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Abstract

We study the family of p-resistances on graphs for p ≥ 1. This family generalizes
the standard resistance distance. We prove that for any fixed graph, for p = 1
the p-resistance coincides with the shortest path distance, for p = 2 it coincides
with the standard resistance distance, and for p → ∞ it converges to the inverse
of the minimal s-t-cut in the graph. Secondly, we consider the special case of
random geometric graphs (such as k-nearest neighbor graphs) when the number
n of vertices in the graph tends to infinity. We prove that an interesting phase
transition takes place. There exist two critical thresholds p∗ and p∗∗ such that
if p < p∗, then the p-resistance depends on meaningful global properties of the
graph, whereas if p > p∗∗, it only depends on trivial local quantities and does
not convey any useful information. We can explicitly compute the critical values:
p∗ = 1 + 1/(d − 1) and p∗∗ = 1 + 1/(d − 2) where d is the dimension of
the underlying space (we believe that the fact that there is a small gap between
p∗ and p∗∗ is an artifact of our proofs). We also relate our findings to Laplacian
regularization and suggest to use q-Laplacians as regularizers, where q satisfies
1/p∗ + 1/q = 1.

1 Introduction

The graph Laplacian is a popular tool for unsupervised and semi-supervised learning problems on
graphs. It is used in the context of spectral clustering, as a regularizer for semi-supervised learning,
or to compute the resistance distance on graphs. However, it has been observed that under certain
circumstances, standard Laplacian-based methods show undesired artifacts. In the semi-supervised
learning setting Nadler et al. (2009) showed that as the number of unlabeled points increases, the so-
lution obtained by Laplacian regularization degenerates to a non-informative function. von Luxburg
et al. (2010) proved that as the number of points increases, the resistance distance converges to a
meaningless limit function. Independently of these observations, a number of authors suggested to
generalize Laplacian methods. The observation was that the “standard” Laplacian methods corre-
spond to a vector space setting with L2-norms, and that it might be beneficial to work in a more
general Lp setting for p 6= 2 instead. See Bühler and Hein (2009) for an application to clustering
and Herbster and Lever (2009) for an application to label propagation. In this paper we take up
several of these loose ends and connect them.

The main object under study in this paper is the family of p-resistances, which is a generalization
of the standard resistance distance. Our first major result proves that the family of p-resistances is
very rich and contains several special cases. The general picture is that the smaller p is, the more the
resistance is concentrated on “short paths”. In particular, the case p = 1 corresponds to the shortest
path distance in the graph, the case p = 2 to the standard resistance distance, and the case p → ∞
to the inverse s-t-mincut.

Second, we study the behavior of p-resistances in the setting of random geometric graphs like lattice
graphs, ε-graphs or k-nearest neighbor graphs. We prove that as the sample size n increases, there
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are two completely different regimes of behavior. Namely, there exist two critical thresholds p∗ and
p∗∗ such that if p < p∗, the p-resistances convey useful information about the global topology of
the data (such as its cluster properties), whereas for p > p∗∗ the resistance distances approximate a
limit that does not convey any useful information. We can explicitly compute the value of the critical
thresholds p∗ := 1 + 1/(d− 1) and p∗∗ := 1 + 1/(d− 2). This result even holds independently of
the exact construction of the geometric graph.

Third, as we will see in Section 5, our results also shed light on the Laplacian regularization
and semi-supervised learning setting. As there is a tight relationship between p-resistances and
graph Laplacians, we can reformulate the artifacts described in Nadler et al. (2009) in terms of
p-resistances. Taken together, our results suggest that standard Laplacian regularization should be
replaced by q-Laplacian regularization (where q is such that 1/p∗ + 1/q = 1).

2 Intuition and main results

Consider an undirected, weighted graph G = (V,E) with n vertices. As is standard in machine
learning, the edge weights are supposed to indicate similarity of the adjacent points (not distances).
Denote the weight of edge e by we ≥ 0 and the degree of vertex u by du. The length of a path γ
in the weighted graph is defined as

∑
e∈γ 1/we. In the electrical network interpretation, a graph is

considered as a network where each edge e ∈ E has resistance re = 1/we. The effective resistance
(or resistance distance) R(s, t) between two vertices s and t in the network is defined as the overall
resistance one obtains when connecting a unit volt battery to s and t. It can be computed in many
ways, but the one most useful for our paper is the following representation in terms of flows (cf.
Section IX.1 of Bollobas, 1998):

R(s, t) = min
{∑

e∈E rei
2
e

∣∣∣ i = (ie)e∈E unit flow from s to t
}
. (1)

In von Luxburg et al. (2010) it has been proved that in many random graph models, the resistance
distance R(s, t) between two vertices s and t converges to the trivial limit expression 1/ds + 1/dt
as the size of the graph increases. We now want to present some intuition as to how this problem
can be resolved in a natural way. For a subset M ⊂ E of edges we define the contribution of M
to the resistance R(s, t) as the part of the sum in (1) that runs over the edges in M . Let i∗ be
a flow minimizing (1). To explain our intuition we separate this flow into two parts: R(s, t) =
R(s, t)local + R(s, t)global. The part R(s, t)local stands for the contribution of i∗ that stems from
the edges in small neighborhoods around s and t, whereas R(s, t)global is the contribution of the
remaining edges (exact definition given below). A useful distance function is supposed to encode
the global geometry of the graph, for example its cluster properties. Hence, R(s, t)global should be
the most important part in this decomposition. However, in case of the standard resistance distance
the contribution of the global part becomes negligible as n → ∞ (for many different models of
graph construction). This effect happens because as the graph increases, there are so many different
paths between s and t that once the flow has left the neighborhood of s, electricity can flow “without
considerable resistance”. The “bottleneck” for the flow is the part that comes from the edges in the
local neighborhoods of s and t, because here the flow has to concentrate on relatively few edges. So
the dominating part is R(s, t)local.

