offer a new probabilistic framework in section 4b that
addresses these shortcomings.

a. Resampling in current practice

The usual approach to quantify the significance of certain
findings such as hubs, pathways or teleconnections is to con-
struct an ensemble of networks that share certain aspects of
the originally constructed network while randomizing with re-
spect to everything else through reshuffling. The effective null
hypothesis of such a permutation test (also called a surrogate
test) is the (limit) probability distribution over the networks
that the ensemble induces. Needless to say, any permutation
test can only be as meaningful as its effective null hypothesis.

All previously applied reshuffling approaches for climate
networks that have been reported in the literature can be cat-
egorized into two types. Either reshuffling is directly per-
formed on the edges to recover, for example, the original
degree sequence or the degree sequence and link-length dis-
tribution (Wiedermann et al. 2015, GeoModel II), or the time
series are shuffled nodewise to preserve the marginal time se-
ries dynamics with methods such as the iterative amplitude-
adjusted Fourier transform (Schreiber and Schmitz 1996). In
the latter case, the ensemble networks are then constructed
from the shuffled dataset.

1) NODEWISE RESHUFFLING

Whenever researchers have performed permutation tests
that recover marginal time series dynamics, these tests have
disregarded the spatial distribution of the data completely.
The nodes are assumed to be independent, so that the typical
localized correlation structure, which results in a link-length
distribution of predominantly short links, is replaced by a uni-
form one (Fig. 16a). Since the task is to construct spatial net-
works, such an ensemble is structurally unrealistic and does
not induce a physically meaningful network distribution.

2) EDGE RESHUFFLING

Whenever fixing concrete network characteristics to be pre-
served, a preliminary question has to be addressed. Which
spatial, as well as temporal, dynamics of the system or net-
work at hand need to be preserved by the ensemble? The au-
thors of the influential paper (Donges et al. 2009a) use a
permutation test with preserved degree sequence. But what is
the physical meaning of the observed degree sequence? One
consistently reappearing feature of the underlying physical
system is the localized correlation structure, which results in a
link-length distribution of predominantly short links. As for
nodewise reshuffling, this link-length distribution is destroyed
and is replaced by a sinusoidal one. As a consequence of this
inaccurate ensemble distribution, the authors interpret the
property that the nodes of highest betweenness show degrees
below average in the original network as significant behavior.
In contrast, we have shown in Fig. 5 that this property is a
bias that is introduced through the Gaussian grid and the lat-
ticelike connectivity behavior of the original network. The
original connectivity structure gets destroyed by uniform edge

FIG. 15. Anisotropic grids induce anisotropic node characteristics. Node characteristics of ground truth networks from monotonically
decaying isotropic correlation structure. (a) Degree, (b) clustering coefficient, and (c) betweenness for unweighted density-threshold
graphs with density 0.2, 0.05, and 0.005, respectively.
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reshuffling; hence, the ensemble members have different be-
tweenness properties. We have seen that betweenness is a
highly unstable measure. An indication for robustness of the
discovered betweenness “backbone” would be if it consis-
tently reappeared for various subsets of the data, as well as
for many network densities and similarity estimators. Since
only a single instance of the climate network is presented, it is
not clear if the presented backbone appears by chance.

A first improvement over random link redistribution or inde-
pendence between the time series is GeoModel II (Wiedermann
et al. 2015), which approximately preserves both the degree dis-
tribution and the nodewise link-length distribution. But it still
does not recover the natural tendency in the network to form
bundled links. Given that one link is formed, the likelihood of a
neighboring link increases in a locally correlated random field.
When simply recovering the total link-length distribution, as
does GeoModel II, this likelihood does not increase (Fig. 16b).
Furthermore, fixing the degree sequence of the nodes might not
be representative of the distribution of the constructed graph. In
section 3e, we have seen spurious high-degree clusters on ran-
dom locations. In conclusion, no explicit resampling scheme has
been proposed that recovers the joint link distribution of locally
correlated random fields.

Proposing a concrete network resampling scheme always
runs the risk of missing or distorting an important aspect of the
underlying dynamical system and estimation procedure. The
tendency to form bundled connections depends on the local-
ized correlation structure. The expected number of spurious
links depends on the (co)variability of the estimates, the spa-
tial correlation structure of the random field, and the autocor-
relation of the time series, among many other factors. All
these aspects do not even cover the more complex time series
dynamics that we might want to account for.

b. Distribution-preserving ensembles

Instead of trying to solve the impossible problem of finding
which exact characteristics to preserve for the climatic ques-
tion of interest, we propose to construct network ensembles
such that all members approximately reflect the network

distribution that originates in the underlying physical processes.
As discussed above, state-of-the-art network resampling ap-
proaches calculate many estimates of surrogate networks that
do not reflect the original distribution. Crucially, they only ob-
tain one noisy estimate of the similarity value on each edge.
With multiple estimates, we not only get a more robust total
estimate but an approximation of the estimation variability on
each edge. Instead of a single network estimate, we have ac-
cess to an ensemble of equally valuable estimates that allows
us to judge whether a network estimation procedure really is
trustworthy and empowers us to tackle most of the issues pre-
sented in section 3. Instead of reshuffling the data nodewise,
we propose to jointly subsample or resample time-windows
for both end points of an edge or even for all nodes simulta-
neously, preserving the original dynamics in space. There is
an abundance of resampling techniques for multivariate time
series. One popular approach is block bootstrapping (Lahiri
2003; Shao and Tu 1995). Another is subsampling (Politis et al.
1999). Individual ensemble members should both reflect the
same data distribution (induced by the selection of included
time points), as well as be sufficiently independent (by repre-
senting different time-windows that are far enough apart).
Such an ensemble could be constructed by the following
pipeline:

(i) Decide on a network-construction procedure with unbi-
ased edge estimates, such that the dynamics of interest
behave robustly within the network distribution.

(ii) Construct many networks with the same procedure (i)
by subsampling/block bootstrapping data in time on all
grid points simultaneously.

(iii) Evaluate reoccuring edges and patterns such as link
bundles.

If the quantity of interest can be expressed by summary sta-
tistics, the pipeline as a whole should be unbiased to yield cali-
brated confidence intervals. We have seen that the maximal
degree or the link-length distribution of the networks can be
systematically biased. Crucially, estimates of single edges or
fixed neighborhoods are unbiased when the employed similarity

FIG. 16. Reshuffling procedures produce unrealistic network distributions. (a) The fraction of formed links among
all possible links at a given distance in a Pearson correlation network for t2m. We employ Geomodel 2 with « 5 0.05
and min(107, 10 3 number of edges) rewirings. Nodewise IAAFT-resampling results in approximately uniform link
distribution. A naive bootstrap in time over all grid points simultaneously as well as Geomodel 2 results in a more re-
alistic link-length distribution. (b) The fraction of links in 1-to-many link bundles. Nodewise reshuffling, as well as
Geomodel 2, destroys network properties that are induced by localized correlation structure.
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estimator is unbiased. In this case, given a large enough en-
semble, uncertainty estimates and p values would be precise.
In practice, unbiased estimators often increase estimation
variance so much that the uncertainty becomes too large.
In complex estimation tasks like mutual information estimation,
this approach might reveal that empirically constructed net-
works are too incoherent due to a lack of available data.
Instead of communicating false certainty, the bootstrap
approach would suggest conclusions like “the amount of
available data does not suffice to significantly detect this
teleconnection with our small-bias mutual information
estimator.”