In order to define a useful distance function, we have to ensure that the global part has a significant
contribution to the overall resistance. To this end, we have to avoid that the flow is distributed over
“too many paths”. In machine learning terms, we would like to achieve a flow that is “sparser”
in the number of paths it uses. From this point of view, a natural attempt is to replace the 2-norm-
optimization problem (1) by a p-norm optimization problem for some p < 2. Based on this intuition,
our idea is to replace the squares in the flow problem (1) by a general exponent p ≥ 1 and define the
following new distance function on the graph.

Definition 1 (p-resistance) On any weighted graph G, for any p ≥ 1 we define

Rp(s, t) := min
{∑

e∈E re|ie|p
∣∣∣ i = (ie)e∈E unit flow from s to t

}
. (∗)

As it turns out, our newly defined distance functionRp is closely related but not completely identical
to the p-resistanceRHp defined by Herbster and Lever (2009). A discussion of this issue can be found
in Section 6.1.
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Figure 1: The s-t-flows minimizing (∗) in a two-dimensional grid for different values of p. The
smaller p, the more the flow concentrates along the shortest path.

In toy simulations we can observe that the desired effect of concentrating the flow on fewer paths
takes place indeed. In Figure 1 we show how the optimal flow between two points s and t gets
propagated through the network. We can see that the smaller p is, the more the flow is concentrated
along the shortest path between s and t. We are now going to formally investigate the influence of
the parameter p. Our first question is how the family Rp(s, t) behaves as a function of p (that is, on
a fixed graph and for fixed s, t). The answer is given in the following theorem.

Theorem 2 (Family of p-resistances) For any weighted graphG the following statements are true:

1. For p = 1, the p-resistance coincides with the shortest path distance on the graph.

2. For p = 2, the p-resistance reduces to the standard resistance distance.

3. For p→∞, Rp(s, t)p−1 converges to 1/m where m is the unweighted s-t-mincut.

This theorem shows that our intuition as outlined above was exactly the right one. The smaller p
is, the more flow is concentrated along straight paths. The extreme case is p = 1, which yields the
shortest path distance. In the other direction, the larger p is, the more widely distributed the flow is.
Moreover, the theorem above suggests that for p close to 1, Rp encodes global information about the
part of the graph that is concentrated around the shortest path. As p increases, global information
is still present, but now describes a larger portion of the graph, say, its cluster structure. This is
the regime that is most interesting for machine learning. The larger p becomes, the less global
information is present in Rp (because flows even use extremely long paths that take long detours),
and in the extreme case p → ∞ we are left with nothing but the information about the minimal
s-t-cut. In many large graphs, the latter just contains local information about one of the points s or t
(see the discussion at the end of this section). An illustration of the different behaviors can be found
in Figure 2.

The next question, inspired by the results of von Luxburg et al. (2010), is what happens to Rp(s, t)
if we fix p but consider a family (Gn)n∈N of graphs such that the number n of vertices in Gn tends
to ∞. Let us consider geometric graphs such as k-nearest neighbor graphs or ε-graphs. We now
give exact definitions of the local and global contributions to the p-resistance. Let r and R be real
numbers that depend on n (they will be specified in Section 4) and C ≥ R/r a constant. We define
the local neighborhoodN (s) of vertex s as the ball with radius C · r around s. We will see later that
the condition C ≥ R/r ensures that N (s) contains at least all vertices adjacent to s. By abuse of
notation we also write e ∈ N (s) if both endpoints of edge e are contained in N (s). Let i∗ be the
optimal flow in Problem (∗). We define

Rlocalp (s) :=
∑
e∈N (s) re|i∗e|p,

Rlocalp (s, t) := Rlocalp (s) + Rlocalp (t), and Rglobalp (s, t) := Rp(s, t) − Rlocalp (s, t). Our next result
conveys that the behavior of the family of p-resistances shows an interesting phase transition. The
statements involve a term τn that should be interpreted as the average degree in the graph Gn (exact
definition see later).
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Figure 2: Heat plots of the Rp distance matrices for a mixture of two Gaussians in R10. We can see
that the larger p it, the less pronounced the “global information” about the cluster structure is.

Theorem 3 (Phase transition for p-resistances in large geometric graphs) Consider a family
(Gn)n∈N of unweighted geometric graphs on Rd, d > 2 that satisfies some general assumptions
(see Section 4 for definitions and details). Fix two vertices s and t. Define the two critical values
p∗ := 1 + 1/(d− 1) and p∗∗ := 1 + 1/(d− 2). Then, as n→∞, the following statements hold:

1. If p < p∗ and τn is sub-polynomial in n, then Rglobalp (s, t)/Rlocalp (s, t) → ∞, that is the global
contribution dominates the local one.

2. If p > p∗∗ and τn →∞, then Rlocalp (s, t)/Rglobalp (s, t)→∞ and Rp(s, t)→ 1

dp−1
s

+ 1

dp−1
t

, that
is all global information vanishes.

This result is interesting. It shows that there exists a non-trivial point of phase transition in the
behavior of p-resistances: if p < p∗, then p-resistances are informative about the global topology
of the graph, whereas if p > p∗∗ the p-resistances converge to trivial distance functions that do not
depend on any global properties of the graph. In fact, we believe that p∗∗ should be 1−1/(d−1) as
well, but our current proof leaves the tiny gap between p∗ = 1−1/(d−1) and p∗∗ = 1−1/(d−2).

Theorem 3 is a substantial extension of the work of von Luxburg et al. (2010), in several respects.
First, and most importantly, it shows the complete picture of the full range of p ≥ 1, and not
just the single snapshot at p = 2. We can see that there is a range of values for p for which p-
resistance distances convey very important information about the global topology of the graph, even
in extremely large graphs. Also note how nicely Theorems 2 and 3 fit together. It is well-known
that as n → ∞, the shortest path distance corresponding to p = 1 converges to the (geodesic)
distance of s and t in the underlying space (Tenenbaum et al., 2000), which of course conveys
global information. von Luxburg et al. (2010) proved that the standard resistance distance (p = 2)
converges to the trivial local limit. Theorem 3 now identifies the point of phase transition p∗ between
the boundary cases p = 1 and p = 2. Finally, for p → ∞, we know by Theorem 2 that the p-
resistance converges to the inverse of the s-t-min-cut. It is widely believed that the minimal s-t cut
in geometric graphs converges to the minimum of the degrees of s and t as n → ∞ (even though
a formal proof has yet to be presented and we cannot point to any reference). This is in alignment
with the result of Theorem 3 that the p-resistance converges to 1/dp−1s + 1/dp−1t . As p → ∞,
only the smaller of the two degrees contributes to the local part, which agrees with the limit for the
s-t-mincut.

3 Equivalent optimization problems and proof of Theorem 2

In this section we will consider different optimization problems that are inherently related to p-
resistances. All graphs in this section are considered to be weighted.

3.1 Equivalent optimization problems

Consider the following two optimization problems for p > 1:

Flow-problem: Rp(s, t) := min
{∑

e∈E re|ie|p
∣∣ i = (ie)e∈E unit flow from s to t

}
(∗)
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Potential problem: Cp(s, t) = min
{ ∑
e=(u,v)

|ϕ(u)− ϕ(v)|1+
1

p−1

r
1

p−1
e

∣∣ ϕ(s)− ϕ(t) = 1
}

(∗∗)

It is well known that these two problems are equivalent for p = 2 (see Section 1.3 of Doyle and
Snell, 2000). We will now extend this result to general p > 1.

Proposition 4 (Equivalent optimization problems) For p > 1, the following statements are true:

1. The flow problem (∗) has a unique solution.

2. The solutions of (∗) and (∗∗) satisfy Rp(s, t) = (Cp(s, t))
− 1

p−1 .

To prove this proposition, we derive the Lagrange dual of problem (∗) and use the homogeneity of
the variables to convert it to the form of problem (∗∗). Details can be found in the supplementary
material. With this proposition we can now easily see why Theorem 2 is true.

Proof of Theorem 2. Part (1). If we set p = 1, Problem (∗) coincides with the well-known linear
programming formulation of the shortest path problem, see Chapter 12 of Bazaraa et al. (2010).
Part (2). For p = 2, we get the well-known formula for the effective resistance.
Part (3). For p→∞, the objective function in the dual problem (∗∗) converges to

C∞(s, t) := min
{∑

e=(u,v) |ϕ(u)− ϕ(v)|
∣∣ ϕ(s)− ϕ(t) = 1

}
.

This coincides with the well-known linear programming formulation of the min-cut problem in
unweighted graphs. Using Proposition 4 we finally obtain

lim
p→∞

Rp(s, t)
p−1 = lim

p→∞

1

Cp(s, t)
=

1

C∞(s, t)
=

1

s-t-mincut
.

4 Geometric graphs and the Proof of Theorem 3

In this section we consider the class of geometric graphs. The vertices of such graphs consist of
points X1, .., Xn ∈ Rd, and vertices are connected by edges if the corresponding points are “close”
(for example, they are k-nearest neighbors of each other). In most cases, we consider the set of
points as drawn i.i.d from some density on Rd. Consider the following general assumptions.

General Assumptions: Consider a family (Gn)n∈N of unweighted geometric graphs where Gn is
based on X1, ..., Xn ∈ M ⊂ Rd, d > 2. We assume that there exist 0 < r ≤ R (depending on n
and d) such that the following statements about Gn holds simultaneously for all x ∈ {X1, ..., Xn}:

1. Distribution of points: For ρ ∈ {r,R} the number of sample points in B(x, ρ) is of the
order Θ(n · ρd).

2. Graph connectivity: x is connected to all sample points inside B(x, r) and x is not con-
nected to any sample point outside B(x,R).

3. Geometry of M : M is a compact, connected set such that M \ ∂M is still connected.
The boundary ∂M is regular in the sense that there exist positive constants α > 0 and
ε0 > 0 such that if ε < ε0, then for all points x ∈ ∂M we have vol(Bε(x) ∩ M) ≥
α vol(Bε(x)) (where vol denotes the Lebesgue volume). Essentially this condition just
excludes the situation where the boundary has arbitrarily thin spikes.

It is a straightforward consequence of these assumptions that there exists some function τ(n) =: τn
such that r andR are both of the order Θ((τn/n)1/d) and all degrees in the graph are of order Θ(τn).

4.1 Lower and upper bounds and the proof of Theorem 3

To prove Theorem 3 we need to study the balance between Rlocalp and Rglobalp . We introduce the
shorthand notation

T1 = Θ
( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
, T2 = Θ

( 1

τ
2(p−1)
n

1/r∑
k=1

1

k(d−2)(p−1)

)
.
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Theorem 5 (General bounds on Rlocalp and Rglobalp ) Consider a family (Gn)n∈N of unweighted
geometric graphs that satisfies the general assumptions. Then the following statements are true
for any fixed pair s, t of vertices in Gn:

4C > Rlocalp (s, t) ≥ 1

dp−1s

+
1

dp−1t

and T1 + T2 ≥ Rglobalp (s, t) ≥ T1.

Note that by taking the sum of the two inequalities this theorem also leads to upper and lower
bounds for Rp(s, t) itself. The proof of Theorem 5 consists of several parts. To derive lower bounds
on Rp(s, t) we construct a second graph G′n which is a contracted version of Gn. Lower bounds
can then be obtained by Rayleigh’s monotonicity principle. To get upper bounds on Rp(s, t) we
exploit the fact that the p-resistance in an unweighted graph can be upper bounded by

∑
e∈E i

p
e ,

where i is any unit flow from s to t. We construct a particular flow that leads to a good upper bound.
Finally, investigating the properties of lower and upper bounds we can derive the individual bounds
on Rlocalp and Rglobalp . Details can be found in the supplementary material.