From a dynamical systems perspective, one could argue
that different time points represent a different state of the dy-
namical system. From a statistical perspective, a distribution
over networks is implicitly chosen when selecting the dataset.
The remaining task is to define what characterizes the state of
the dynamical system one is interested in, such as different
ENSO phases. If we construct an ensemble that is indepen-
dent of the state, we simply recover links and patterns that
are present most of the time. Teleconnections that are only
active some of the time become difficult to distinguish from
noisy connections.

A single network that is more accurate than the result of a
single similarity estimate per edge can be derived by selecting
the edges that appear in most ensemble members. A related
approach is the variable selection method stability selection
(Meinshausen and Bühlmann 2010). In practice, stability se-
lection often markedly improves the baseline variable selec-
tion or structure estimation algorithm. Another approach
could only accept links with small estimation variability.

While most studies directly perform bootstrapping on the
graph structure and not on underlying data (Chen et al. 2018;
Levin and Levina 2019), a similar idea has been previously
suggested (Friedman et al. 1999). To the best of our knowl-
edge, it has not yet been applied in climate science. In prac-
tice, data scarcity, distribution shift, and varying regimes
of the dynamical system complicate finding a suitable resam-
pling or subsampling scheme that produces both sufficiently
independent and identically distributed ensemble members
without biases. In both bootstrap as well as subsampling tech-
niques, a suitable choice of window size depends on the auto-
correlation of the time series at hand. Highly anisotropic
autocorrelation (Fig. 12) complicates designing a consistent
procedure for all nodes simultaneously. With these complica-
tions and the journal’s page limit in mind, we postpone pro-
posing an explicit ensemble construction procedure to future
work.

5. Conclusions

When constructing networks from data, it is not obvious
that they reflect ground truth structure. Given a finite amount
of data, similarity estimates contain estimation errors. Un-
der such nonnegligible estimation variability, we find several
types of spurious behavior using typical network-construction
schemes:

• Not only the choice of similarity measure, but also the
choice of estimators, is an influential design decision. The
properties of the estimator determine how well single em-
pirical networks approximate the population network and
if the uncertainty of an ensemble is accurate.

• Global properties of finite-sample networks such as aver-
ages, variances, and maxima of network measures, or the
spectrum of the adjacency matrix, can be heavily distorted.

• Links occur in bundles when the data are locally correlated
and the estimator transmits the correlation structure. This
leads to spurious link bundles and regions of spuriously
high or low degree.

• Under anisotropic autocorrelation or marginal distributions,
differing data distributions on the nodes cause anisotropic
estimation variability on the edges, which in turn introduces
biases in the empirical networks. Anisotropic noise levels
may lead to weak representation of nodes in the network,
weighted kNN graphs reduce anisotropic behavior via the
inductive bias to represent all nodes equally, and differences
can still be detected via edge weights.

• We find sparse networks to be more accurate in terms of
false discovery rate and spurious teleconnections. Yet pop-
ular network measures such as betweenness become highly
unstable in sparse networks. This constitutes a different
trade-off for each estimation task. Random fields with
larger length scales allow for denser networks, but also lead
to more pronounced bundling behavior.

Given the variety and extremeness of possible empirical
distortions, it is crucial to reliably estimate how “trustworthy”
an empirical network is. State-of-the-art resampling proce-
dures only capture particular parts of the empirical network
distribution, and consequently miss other possibly relevant as-
pects of the dynamical system. When the implicit null hypoth-
esis of the resampling technique does not capture all relevant
properties of the dynamical system, the value of the signifi-
cance test is questionable. Specifically, surrogate tests, which
hypothesize independence between nodes, do not reflect a
physically meaningful null hypothesis when the dynamical sys-
tem is locally correlated, which the link-length distribution
typically clearly reflects. Random artifacts that stem from
local correlation structures will then appear significant. In the
past, climate network approaches have been based on calcu-
lating a single similarity estimate on each edge; we propose to
generate multiple estimates via sub- or resampling in time, in
order to estimate the estimation variance on each edge. This
allows us to approximate the intrinsic distribution over the
constructed networks induced by the underlying data distribu-
tion and the chosen estimation procedure.

Future work

Most importantly, future network studies in climate science
should estimate the underlying estimation error in each edge
in order to argue about significance in a statistically meaning-
ful way. Given scarce data, the variability of similarities cannot
be precisely estimated (Fig. 13a). Further challenges inherent
to climatic data have to be addressed to successfully imple-
ment our proposed framework of network ensembles, which
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represent the underlying dynamics by design and are suffi-
ciently independent in time. Adjusting the window length for
block bootstrapping on each edge to the autocorrelation of the
nodes could yield consistent estimates of the estimation vari-
ance on all edges. More work is needed to develop good simi-
larity estimators, robust network-construction procedures, and
resampling techniques for the climate context, respecting dis-
tribution shifts, varying regimes, anisotropy, and measurement
errors in chaotic dynamical systems.

While we only construct undirected networks, directed em-
pirical networks as well as EOFs suffer from insufficient data
in analogous ways. From estimating lagged correlations to
probabilistic graphical models (Koller and Friedman 2009)
and causal networks (Runge et al. 2019a), a similar simulation
analysis could quantify the strengths and weaknesses of differ-
ent network-construction procedures. Some works have re-
duced the network size by clustering spatial areas of temporally
coherent behavior before network-construction (cf. Rheinwalt
et al. 2015; Fountalis et al. 2018; Runge et al. 2019b). Whether
such an approach is statistically beneficial is task dependent and
deserves a more thorough consideration in future work. On the
one hand, too many nodes may induce many errors and a sys-
tematic distortion in the spectrum of empirical covariance ma-
trices (Donoho et al. 2018; Lam 2020; Morales-Jimenez et al.
2021); on the other hand, single errors have a higher impact in
smaller networks, and node estimation constitutes yet another
challenging task in the network-construction pipeline. A key
question in this regard is: how can we minimize the edgewise es-
timation variance in the downsized network? Previous work has
selected representative locations for each cluster, but maybe an
aggregation of regional information can boost statistical robust-
ness further.