Theorem 3 can now be derived from Theorem 5 by straight forward computations.

4.2 Applications

Our general results can directly be applied to many standard geometric graph models.

The ε-graph. We assume that X1, ..., Xn have been drawn i.i.d from some underlying density f
on Rd, where M := supp(f) satisfies Part (3) of the general assumptions. Points are connected by
unweighted edges in the graph if their Euclidean distances are smaller than ε. Exploiting standard
results on ε-graphs (cf. the appendix in von Luxburg et al., 2010), it is easy to see that the general
assumptions (1) and (2) are satisfied with probability at least 1−c1n exp(−c2nεd) (where c1, c2 are
constants independent of n and d) with r = R = ε and τn = Θ(nεd). The probability converges to
1 if n→∞, ε→ 0 and nεd/ log(n)→∞.

k-nearest neighbor graphs. We assume that X1, ..., Xn have been drawn i.i.d from some un-
derlying density f on Rd, where M := supp(f) satisfies Part (3) of the general assumptions. We
connect each point to its k nearest neighbors by an undirected, unweighted edge. Exploiting stan-
dard results on kNN-graphs (cf. the appendix in von Luxburg et al., 2010), it is easy to see that
the general assumptions (1) and (2) are satisfied with probability at least 1 − c1k exp(−c2k) with
r = Θ

(
(k/n)1/d

)
, R = Θ

(
(k/n)1/d

)
, and τn = k. The probability converges to 1 if n → ∞,

k →∞, and k/ log(n)→∞.

Lattice graphs. Consider uniform lattices such as the square lattice or triangular lattice in Rd.
These lattices have constant degrees, which means that τn = Θ(1). If we denote the edge length of
grid by ε, the total number of nodes in the support will be in the order of n = Θ(1/εd). This means
that the general assumptions hold for r = R = ε = Θ( 1

n1/d ) and τn = Θ(1). Note that while the
lower bounds of Theorem 3 can be applied to the lattice case, our current upper bounds do not hold
because they require that τn →∞.

5 Regularization by p-Laplacians

One of the most popular methods for semi-supervised learning on graphs is based on Laplacian
regularization. In Zhu et al. (2003) the label assignment problem is formulated as

ϕ = argminx C(x) subject to ϕ(xi) = yi , i = 1, . . . , l (2)

where yi ∈ {±1}, C(x) := ϕTLϕ is the energy function involving the standard (p = 2) graph
Laplacian L. This formulation is appealing and works well for small sample problems. However,
Nadler et al. (2009) showed that the method is not well posed when the number of unlabeled data
points is very large. In this setting, the solution of the optimization problem converges to a constant
function with “spikes” at the labeled points. We now present a simple theorem that connects these
findings to those concerning the resistance distance.

Theorem 6 (Laplacian regularization in terms of resistance distance) Consider a semi-super-
vised classification problem with one labeled point per class: ϕ(s) = 1, ϕ(t) = −1. Denote
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the solution of (2) by ϕ∗, and let v be an unlabeled data point. Then

ϕ∗(v)− ϕ∗(t) > ϕ∗(s)− ϕ∗(v) ⇐⇒ R2(v, t) > R2(v, s).

Proof. It is easy to verify that ϕ∗ = L†(es − et) and R2(s, t) = (es − et)TL†(es − et) where L†
is the pseudo-inverse of the Laplacian matrix L. Therefore we have ϕ∗(v) = (ev)

TL†(es − et) and

ϕ∗(v)− ϕ∗(t) > ϕ∗(s)− ϕ∗(v) ⇐⇒ (ev − et)TL†(es − et) > (es − ev)TL†(es − et)
(a)⇐⇒ (ev − et)TL†(ev − et) > (ev − es)TL†(ev − es) ⇐⇒ R2(v, t) > R2(v, s).

Here in step (a) we use the symmetry of L† to state that eTv L
†es = eTs L

†ev . 2

What does this theorem mean? We have seen above that in case p = 2, if n→∞,

R2(v, t) ≈ 1

dv
+

1

dt
and R2(v, s) ≈ 1

dv
+

1

ds
.

Hence, the theorem states that if we threshold the function ϕ∗ at 0 to separate the two classes, then
all the points will be assigned to the labeled vertex with larger degree.

Our conjecture is that an analogue to Theorem 6 also holds for general p. For a precise formulation,
define the matrix∇ as

∇i,j =

{
ϕ(i)− ϕ(j) i ∼ j
0 otherwise

and introduce the matrix norm ‖A‖m,n =
(∑

i((
∑
j a

m
ij )

1/m)n
)1/n

. Consider q such that 1/p +

1/q = 1. We conjecture that if we used ‖∇‖q,q as a regularizer for semi-supervised learning, then
the corresponding solution ϕ∗ would satisfy

ϕ∗(v)− ϕ∗(t) > ϕ∗(s)− ϕ∗(v) ⇐⇒ Rp(v, t) > Rp(v, s).

That is, the solution of the q-regularized problem would assign labels according to theRp-distances.
In particular, using q-regularization for the value q with 1/q + 1/p∗ = 1 would resolve the artifacts
of Laplacian regularization described in Nadler et al. (2009).

It is worth mentioning that this regularization is different from others in the literature. The usual
Laplacian regularization term as in Zhu et al. (2003) coincides with ‖∇‖2,2, Zhou and Schölkopf
(2005) use the ‖∇‖2,p norm, and our conjecture is that the ‖∇‖q,q norm would be a good candidate.
Proving whether this conjecture is right or wrong is a subject of future work.

6 Related families of distance functions on graphs

In this section we sketch some relations between p-resistances and other families of distances.

6.1 Comparing Herbster’s and our definition of p-resistances

For p ≤ 2, Herbster and Lever (2009) introduced the following definition of p-resistances:

RHp′ (s, t) :=
1

CHp′ (s, t)
with CHp′ (s, t) := min

{ ∑
e=(u,v)

|ϕ(u)− ϕ(v)|p′

re

∣∣ ϕ(s)− ϕ(t) = 1
}
.

In Section 3.1 we have seen that the potential and flow optimization problems are duals of each
other. Based on this derivation we believe that the natural way of relating RH and CH would be to
replace the p′ in Herbster’s potential formulation by q′ such that 1/p′+1/q′ = 1. That is, one would
have to consider CHq′ and then define R̂Hp′ := 1/CHq′ . In particular, reducing Herbster’s p′ towards 1
has the same influence as increasing our p to infinity and makesRHp′ converge to the minimal s-t-cut.

To ease further comparison, let us assume for now that we use “our” p in the definition of Herbster’s
resistances. Then one can see by similar arguments as in Section 3.1 that RHp can be rewritten as

RHp (s, t) := min
{∑
e∈E

rp−1e |ie|p
∣∣∣ i = (ie)e∈E unit flow from s to t

}
. (H)
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Now it is easy to see that the main difference between Herbster’s definition (H) and our definition
(∗) is that (H) takes the power p − 1 of the resistances re, while we keep the resistances with
power 1. In many respects, Rp and RHp have properties that are similar to each other: they satisfy
slightly different versions (with different powers or weights) of the triangle inequality, Rayleigh’s
monotonicity principle, laws for resistances in series and in parallel, and so on. We will not discuss
further details due to space constraints.

6.2 Other families of distances

There also exist other families of distances on graphs that share some of the properties of p-
resistances. We will only discuss the ones that are most related to our work, for more references
see von Luxburg et al. (2010). The first such family was introduced by Yen et al. (2008), where the
authors use a statistical physics approach to reduce the influence of long paths to the distance. This
family is parameterized by a parameter θ, contains the shortest path distance at one end (θ → ∞)
and the standard resistance distance at the other end (θ → 0). However, the construction is somewhat
ad hoc, the resulting distances cannot be computed in closed form and do not even satisfy the triangle
inequality. A second family is the one of “logarithmic forest distances” by Chebotarev (2011). Even
though its derivation is complicated, it has a closed form solution and can be interpreted intuitively:
The contribution of a path to the overall distance is “discounted” by a factor (1/α)l where l is the
length of the path. For α→ 0, the logarithmic forest distance distance converges to the shortest path
distance, for α→∞, it converges to the resistance distance.

At the time of writing this paper, the major disadvantage of both the families introduced by Yen
et al. (2008) and Chebotarev (2011) is that it is unknown how their distances behave as the size of
the graph increases. It is clear that on the one end (shortest path), they convey global information,
whereas on the other end (resistance distance) they depend on local quantities only when n → ∞.
But what happens to all intermediate parameter values? Do all of them lead to meaningless distances
as n → ∞, or is there some interesting phase transition as well? As long as this question has not
been answered, one should be careful when using these distances. In particular, it is unclear how the
parameters (θ and α, respectively) should be chosen, and it is hard to get an intuition about this.

7 Conclusions

We proved that the family of p-resistances has a wide range of behaviors. In particular, for p = 1
it coincides with the shortest path distance, for p = 2 with the standard resistance distance and
for p → ∞ it is related to the minimal s-t-cut. Moreover, an interesting phase transition takes
place: in large geometric graphs such as k-nearest neighbor graphs, the p-resistance is governed by
meaningful global properties as long as p < p∗ := 1 + 1/(d− 1), whereas it converges to the trivial
local quantity 1/dp−1s + 1/dp−1t if p > p∗∗ := 1 + 1/(d− 2). Our suggestion for practice is to use
p-resistances with p ≈ p∗. For this value of p, the p-resistances encode those global properties of
the graph that are most important for machine learning, namely the cluster structure of the graph.

Our findings are interesting on their own, but also help in explaining several artifacts discussed in the
literature. They go much beyond the work of von Luxburg et al. (2010) (which only studied the case
p = 2) and lead to an intuitive explanation of the artifacts of Laplacian regularization discovered in
Nadler et al. (2009). An interesting line of future research will be to connect our results to the ones
about p-eigenvectors of p-Laplacians (Bühler and Hein, 2009). For p = 2, the resistance distance
can be expressed in terms of the eigenvalues and eigenvectors of the Laplacian. We are curious to
see whether a refined theory on p-eigenvalues can lead to similarly tight relationships for general
values of p.
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SUPPLEMENTARY MATERIAL

Proof of Proposition 4

Proof of Part (1). It is easy to see that the set of all unit s-t-flows is a compact convex set and
the p-norm function on this set is strictly convex for p > 1, thus the minimum exists. From strict
convexity, this minimum is unique for p > 1. 2

Proof of Part (2). We are going to rewrite the problems (∗) and (∗∗) as convex optimization
problems and show that they are equivalent to the Lagrange duals of each other. We denote the
n × m vertex-edge incidence matrix of a graph by Q. For any edge ek between vertices i and j,
there exist two entries in this matrix: qik = +1 and qjk = −1 (flipping these signs does not make
any difference in the following). Denoting the vector of edge currents by I , we can rewrite problem
(∗) as

Rp(s, t)
1/p = min ‖I‖p,r subject to QI = es − et (3)

where ‖ · ‖p,r is the r-weighted p-norm with ri = 1/wi and ej is the j-th unit vector. On the other
hand, problem (∗∗) can be rewritten as