More complex time dynamics could introduce other kinds
of spuriousness into empirical estimates we were not able to
cover with our simple autoregressive model. A theoretical
analysis of networks from spatiotemporal data would also be
very insightful. Exploring alternatives to mutual information,
such as the Hilbert–Schmidt independence criterion or the
randomized information coefficient, could yield novel insights
into the dynamics of the climatic system.

Networks have been constructed in several scientific fields
to detect complex structures in spatiotemporal data. Geneti-
cists try to identify connections between certain genes and the
development of diseases by estimating Pearson correlation
networks under the term weighted gene coexpression analysis
(Horvath 2011; Niu et al. 2019). Neuroscientists (Sporns 2010)
aim to understand the functional connectivity in the brain
with weighted voxel coactivation network analysis (Mumford
et al. 2010). While in this work we focus on the application of
functional networks in climate and geoscience, our conceptual
findings hold in any domain where networks are constructed
from spatiotemporal data.
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Pitfalls of Climate Network Construction - A Statistical Perspective

A Introduction to Climate Network Terminology and Methodology

Here we introduce all concepts and methods around climate networks that appear in the main text. We offer both
definitions as well as brief explanations for the application in climate science.

A.1 Networks

An undirected network (V,E) consists of a set of nodes/vertices V with p elements and a set of undirected
links/edges {vi, vj} connecting pairs of nodes vi, vj 2 V . We exclude self-loops {vi, vi}. While for undirected
edges {vi, vj} the ordering of the nodes does not matter, a directed edge (vi, vj) starts at vi and ends at vj , but we
only consider undirected ones. In a weighted network each edge {vi, vj} has a corresponding weight wi,j ; in an
unweighted network all edges simply have weight wi,j = 1. When there is no edge between vi and vj , we write
wi,j = 0. In this way, a network can be respresented by its adjacency matrix W = (wi,j)i,j=1,...,p.

While climate networks are commonly constructed by including the edges with the largest similarity values globally,
there is an alternative, which is particularly popular in machine learning (von Luxburg, 2007).

(Symmetric) k-nearest neighbor graphs (short kNN graphs) include the k edges with largest similarity for each
node. This ensures that each node is connected to at least k other nodes. This is useful when some locations have
much lower characteristic similarities than others, but these locations should not be ignored by the network.

An alternative network construction procedure that is popular in climate science is to include edges {i, j} which are
significant in some sense. For this purpose the time series are reshuffled several times either randomly, or preserving
certain time series characteristics. This yields a baseline distribution of similarity on each edge. Now one can include
an edge, when the similarity Ŝij of the original time series exceeds a restrictive quantile of the baseline distribution
like 0.99 or even 0.999. Another popular approach is to calculate the mean µ̂0

ij and standard deviation �̂0
ij of the

baseline distribution, calculate z-scores Ŝij�µ̂0
ij

�̂0
ij

and construct a density-threshold network from these z-scores.

Besides eyeballing the network, there are several quantities that measure different properties of the networks and
therefore potentially help to understand the network structure and discover interesting behaviour. Let us introduce the
most important ones for undirected similarity networks.

The degree di of a node vi is the cumulative weight of its connections di =
Pp

i=1 wi,j . It measures the importance
of the node in the sense of how well connected it is in the network. A node of exceptionally large degree is called hub
and often influences many other nodes.

The (local) clustering coefficient Ci of a node vi, is given by Ci =
1

di(di�1)

Pp
j,k=1 wi,jwj,kwk,i. It measures how

many neighbors of node vi are directly connected to each other by an edge. It is 0 when no neighbor of vi has an
edge to any other neighbor of vi, and it is 1 when all neighbors of vi are interconnected as well. A set of nodes that is
highly intraconnected but less connected to other nodes is often called a ’cluster’ or community of nodes. A popular
approach to calculate a global clustering coefficient is to simply average all local clustering coefficients (Watts and
Strogatz, 1998). This quantity is dominated by nodes with low degree. An alternative measure for undirecte networks
which represents the global network structure more reasonably (Newman, 2018) is given by C =

P
i,j,k WijWjkWkiP

i di(di�1) .

The weighted clustering coefficient (Onnela et al., 2005) reflects how large triangle weights are compared to the
network maximum. While there are other generalizations, this is the one implemented in the popular brain connectivity
toolbox (Rubinov and Sporns, 2010). In recent work, Wang et al. (2017), Fardet and Levina (2021) point out that other
definitions are more desirable for networks with highly heterogeneous weight distribution or numerous spurious edges
with low weights.

The shortest path length from vi to vj quantifies the minimal number of traversed edges to move from vi to vj . The
shortest path length at vi is the average shortest path length from vi to any other node. Transport networks are efficient
when they have small shortest path lengths. Neuroscientists often point out small-world behaviour in functional brain
networks as a justification for the brain’s efficiency (Bullmore and Sporns, 2012), robustness (Levit-Binnun et al.,
2013, Neal, 2017) and compositionality. Small-worldness is characterized by large clustering coefficients and low
shortest path lengths. Treatments of small-worldness should be handled with care (Bialonski et al., 2010, Hlinka et al.,
2017).

The betweenness centrality of a node vi measures the centrality of vi in terms of how many shortest paths in the
network contain vi. Let �j,k denote the number of shortest paths from vj to vk in the network, and �j,k(vi) the
number of these paths that also contain vi. The betweenness centrality is then given by

P
j,k 6=i

�j,k(vi)
�j,k

. Similar to

ii
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shortest path length and small worldness, we find that betweenness can be heavily distorted both locally as well as
globally by single false edges.

Ricci curvature of an edge describes how the connectivity of its network neighborhood differs from the connectivity
of a regular grid. Positive curvature indicates a highly intraconnected neighborhood or a within cluster edge, and
negative curvature indicates that an edge connects different communities (Strnad et al., 2022). Forman-Ricci curvature
(Forman, 2003) and Ollivier-Ricci curvature (Ollivier, 2010) are two numerical approaches to approximate the Ricci
curvature of an edge, where Forman-Ricci curvature is computationally cheaper while Ollivier-Ricci curvature is more
accurate.

In climate networks, the nodes usually represent locations. Hence our network is naturally embedded in 3D space
and edges have a length given by the geodesic distance between the two endpoints. In traffic networks there is a cost
associated with forming edges, so that the total link length should be minimized in the network design. In similarity
networks, closeby points are generally similar. This local connectivity is the baseline behaviour when analysing spatio-
temporal data. Of particular interest are connected nodes that are far apart. Those indicate climatic teleconnections. An
important summary statistic of the spatial properties of a network is its link length distribution, which subsumes the
lengths of all edges in the network. Given the roughly spherical geometry of the Earth, in an infinitesimally fine grid,
the number of potential links scales as sin(d) with link length d in radians. When dividing the link length distribution
by sin(d) (or, for a finite grid, by the number of potential links at each distance), we see how many of the potential
links are formed at a given distance. For spatiotemporal data, we expect values close to 1 for small lengths and values
close to 0 for large lengths. Random link distribution results in a roughly uniform distribution across lengths, hence a
sinusoidal distribution of links in the original link length distribution. Crucially, the link length distribution does not
convey any information about link bundling behaviour (cf. Fig. 16). An extensive discussion of link bundles can be
found in Section 3c and supplemental Section A.3.

We call a grid isotropic when the point density is constant over the sphere, or alternatively when the distance dis-
tribution from one grid point to all others does not depend on the considered grid point. While a perfectly isotropic
grid does not exist for the sphere, there exist approximately isotropic grids, like the one we generate with the Fekete
algorithm (Bendito et al., 2007) or the Fibonacci grid. In a Gaussian grid, the grid points are equally spaced across
latitudes. In a regular Gaussian grid the number of gridpoints is constant across latitudes. While they traditionally are
the most popular grid type, regular Gaussian grids have diverging densities around the poles and can therefore induce
complex distortions when used in climate networks.

A.2 Similarity Measures and Estimators

Most commonly climate and neuroscientists calculate the cross-correlation between time series {Xt}t=1,...,n and
{Yt}t=1,...,n of length n, defined as 1

n

Pn
t=1 XtYt. Statistically, this is imprecise terminology: While they estimate the

Pearson (cross-)correlation between the time series with the empirical Pearson correlation estimator 1
n

Pn
t=1 XtYt,

there are other estimators that might result in estimates that come closer to the ground truth values we aim to ap-
proximate. For high-dimensional problems, the empirical correlation matrix is a very bad estimator: the eigenvalue
spectrum of empirical correlation matrices is systematically distorted, following the Marcenko-Pastur law (Marčenko
and Pastur, 1967). A long history of correlation estimation research (Fan et al., 2015, Pourahmadi, 2013) has proposed
various approaches such as banding, tapering, Lasso-regularized maximum likelihood and eigenvalue shrinkage to
correct these empirical distortions. One particularly popular estimator is the Ledoit-Wolf estimator (Ledoit and Wolf,
2004), which has a recent non-linear advancement (Ledoit and Wolf, 2020) claimed to accommodate dimensions up
to p = 104. In Figure 3c we find that the linear Ledoit-Wolf estimator approximates the correlation matrix much
better than empirical Pearson correlation. The linear Ledoit-Wolf estimator is defined as ⇢1Ŝn + ⇢2Id, where Ŝn is
the empirical covariance matrix, Id the identity matrix and the optimal choice of ⇢1, ⇢2 2 R can be found in Ledoit
and Wolf (2004). Estimators from spatial statistics use the spatial information of the nodes and are therefore more
appropriate for random field data (Li, 2009, Clifford et al., 1989). In most geostatistical models only one measurement
can be made at each location; exceptions include maximum likelihood estimation of space-time variograms (Bevilac-
qua et al., 2012) and nearest neighbor Gaussian process models (Datta et al., 2016). Designing anisotropic spatial
correlation estimators for finely gridded time series in spherical geometry remains an important direction of future
work (Chen et al., 2021, Raymaekers and Rousseeuw, 2021) for climate network and EOF construction. Recently,
estimation of partial correlations in Bayesian or causal network approaches (Zerenner et al., 2014, Runge et al., 2019,
Gerhardus and Runge, 2020) has gained popularity, with the goal of distinguishing direct from indirect influences.
The precision matrix can be estimated to recover conditional independences. The same estimation difficulties arise in
this context in high dimension and suitable estimators should be carefully chosen (Lam, 2020).

Spearman’s rank correlation coefficient, short Spearman correlation, is another similarity measure, which measures
not only linear dependence structures, but all monotonous dependences. It is given by the Pearson correlation between
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the time series of ranks {R(Xt)}t=1,...,n of {Xt}t=1,...,n and {R(Yt)}t=1,...,n of {Xt}t=1,...,n. It is invariant under
monotonic transformations of the data. A measure of rank correlation with better finite-sample properties is given by
Kendall’s ⌧ (Gilpin, 1993).

Mutual information between two random variables X and Y is given by

MI(X,Y ) = KL(PX,Y , PX ⇥ PY ),

where KL denotes the Kullback-Leibler divergence, PX,Y denotes the joint distribution of X and Y , and PX ⇥ PY

the joint distribution of X and Y if they were independent. It measures to which extent the two random variables are
dependent. Instead of only measuring linear or monotonic relationships, mutual information detects any kind of depen-
dency. Traditionally, binning estimators of mutual information have been popular, but these are highly sensible to the
number of bins and often heavily biased (Paninski, 2003). The KSG estimator (Kraskov et al., 2003) (based on a kNN
approach) has been observed to be robust to the choice of its hyperparameter k (Papana and Kugiumtzis, 2009). Exten-
sions of the KSG estimator include a bias-corrected version (Gao et al., 2018) and an adaptation to discrete-continuous
mixtures (Gao et al., 2017) such as precipitation. Without distributional assumptions there exists no convergence rate
that can be guaranteed in MI estimation (Antos and Kontoyiannis, 2001), so we still have to expect unprecise estimates.
Especially for highly autocorrelated time series it is known that a lot of false positives (Runge et al., 2012, 2014) will
arise. While evaluating the robustness of empirical MI networks, it is also worth considering other similarity measures
that capture arbitrary dependences. Romano et al. (2018) compares various information theory- and correlation-based
measures. The alternative we employed is the Hilbert Schmidt Independence Criterion (HSIC) for random pro-
cesses (Chwialkowski and Gretton, 2014). It measures dependence after a mean embedding of the random variables
in some reproducing kernel Hilbert space. For more details see also Gretton et al. (2012).

A.3 Link Bundle Definition

With the term ‘link bundle’ we want to capture the case when most links are formed between two regions. While there
is a lot of work on the visualisation of graphs with focus on edge bundles (Lambert et al., 2010, Hurter et al., 2012,
Selassie et al., 2011, Nocke et al., 2015), our purpose does not demand a 2D-visualisation. We are simply interested in
the cumulative edge weight between two regions of interest. As we have not found a definition of link bundles in the
context of spatially embedded graphs in the literature, we define our notion of link bundle over spatial graphs (V,E)
with adjacency matrix A, where (V, d) is a metric space, as follows.