Cp(s, t)
1/q = min ‖QTu‖q,r subject to us − ut = 1 (4)

where 1
p + 1

q = 1 and ‖ · ‖q,r is the weighted q-norm with weights ri = wq−1i . The conjugate of the
norm function f = ‖ · ‖ is

f∗(y) =

{
0 ‖y‖∗ ≤ 1

∞ otherwise

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Using the fact that the dual norm of ‖ · ‖p,r is ‖ · ‖q,r with
ri = 1/rq−1, we can write the Lagrange dual problem of (3) in the minimization form as

R∗(v) = min(vs − vt) subject to ‖QT v‖q,r ≤ 1. (5)

The objective function is convex and Slater’s condition holds, so we have strong duality and zero du-
ality gap. This problem is homogeneous and the objective is linear in v, hence achieves its minimum
in ‖QT v‖q,r = 1. We can rewrite it as

Rdual(v) = min(vs − vt) subject to ‖QT v‖q,r = 1. (6)

If we exchange the objective function and the equality constraint in a homogeneous problem, the
optimum value of the resulting problem will be the inverse of the optimum in the original problem.
This means that if we form the problem

R′dual(v) = min ‖QT v‖q,r subject to (vs − vt) = 1 (7)

and denote the solution of (6) by v∗ and of (7) by v′∗, we will have

Rdual(v
∗) =

1

R′dual(v
′∗)
. (8)

As Problems (4) and (7) are identical, we can conclude

Rp(s, t)
1/p =

1

Cp(s, t)1/q
or Rp(s, t) =

1

Cp(s, t)p/q
=

1

Cp(s, t)p−1
.

2

Upper and lower bounds on p-resistances

Before proving Theorem 5, we need to state two key propositions. In the following, recall the
notation T1 and T2 from Section 4.

10



v0=s v1 v2 vS-1 vS vS+1=t
} {
ds edges dt edges

}
E1 edges 

Figure 3: Construction of the contracted graph G′ in the proof of the lower bound

Proposition 7 (Lower bound on Rp) Consider a family (Gn)n∈N of unweighted geometric graphs
that satisfies the general assumptions. Then for any fixed pair s, t of vertices in Gn we have

Rp(s, t) ≥
1

dp−1s

+
1

dp−1t

+ T1.

Proof. Fix n. Given Gn =: G, we are going to construct a second graph in which the resistance
between s and t is at most as large as in the original graph. We are going to exploit that Rayleigh’s
monotonicity principle also holds for p-resistances (proof omitted, it is an easy adaptation of the
corresponding proof in Herbster and Lever, 2009). To this end, we divide the space between s and
t into “slices” of width R that are perpendicular to the line connecting s and t. To build the new
graph, we first add edges of resistance 0 between all neighbors of s and merge these vertices to one
new “super-vertex” v1. We also take all remaining sample points in the slice of s, except s itself, and
merge them to v1 (first adding edges of resistance 0 between all these points and then contracting
them to one vertex). For all intermediate slices (the ones not containing s or t) we add edges of
resistance 0 to all points in the slice and contract them to one vertex, leading to vertex vk in slice
k. In the slice containing t, we apply the analogue construction. See Figure 3 for an illustration.
We denote the total number of slices by S, the resulting graph by G′ = (V ′, E′), and the number
of edges between vj and vj+1 by Ej . We also set v0 := s and vS+1 := t. Note that by Rayleigh’s
monotonicity principle, the p-resistances in G and G′ satisfy RGp (s, t) ≥ RG′p (s, t). Consider a unit
flow i = (ie)e∈E′ from s to t. By the flow definition of the p-resistance distance we know that

RG
′

p (s, t) =
∑
e∈E′
|ie|p =

S∑
j=0

Ej∑
k=1

|ik|p
(a)

≥
S∑
j=0

1

Ep−1j

( Ej∑
k=1

|ik|
)p (b)

=

S∑
j=0

1

Ep−1j

.

Here, inequality (a) is a consequence of the generalized mean inequality (applied to the two powers
p and 1). Equality (b) is a consequence of the definition of a unit flow because the sum of the flow
over all edges of an s−t cut is 1, and in our graph the flow on all edges is non-negative. By definition
we know that E0 = ds, ES = dt. Denoting by Emax := max{Ek

∣∣ k = 1, ..., S} the maximal
number of edges between the intermediate vertices, we obtain

RG
′

p (s, t) =
1

dp−1s

+
1

dp−1t

+

S−1∑
j=1

1

Ep−1j

≥ 1

dp−1s

+
1

dp−1t

+
S − 1

Ep−1max

To bound Emax, observe that the number of edges between vj and vj+1 in G′ corresponds to the
number of edges ofG between points in slice j and j+1. This number can be upper bounded by the
number of edges that are attached to vertices in the smaller of the two slices. This is upper bounded
by the number N of points in the slice times the maximal degree in the graph.

Under the general assumptions we have N = Θ(nR) = Θ(n1−1/dτ
1/d
n ) and dmax = Θ(τn). This

gives Emax = Θ(n1−1/dτ
1+1/d
n ). The number S of slices is of the order 1/R = Θ((n/τn)1/d).

Together we get

RGp (s, t) ≥ 1

dp−1s

+
1

dp−1t

+ Θ
( 1(
τn/n

)1/d(
n1−1/dτ

1+1/d
n

)p−1)
=

1

dp−1s

+
1

dp−1t

+ Θ
( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
.

2
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Figure 4: Slices and rings between s and t

Proposition 8 (Upper bound on Rp) Consider a family (Gn)n∈N of unweighted geometric graphs
that satisfies the general assumptions. Then for any fixed pair s, t of vertices in Gn we have

Rp(s, t) ≤
1

dp−1s

+
1

dp−1t

+ T1 + T2.