First define the "-ball around v as B"(v) := {u 2 V |d(u, v)  "}. Let ⇢"(vi, vj) be the number of edges between
B"(vi) and B"(vj) in the complete graph. It holds that ⇢"(vi, vi) =

�|B"(vi)|
2

�
. When B"(vi) \ B"(vj) = ;, then

⇢"(vi, vj) = |B"(vi)| · |B"(vj)|. We denote the cumulative weights between neighborhoods of vi and vj by

W"(vi, vj) :=
X

k,l: vk2B"(vi),vl2B"(vj)

|Akl|,

where A denotes the adjacency matrix. Our notions of link bundles measure whether the mean weights between
regions (per possible link) exceed a prespecified threshold. Whether the graph is weighted or unweighted makes no
difference in the definition. Of course weights allow for a more fine-grained differentiation of link bundle strength
(Fig. 8). We allow for a tolerance (1� c for unweighted graphs) of unformed edge weight as link bundles of a certain
density might already be considered significant. Demanding complete link bundles might be unrealistic and sensitive
to noise in practical settings.

A first idea might be a one-to-many notion, where we demand that a node vi is connected to all nodes around a point
vj within a given radius ". We say that there is a (", c)-one-to-many link bundle from vi to vj in (V,E,A), if

1

|B"(vi)|
X

k: vk2B"(vi)

|Akj | � c.

We observe such one-to-many link bundles in networks dominated by extreme events and more generally when one
region is locally correlated and the other point spuriously aligns with that region while differing from its surrounding.
More natural might be to consider neighborhoods around both endpoints of the link bundle. We define a (", c)-many-
to-many link bundle between vi and vj in (V,E,A), if

W"(vi, vj)

⇢"(vi, vj)
� c.

In applications with anisotropic link density across space, we might want to consider teleconnections to be significant
if the link density between neighborhoods is large compared to the density within the neighborhoods. There is a
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(", c)-locally-weighted many-to-many link bundle between vi and vj in (V,E,A), if

W"(vi, vj)

⇢"(vi, vj)
� c

2

✓
W"(vi, vi)

⇢"(vi, vi)
+

W"(vj , vj)

⇢"(vj , vj)

◆
.

The notion of locally weighted link bundles is also sensible to significant teleconnections between endpoints of low
link density in settings of anisotropic density. Other utilisation of intra-regional link densities is conceivable. A locally
weighted version of 1-to-many link bundles can be defined analogously. In order to find link bundles in practice, we
propose the distance metric between two edges (x1, y1) and (x2, y2), where x1, y < 1, x2, y2 are nodes,

dE ((x1, y1), (x2, y2)) = min {d(x1, x2) + d(y1, y2), d(x1, y2) + d(y1, x2)} (1)

in the undirected case. For the directed case, only take dE ((x1, y1), (x2, y2)) = d(x1, x2)+d(y1, y2). In this distance
two edges are close in feature space if and only if both ends of the edges are close together. Clusters found with for
example hierarchical clustering over the distance matrix between edges would then constitute link bundles.

Using the weighted notions of link bundle, c has to be chosen smaller to detect link bundles, when the similarity values
are typically smaller than 1. The locally weighted notion of link bundle requires less adaptation of c since it captures
the edge weights characteristic to the measured random field. Analysing the edge weights in our setting indicates
that the spuriously included links only lie marginally above the threshold and can therefore be distinguished from
strong links. However, a ground-truth teleconnection of intermediate strength might still be difficult to distinguish
from spurious bundles. While the notions of weighted link bundles offer a more fine-grained differentiation, questions
of significance have to be answered differently. Although some spurious locally weighted many-to-many link bundles
occur in the weighted networks, they are a lot less frequent under suitably chosen c. For large densities, the notions
of locally weighted and absolute many-to-many link bundles become equivalent in unweighted networks, as the local
neighborhoods become completely connected. The notion of locally weighted link bundle becomes problematic in
sparse graphs, when the neighborhood connectivity structure is not sufficiently established.

B Details of the Stochastic Ground Truth Model for Spatio-Temporal Data

B.1 Time Dependence via Vector Autoregression

As the typically used data sets only resolve a fixed time resolution, we do not have to employ the computationally
expensive space-time covariance functions, but opt for a vector autoregression VAR(1). As introduced in Algorithm
1, we denote the available measurements (X1,t, . . . , Xp,t) ⇠ N(0,⌃) of the MIGRF at time t evaluated on the finite
grid {vi}i2[p] ⇢ S2 with ⌃ij = k(|vi � vj |). We generate Xi,t, for i 2 [p], via

Xi,t = ai ·Xi,t�1 + "i,t,

where the innovations ("1,t, . . . , "p,t) ⇠ N(0,⌃") are i.i.d. in time and ai with |ai| < 1 denotes the lag-1 autocorrela-
tion at node vi. What is left to do is to design an innovation covariance matrix ⌃" that generates the desired covariance
structure ⌃ of the MIGRF. A well-defined ⌃" does not exist for all choices of ⌃ and a. Whenever it exists, it is given
by ⌃"

ij = ⌃ij(1 � ai · aj). This formula can be derived by defining A 2 Rp⇥p as the diagonal matrix with Aii = ai
and using 0

BB@

X1,t

X2,t
...

Xp,t

1

CCA =
1X

k=0

Ak

0

BB@

"1,t�k

"2,t�k
...

"p,t�k

1

CCA ,

which yields, 0

BB@

X1,t

X2,t
...

Xp,t

1

CCA ⇠ N

 
0,

1X

k=0

Ak⌃"Ak

!
= N

✓
0,
⇣ ⌃"

ij

1�Aii ·Ajj

⌘

ij

◆
!
= N(0,⌃).

Solving for ⌃" then leads to the desired formula.

It is easy to see that when all nodes vi have the same autocorrelation, ⌃" is a well-defined covariance matrix. In other
cases, the above defined matrix ⌃" might have negative eigenvalues, making it unsuitable as a covariance matrix. As
a remedy, the negative eigenvalues of ⌃" could be shifted to a small positive constant to make it positive definite. This
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procedure induces a shift in the spatial covariance ⌃, that would need to be quantified. The specified autocorrelation
structure remains exact by design. In our experiments in Section 3d, we initialize a random half of the points with
Aii = 0.2 and the other half with Aii = 0.7. The resulting ⌃" is not positive definite, but we find a valid correlation
matrix by shifting all negative eigenvalues of ⌃" to 10�8. This shift does not introduce a notable bias into the spatial
ground truth correlations.

B.2 Matérn Covariance

The Matérn covariance function appears in many fields (Whittle, 1954, Guttorp and Gneiting, 2006). A random
process on Rd with Matérn covariance function is a solution to the stochastic partial differential equation (Lindgren
et al., 2011)

(2 ��)↵/2G(x) = W (x),

where W (x) is Gaussian white noise with unit variance, � =
Pd

i=1
@2

@x2
i

is the Laplace operator,  =
p
2⌫
` , and

↵ = ⌫ + d/2. Therefore it regularly demonstrates its efficacy of modelling physical processes in spatial statistics
(Bevilacqua et al., 2020, Stein, 2011), and can be adjusted to model non-stationary, non-isotropic, oscillating and
non-separable random fields (Lindgren et al., 2011).

On RD, it is given by

C⌫,`(d) = �2 2
1�⌫

�(⌫)

✓p
2⌫

d

`

◆⌫

K⌫

✓p
2⌫

d

`

◆
,

where � is the gamma function and K⌫ is the modified Bessel function of second kind. Its smoothness parameter ⌫
and scale parameter ` make it flexible as well as interpretable. The scale parameter ` determines how far the region of
high correlation extends spatially. ⌫ > 0 determines the smoothness of the random field; so how well the random field
behaves locally. Large ` and large ⌫ result in less fluctuation across space. A Gaussian process with Matérn covariance
is b⌫c � 1 times differentiable in the mean-square sense. When ⌫ = n+1/2 for some n 2 N, C⌫,` can be written as a
product of an exponential and a polynomial of order n. For ⌫ ! 1, it approximates the squared exponential function.
So by varying ⌫, we can interpolate between the absolute exponential kernel and the Gaussian radial basis function
(Stein, 1999, ch. 2.10).

Unfortunately, the Matérn is positive definite with great circle distance only if ⌫  1/2. Guinness and Fuentes
(2016) studies the use of several Matérn-like covariance functions on the sphere and finds that they all fit smooth
and non-smooth meteorological datasets more flexibly than alternative classes of covariance functions which respect
to spherical geometry. We follow their recommendation in using the computationally efficient chordal Matérn. The
chordal Matérn is simply the restriction of the Matérn in R3 to S2. An adaptation to great circle distance, called
circular Matérn, shows no practical gain. The authors find maximum likelihood estimates for ⌫ close to 0.42 for
ozone data and close to 1.46 for 10m height surface temperature outputs from a single run of the Community Climate
System Model Version 4 (CCSM4). We employ realistic values of ⌫ = 0.5 and ⌫ = 1.5 in our simulations, being
mostly interested in the effect of varying ⌫ and `.

In practice, measurements from a random field are only available on a fixed, finite grid. Instead of sampling the entire
random field via the Karhunen Loeve expansion (Lang and Schwab, 2015), we can simply consider the multivariate
Gaussian on the grid points, at each time step.

B.3 Choice of Smoothness ⌫ and Length Scale `

We choose ⌫ and ` to reflect realistic values for climatic time series as well as to point out their influences on the
estimation procedure. Our choices of ⌫ 2 {0.5, 1.5} and ` 2 {0.1, 0.2} (in radians) reflect a realistic range for
climatic variables (Guinness and Fuentes, 2016). Stronger smoothness only induces subtle differences. Table 1 shows
network-based smoothness and length scale properties of the MIGRF as well as climatic data.

Observe that our parameter choices cover a realistic range. Given similar smoothness and length scale, the network
density on simulated data is smaller as systematic teleconnections are missing.
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Random field
property

Simulated data Real data
⌫ = 0.5,
` = 0.1

⌫ = 0.5,
` = 0.2

⌫ = 1.5,
` = 0.1

⌫ = 1.5,
` = 0.2

pr dt2m t2m sp z500

Avg. local corr. 0.544 0.734 0.704 0.892 0.520 0.753 0.826 0.946 0.953
Decorr. len., ⌧ = 0.2 0.172 0.348 0.190 0.383 0.139 0.271 0.329 0.571 0.453
Decorr. len., ⌧ = 0.5 0.076 0.152 0.104 0.216 0.059 0.141 0.183 0.346 0.305

Density, ⌧ = 0.2 0.031 0.057 0.031 0.057 0.009 0.031 0.093 0.150 0.246
Density, ⌧ = 0.5 0.001 0.005 0.002 0.010 0.002 0.006 0.013 0.047 0.117

Table 1: Distributional smoothness and length scale properties of simulated and real climatic random field data. For
the average local correlation we compute the average correlation inside "-balls around all vertices. We choose the
radius " = 5� as in Fig. 8. For the network density we construct unweighted Pearson correlation networks with
threshold ⌧ . Our notion of decorrelation length measures the length scale as a network feature. For each node, it is
given by the minimal radius (in radians) at which the connectivity of the network inside an "-ball drops below c = 0.8
(smaller than 1 for robustness), finally average over all nodes. The table shows average values over 30 independent
realizations. For real data we construct a single network from all observations.

C Why Spurious Links Occur in Bundles

The following proposition formalizes why one spuriously large similarity estimate incurs correlated similarity es-
timates to be spuriously large as well, with non-negligible probability. We assume Gaussianity for simplicity. ⌧
represents the threshold above which a link is included in the network.

Proposition C.1 (Link probability given the presence of another link). Let Ŝ1, Ŝ2 ⇠ N(µ,⌃) be estimates of

similarity values on two edges with variances �2
1 = ⌃11, �2

2 = ⌃22 and correlation ⇢ = ⌃12
�1�2

. Then, with " 2 R,

P
⇣
Ŝ1 > ⌧

��� Ŝ2 > ⌧ + "
⌘
� �

 
�1
�2
⇢(⌧ + "� µ2) + µ1 � ⌧

p
1� ⇢2�1

!
,

where � is the cumulative distribution function of the standard normal distribution.

The resulting probability becomes arbitrarily large when Ŝ2 becomes large (by increasing ") and the correlation ⇢
between the edge estimates is large. This explains both the occurence of link bundles as well as spuriously dense
regions in the empirical networks.

Proof. For any s 2 R, it holds that Ŝ1|Ŝ2 = s ⇠ N
⇣
µ̃(s), �̃2

⌘
with µ̃(s) := µ1+

�1
�2
⇢(s�µ2) and �̃2 := (1�⇢2)�2

1 .

Then, since
⇣

Ŝ1�µ̃(⌧+")
�̃2

��� Ŝ2 > ⌧ + "
⌘
⇠ N(0, 1) and with �(x) = 1� �(�x) for all x 2 R, we get,

P
⇣
Ŝ1 > ⌧

��� Ŝ2 > ⌧ + "
⌘
� inf

s�⌧+"
P
⇣
Ŝ1 > ⌧

��� Ŝ2 > s
⌘
= P

⇣
Ŝ1 > ⌧

��� Ŝ2 > ⌧ + "
⌘

= P
⇣ Ŝ1 � µ̃(⌧ + ")

�̃2
>
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�1
�2
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.