Proof. We know from (∗) that the p-resistance in an unweighted graph can be upper bounded by∑
e∈E i

p
e , where i is any unit flow from s to t. We are now going to construct a particular flow that

leads to a good upper bound. We construct our flow as follows. Starting in s, we first distribute the
flow to all the neighbors of s, and from there to all points in a big ring around s (see Figure 4).
After that, every vertex in the ring sends the same amount of flow directed to the destination t. We
collect all the flow at the ring around t, and in an inverse procedure to the one in the beginning we
direct all flow to t itself.

In detail, consider a set of concentric rings around s, each with distance r/2 to the next one and
width r/2 (see Figure 4). We are going to consider 1/r such rings. We now distribute the unit flow
starting from s uniformly through the rings: starting at s we distribute the flow to all its neighbors
(leading to a contribution of 1/dp−1s ). Then we propagate the flow from the neighbors of s to all
points in the inner-most circle, and then from there layer by layer to the outside.

Denote by Nk the number of sample points in ring k. As a consequence of the general assumptions,
Nk is proportional to n times the volume of ring k. This volume is of the order

Vk = r ·
(

Θ
(
(k + 1)d−1rd−1

)
−Θ

(
kd−1rd−1

))
= Θ

(
kd−2rd

)
which implies

Nk = nVk = n Θ(kd−2rd) = Θ(τnk
d−2).

By a similar argument, the total number of points in all rings is N total
s = Θ(nr) = Θ(n1−1/dτ

1/d
n ).

By the definition of r (see general assumptions) we know that each point in ring k has on the order
of Θ(τn) neighbors in ring k + 1. Every vertex in ring k sends Θ(1/Nk) flow to all its neighbors in
ring k+1, using Θ(τn) edges. The contribution of the flow between ring k and k+1 to the resistance
is thus of the order 1/τ

2(p−1)
n k(d−2)(p−1), hence the overall contribution of the “ring part” Rrings is

bounded by

Rrings ≤ Θ
( 1

τ
2(p−1)
n

1/r∑
k=1

1

k(d−2)(p−1)

)
.

The analogous bound holds for the ring around t.

Now consider the contribution of the traverse flow that goes from the ring around s to the ring around
t. Every vertex in the ring around s sends the same amount of flow (1/N total

s ) to its neighbors in
the next slice directed to t. It follows from the definition of r that each point in slice k has on
the order of Θ(τn) neighbors in the slice k + 1, so it will send Θ( 1

τnNtotal
s

) flow to each of its
neighbors in the next slice. Every vertex in the next slice has Θ(τn) neighbors in the current slice,
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Figure 5: Cubes between s and u

so it will receive Θ( τn
τnNtotal

s
) = Θ( 1

Ntotal
s

) flow. Denoting the number of edges between slice j
and j + 1 by Ej and using a similar argument to determining Emax in the proof of Part 1, we get
Ej = Θ(n1−1/dτ

1+1/d
n ). So we have

Rtraverse(s, t) ≤
S∑
j=1

Ej∑
k=1

|ik|p =

S∑
j=1

Θ
( Ej(
τnN total

s

)p) =

S∑
j=1

Θ
( n1−1/dτ

1+1/d
n(

n1−1/dτ
1+1/d
n

)p)

=

S∑
j=1

Θ
( 1(
n1−1/dτ

1+1/d
n

)p−1) = Θ
( S(
n1−1/dτ

1+1/d
n

)p−1).
Setting S = Θ(1/r) = Θ

(
n/τn

)1/d
results in

Rtraverse(s, t) ≤ Θ
( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
.

All in all, the flow sums to the following contributions

Rp(s, t) ≤
1

dp−1s

+
1

dp−1t

+Rrings +Rringt +Rtraverse

≤ 1

dp−1s

+
1

dp−1t

+ Θ
( 1

τ
2(p−1)
n

1/r∑
k=1

1

k(d−2)(p−1)

)
+ Θ

( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
.

2

Before finally moving on to the proof of Theorem 5, we state a helpful little proposition that will be
needed later on.

Proposition 9 Consider the local neighborhood N (s) of vertex s and a vertex u ∈ N (s). The
length of the shortest path between s and u is smaller than 2C.

Proof : Consider hypercubes with side length r/2 between s and u (see Figure 5). The distance
between s and u is at most C · r, so there are at most 2C of these hypercubes. Following the general
assumptions, all vertices inside a hypercube are connected to all vertices in neighboring hypercubes.
This means that the length of the shortest path between s and u is smaller than 2C. 2

Proof of Theorem 5

We are now going to use the bounds of Propositions 7 and 8 to prove Theorem 5.

Proof of the lower bound on Rlocalp . Denote the optimal flow in the p-resistance problem by i∗.
We obtain

Rlocalp (s) ≥
∑
u∼s
|i∗(s,u)|

p ≥ 1

dp−1s

(∑
|i∗(s,u)|

)p
=

1

dp−1s

.

The first inequality is true because by choice of the constant C, all points adjacent to s are contained
inN (s). The second inequality uses the the generalized mean inequality (applied to the two powers
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p and 1). The desired bound now follows directly from Rlocalp (s, t) = Rlocalp (s) +Rlocalp (t). 2

Proof of the upper bound on Rlocalp . It is enough to show that Rlocalp (s) < 2C.

Let i∗ denote the optimal flow in Problem (∗). Due to its optimality, any other unit flow i satisfies

Rlocalp (s) =
∑

edge e∈N (s)

|i∗e|p ≤
∑

edge e∈N (s)

|ie|p.

We now want to construct a particular flow i that coincides with i∗ “on the boundary of N (s)”, but
which we can control inside N (s). To make this precise, we call a vertex u ∈ N (s) a boundary
vertex if it is adjacent to some v 6∈ N (s). Denote the set of boundary vertices in N (s) by ∂N (s).
For every u ∈ ∂N (s) and every unit flow i, we denote by outi(u) the sum of the flow on all edges
(u, v) with v 6∈ N (s). Because i is a unit flow, it is easy to check that∑

u∈∂N (s)

outi(u) = 1.