For a more involved theoretical analysis, a realistic assumption might be that the correlation structure varies across
the metric space and there can be ground truth teleconnections of intermediate strength, but data over nearby points
universally shows the highest correlations. In such generality, relevant for the correctness of the estimation procedure
is still only the joint distribution of edge weight estimates {Ŝe|e 2 E}. Future work could analyse this joint distri-
bution more closely with respect to the resulting graph features, particularly spurious link bundles and expected false
discovery rate.
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D The importance of the number of effective samples

The number of time steps n has a dominating effect on errors in the network. With large enough time length n ! 1,
eventually all random patterns disappear, as the similarity estimates on each edge become more precise. However, the
crucial quantity that determines the estimation variance is not n itself, but the effective time length neff, which also
depends on the autocorrelation structure. Let us introduce this quantity formally and quantify the relation between n
and neff.

Given two time series {Xt}t=1,...,n and {Yt}t=1,...,n of length n, their empirical Pearson correlation (often called
cross-correlation) is given by

Ĉxy =
1

n

nX

t=1

XtYt.

Now Ĉxy does not perfectly estimate the true underlying Pearson correlation between the time series, but has some
positive variance. Hence, we define the effective time length neff as the minimal number of independent observations
{X 0

i} and {Y 0
i } such that the empirical cross correlation estimator 1

neff

Pneff
i=1 X

0
iY

0
i has at most the same variance as it

has under the autocorrelation structure of the given time series of length n.

Below, under some assumptions, we derive the relation

n = �2
1 · neff, (2)

where �2
1 denotes the asymptotic variance of empirical cross correlation in the central limit theorem. Now observe

that �2
1 explodes when the autocorrelation of both time series is large: For two independent AR(1)-processes with

variance 1 and lag-1 autocorrelation ↵ 2 (0, 1) and � 2 (0, 1), respectively, we write �2
↵,� := �2

1 for which it holds
that

�2
↵,� =

1X

k=�1
Cov(X1, X1+k)Cov(Y1, Y1+k) = 1 + 2

1X

k=1

↵k�k = 1 + 2
↵�

1� ↵�
.

Note that for ↵ ! 1 and � ! 1, we get �2
↵,� ! 1. Intuitively, the given time series are essentially a single

observation, when the autocorrelation approaches 1; and correlation can not be estimated with a single observation.
Given that the lag-1 autocorrelation patterns of real climatic variables range from negative values to values close
to 1 (Fig. 12), the effective length of climatic time series highly depends on the location. Concretely, two AR(1)-
time series with lag-1 autocorrelation ↵ = � = 0.9 induce an increased estimation variance of �2

↵,� = 9.53, while
↵ = � = 0.95 already results in �2

↵,� = 19.51. Conversely, given 40 years of monthly observations n = 480, with the
above autocorrelation patterns only yields neff = 50.39 and neff = 24.60 effective samples, respectively.

Derivation of equation (2). The central limit theorem for the empirical cross-correlation between two independent,
normalized stationary time series {Xt} and {Yt} (cf. (Brockwell and Davis, 1991, p. 236ff)) states that, under
structural assumptions,

p
n
�
1
n

Pn
t=1 XtYt

�
is asymptotically normal with mean 0 and variance

�1 =
1X

k=�1
Cov(X1, X1+k)Cov(Y1, Y1+k).

Because the variance of our estimates decays as 1/n in the central limit theorem, we need time series of length
n = �1 · neff to reach the same estimation variance as neff i.i.d. samples for which �1 = 1.

E Our Results Retain Their Validity Under Larger Time Length n

In this section we analyse how our results evolve with increasing effective time length n.

While all estimated quantities better approximate the ground truth, the amount of errors in the networks are still trou-
blesome and our conceptual findings still hold. In particular, the bias stemming from anisotropic autocorrelation only
slightly improves with increasing n (Fig. E.6), because this bias stems from the relative difference in estimation vari-
ance depending on the autocorrelation strength. Also, few false shortcuts suffice to distort quantities like betweenness
and shortest path lengths globally (Fig. E.2 and Fig. E.4). Weighted networks benefit much quicker from larger n in
terms of degree estimation (Fig. E.4) and spurious link bundles (Fig. E.5).
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Figure E.1: Same as Fig. 2 but with n = 1000. The estimated networks look slightly better. But the same conceptual
distortions are still clearly present: Empirical Pearson correlation fails as an estimator of heavy-tailed data. High
degree clusters emerge as a result of localized correlation structure.

Figure E.2: Same as Fig. 5 but with n = 500. Few false links are enough to create spurious global betweenness
structures.
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Figure E.3: Same as Fig. 7 but with n = 500. Compare to Fig. E.4 and observe all quantities slowly converging to
their ground truth.
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Figure E.4: Same as Fig. 7 but with n = 1000. Compare to Fig. E.3 and observe all quantities slowly converging to
their ground truth. Weighted degree converges faster than unweighted degree. To distort shortest path length single
false shortcuts suffice.
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Figure E.5: Same as Fig. 8 but with n = 500. While the amount and length of unweighted link bundles has not
decreased, the edge weights have converged faster, so that the weighted link bundles have disappeared.
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Figure E.6: Same as Fig. 11 but with n = 500. While the estimation variance has significantly decreased in absolute
terms, the relative bias introduced through anisotropic autocorrelation has not improved.

F Further Simulation Results

F.1 Empirical Betweenness and Forman Curvature Distribution

Sparse lattice-type graphs contain nodes of spuriously high betweenness as soon as one false (tele-)connection between
regions is present. The network density where the betweenness distribution is maximally distorted depends on the
length scale of the random field (Fig. F.1).

An alternative betweenness measure, which has gained popularity recently, is based on the concept of curvature (For-
man, 2003, Ollivier, 2010). It is and edge-based measure and does not consider shortest paths but a distance between
neighborhoods of nodes. For Forman curvature we find a strong negative bias (Fig. F.1) as for the clustering coefficient
in Fig. 7. Both measures are based on triangle counts.
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Figure F.1: Betweenness distributions in empirical networks. Betweenness histograms with 2�-uncertainty bands
from 30 independent realizations. ’x’ and triangle denote the average and 95%-quantile of maximal betweenness
values between runs, circle marks the maximal betweenness value in the ground truth graph. Denser networks contain
less distortion as many noisy links average out spurious betweenness. Left: Density-threshold graphs using Spearman
correlation from a MIGRF(⌫ = 0.5, ` = 0.1). Middle: Same as left for MIGRF(⌫ = 1.5, ` = 0.2). Note that maximal
distortion occurs at higher density compared to smaller length scale, as very sparse networks here do not contain
spurious long-range links. The network density, where the reliable lattice estimation transitions into more false links,
is the most distorted regime in terms of betweenness. Right: Forman curvature distribution on the edges for networks
from an MIGRF(⌫ = 1.5, ` = 0.1). The empirical distribution is heavily downward biased, as false links are mostly
’between-cluster’ links, i.e. have negative curvature. The more the lattice-like, clustered ground truth structure is
disrupted, the more negative the distribution becomes.