We now want to construct a nice flow i that satisfies ∀u ∈ ∂N (s) : outi(u) = outi∗(u). To this
end, for any vertex u ∈ ∂N (s) we consider a shortest path πs,u from s to u that completely stays
inside N (s). Now we construct a flow ĩ as follows. We first send flow with amount out(u) from s
to u along πs,u. For all boundary edges and edges outside of N (s) we define ĩe = i∗e . It is easy to
check that ĩ is a valid unit flow from s to t.

Now we want to bound the resistance for this particular flow. We denote the j-th edge on the path
πs,u by πjs,u and define the set Sj as

Sj =
{
πjs,u

∣∣ u ∈ ∂N (s)
}
.

The set Sj contains all j-th edges on shortest paths from s to the vertices in ∂N (s), so we get∑
e∈Sj

ĩe ≤ 1.

Now we can see that

Rlocalp (s) ≤
∑

edge e∈N (s)

|̃ie|p
(a)
=

2C−1∑
j=1

∑
e∈Sj

|̃ie|p
(b)

≤
2C−1∑
j=1

∑
e∈Sj

|̃ie| < 2C.

Here, equality (a) is a consequence of the definition of ĩ and Proposition 9 and inequality (b) follows
from |̃ie|p ≤ |̃ie|. 2

Proof of the lower bound on Rglobalp . Fix the contributions of the optimal flow i∗ on the edges in
N (s) and N (t) and consider the following problem:

R̃Gp (s, t) := min
{∑
e∈E
|ie|p

∣∣ i = (ie)e∈E unit s-t flow ;∀e ∈ N (s) ∪N (t) : ie = i∗e

}
.

Obviously, the solution of this problem equals RGp (s, t). Now we shrink the graph G except the
vertices in N (s) and N (t) to a new graph G′ as we did in the proof of Proposition 7 and consider
the optimization problem

R̃G
′

p (s, t) := min
{ ∑
e∈E′
|ie|p

∣∣ i = (ie)e∈E′ unit s-t flow ;∀e ∈ N (s) ∪N (t) : ie = i∗e

}
.
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That is, we consider the shrunken graph, but keep the contributions of the edges in the local neigh-
borhood of s and t fixed. By Rayleigh’s monotonicity principle we get that R̃G

′

p (s, t) ≤ R̃Gp (s, t) =

RGp (s, t). By the same argument as in the proof of Proposition 7 we get

Rglobalp (s, t) ≥ S − 4CK

Ep−1max

where K = R/r is a constant. Following similar computations we obtain

Rglobalp (s, t) ≥ Θ
( 1

np(1−1/d)−1τ
p(1+1/d)−1
n

)
.

2

Proof of the upper bound on Rglobalp . From Proposition 8 and the lower bound on Rlocalp we have

Rlocalp (s, t) +Rglobalp (s, t) = Rp(s, t) ≤
1

dp−1s

+
1

dp−1t

+ T1 + T2

and

Rlocalp (s, t) ≥ 1

dp−1s

+
1

dp−1t

.

Combining these two bounds gives

Rglobalp (s, t) ≤ T1 + T2.

2

Proof of Theorem 3

Now we can finally proceed to the proof of our main theorem.

Part (1). As a result of Theorem 5 we get

Rlocalp (s, t)

Rglobalp (s, t)
<

4C

T1
.

Having p < 1 + 1/(d− 1) allows us to set c2 := 1− p(1− 1/d) > 0. Also it is easy to see that

p(1 +
1

d
)− 1 <

2

d− 1
.

So we can conclude that

Rlocalp (s, t)

Rglobalp (s, t)
<

4C

T1
<

4C · τ2/(d−1)n

nc2
.

This expression converges to 0 if τn is sub-polynomial in n.

Part (2). From Theorem 5 we get

Rlocalp (s, t)

Rglobalp (s, t)
≥

1

dp−1
s

+ 1

dp−1
t

T1 + T2
.

To examine the limit behavior, recall the expression for T2. It is easy to see that for p > 1+1/(d−2),
the harmonic sum in T2 will converge to a constant Z and

T2 ≤ Θ
( Z

τ
2(p−1)
n

)
.
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Again we can bound T1 by

T1 ≤ Θ
( 1

n1/d(d−2)τ
(p−1)+p/d
n

)
.

Together we get

Rglobalp (s, t)

Rlocalp (s, t)
≤ Θ

( 1

n1/d(d−2)τ
(d−1)/d(d−2)
n

)
+ Θ

( 1

τ
1/(d−2)
n

)
.

For n→∞ and τn →∞, the right hand side goes to zero and

Rlocalp (s, t)

Rglobalp (s, t)
→∞.

Finally, to see the limit expression we rewrite Propositions 7 and 8 as

1 +
T1 + T2
1

dp−1
s

+ 1

dp−1
t

≥ Rp(s, t)
1

dp−1
s

+ 1

dp−1
t

≥ 1 +
T1

1

dp−1
s

+ 1

dp−1
t

.

Observing that

T1 + T2
1

dp−1
s

+ 1

dp−1
t

→ 0 and
T1

1

dp−1
s

+ 1

dp−1
t

→ 0

as n→∞ and τn →∞ leads to the limit statement

Rp(s, t)→
1

dp−1s

+
1

dp−1t

.

2

Let us make some final remarks:

It is worth to note that our results not only hold for a fixed constant C, but even if we consider a
larger neighborhood around s by setting C to a sub-polynomial function of n.

In the regime p < p∗ we require that the degrees τn grow sub-polynomially in n. This condition is
needed to make sure that the set N (s) is indeed “local” and does not cover too large a part of the
graph. To get some intuition on this, just consider the case where the degrees are in the order of
n, that is each vertex is connected with most other vertices in the graph. Then even single edges in
the graph behave “global” as they might connect very far away parts in the graph. In this case the
distinction between local and global contributions breaks down.
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