F.2 Network Measures For Small Length Scale

Networks with large densities can not be well estimated as ground truth correlations are close to 0 already at short
distances. This critical distance can be seen in the drop in the link length distribution plot that marks a phase transition
from systematic short links to random false links. The estimates of network characteristics become unreliable already
at small network densities, as more false links occur in all network density regimes.
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Figure F.2: Node/edge measure distributions for small length scales. Same as Fig. 7 but with ⌫ = 0.5 and ` = 0.1.
More false links in dense graphs, because more edges are empirically indistinguishable from 0. Less spread out
empirical distributions, because less pronounced link bundles are formed and false links rather average out across
nodes.

F.3 Networks from Noisy Measurements

Isotropic additive white noise can be understood as a modification of the correlation function to include a ’nugget
effect’ (Clark, 2010). Then the correlation function approaches a values smaller than 1, when the distance between
points approaches 0. Figure F.3 shows the same graph measures as Fig. 7, but for data with isotropic nugget effect.
Under additive noise, all population correlations decrease, hence they lie closer to each other and variance in the graph
construction increases. As the correlation between similarity estimates is now bounded away from 1, the independent
noise on each node will sometimes produce outliers. Under non-negligible estimation variance and for infinitesimally
fine grids, this typically leads to non-vanishing fractions formed as well as unformed links between regions, no matter
how small the diameter of these regions. More errors occur in the network, irrespective of distance. Even in sparse
networks, under large noise, the link length distribution and shortest path length are very distorted. Otherwise the
behaviour is very similar. Under fixed grid resolution, continuous but non-smooth random fields and random fields
with nugget effect can resemble each other.
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Figure F.3: Same as Fig. 7 but with 0.7N(0, 1)-additive noise on the data, ⌫ = 0.5 and ` = 0.1.
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F.4 Network Measures of kNN Graphs

Figure F.4 shows the same graph measures as Figure 7, but for kNN graphs with similar (but not the same) densities. As
the ground truth graphs of threshold and kNN graphs are almost identical for isotropic data, the network characteristics
behave very similarly. Observe a more pronounced peak in the unweighted degree distribution. As the ground truth
behaviour of kNN and threshold graphs is the same in the isotropic setting, they do not differ much. In kNN graphs
the nodes become more similar so that extreme values lie closer together. In case of the clustering coefficient this does
not mean that that they lie closer to the ground truth values.
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Figure F.4: Same as Fig. 7 but for kNN graphs.

F.5 Network Measures for Temperature Data

Figure F.5 shows the same graph measures for monthly t2m. Degree and clustering coefficient distributions are more
stretched out, as different locations differ in distribution, but otherwise - especially the link length distribution -
the plots look very similar to the empirical networks from our isotropic data. kNN graphs (Fig. F.6) augment this
similarity, as they make the network more isotropic.
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Figure F.5: Same as Fig. 7 but for t2m. Observe even more stretched out degree and clustering coefficient distributions
as there are distributional differences between locations. Otherwise there is striking similarity to our isotropic data,
especially in the link length distribution.
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Figure F.6: Same as Fig. 7 but kNN graphs for t2m. kNN graphs increase isotropy of the network. Its characteristics
look even more similar to those of our isotropic data.

F.6 Empirical Mutual Information Networks Show Less Bundling Behaviour
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Figure F.7: Links are much less bundled under the BIKSG estimator. The fraction of false links in bundles as in
Fig. 8 for unweighted BIKSG estimated networks for different hyperparameters of the MIGRF. The top row shows
⌫ = 0.5, the bottom row shows ⌫ = 1.5. The left column shows ` = 0.1, the right column shows ` = 0.2. Although
the estimator makes a lot more errors, it does not transmit the localized correlation structure in the underlying data.
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The BIKSG mutual information estimates are not as spatially dependent as the Pearson correlation estimates. Thus
although the mutual information networks contain more false links, these are not as bundled (Fig. F.7) compared to
empirical Pearson correlation in Fig. 8. Hence the estimator plays an important role in how much structural as well as
spurious bundling behaviour is present in empirical networks.

F.7 Unstable Links in Climate Networks

Figure F.8 shows the link length distributions and length distributions of differing links of bootstrapped Pearson cor-
relation networks from several climatic variables. Observe that short links are formed first and then the distribution
approaches a sinusoidal form. Especially for precipitation, the network of density 0.1 has a distribution close to that
of random graphs with uniform link distribution; most links differ between bootstrap samples. Geopotential heights
operate on long length scales and have few differing links. This indicates that these networks are robust, especially for
large densities (Fig. F.9).
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Figure F.8: Link length distributions (light) and length distribution of differing links of bootstrapped Pearson corre-
lation networks from real data. Top: Precipitation, daily t2m, surface pressure. Bottom: Geopotential heights at 850,
500 and 250 mb.
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Figure F.9: Left: The threshold of the Pearson correlation network as a function of network density. Right: Same as
Fig. 4 but for geopotential heights. How the relative difference between empirical networks is computed is described
in Section 3a2.
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F.8 Distribution of mean and variance estimates from IAAFT surrogates

Here we analyse why all edges in sparse IAAFT-based z-score networks are formed by nodes with low autocorrelation.
For this purpose we compare the estimates on the edges between nodes of low autocorrelation with the estimates on
the edges between nodes of high autocorrelation. Figure F.10 shows the difference between nodes of high and nodes of
low autocorrelation in the distributions of mean estimates µ̂0

ij (left) and variance estimates �̂0
ij (right) based on IAAFT

resampling. Positive values indicate more weight in the distribution of highly autocorrelated nodes and vice-versa.
Naturally, the variance of the mean estimates grows with autocorrelation (left). The variance estimates for highly
autocorrelated nodes are larger (right), reflecting the true increased estimation variance. Since we divide by variance
estimates, which are small in absolute value, the highest z-scores are attained for nodes with low autocorrelation.

�0.020 �0.015 �0.010 �0.005 0.000 0.005 0.010 0.015 0.020

IAAFT Mean Estimate

�0.015

�0.010

�0.005

0.000

0.005

H
ig

h
A

R
-L

ow
A

R
H

is
to

gr
am

0.05 0.10 0.15 0.20 0.25 0.30

IAAFT Std Estimate

�0.12

�0.10

�0.08

�0.06

�0.04

�0.02

0.00

0.02

0.04

H
ig

h
A

R
-L

ow
A

R
H

is
to

gr
am

Figure F.10: Difference between nodes of high lag-1 autocorrelation 0.7 and nodes of low lag-1 autocorrelation 0.2 of
the normalized histograms of mean estimates (left) and standard deviation estimates (right) based on IAAFT resam-
pling. Positive values indicate more weight in the distribution associated with high autocorrelation and negative values
indicate more weight in the distribution associated with low autocorrelation. Mean estimates have larger variance for
high autocorrelation. Variance estimates are larger for high autocorrelation, as they should be.
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