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Tübingen, Germany

University of Tübingen
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Abstract

Applications of machine learning inform hu-
man decision makers in a broad range of
tasks. The resulting problem is usually for-
mulated in terms of a single decision maker.
We argue that it should rather be described
as a two-player learning problem where one
player is the machine and the other the hu-
man. While both players try to optimize
the final decision, the setup is often char-
acterized by (1) the presence of private in-
formation and (2) opacity, that is imperfect
understanding between the decision makers.
We prove that both properties can compli-
cate decision making considerably. A lower
bound quantifies the worst-case hardness of
optimally advising a decision maker who is
opaque or has access to private information.
An upper bound shows that a simple coor-
dination strategy is nearly minimax optimal.
More e�cient learning is possible under cer-
tain assumptions on the problem, for exam-
ple that both players learn to take actions in-
dependently. Such assumptions are implicit
in existing literature, for example in medi-
cal applications of machine learning, but have
not been described or justified theoretically.

1 Introduction

The number of applications where machine learning
informs human decision makers is steadily growing
(Board of Governors, 2007; Angwin et al., 2016; Tonek-
aboni et al., 2018). In this work, we argue for a spe-
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cific perspective on machine learning systems that in-
form human decision makers: We want to understand
them as attempts to solve joint human-machine deci-
sion making problems where both sides have to learn to
act optimally. This perspective will help to understand
limitations and potential pitfalls of such systems. We
believe that this is an important step towards robust
and reliable systems (Rahwan et al., 2019).

Our motivation is the growing number of applications
where machine learning advises human decision mak-
ers. For example:

(1) The COMPAS program that assists judges dur-
ing criminal trials (Angwin et al., 2016). The
program provides a risk assessment score for de-
fendants in criminal law. Judges then use this
score, among others, to decide whether a defen-
dant should await trial at home or in jail, and to
determine the length of prison sentences (Klein-
berg et al., 2018; Forrest, 2021).

(2) Cardiac arrest and other forms of adverse event
prediction. In medicine and beyond, it can be
of great value to know when adverse events such
as cardiac arrest are likely to occur (Tonekaboni
et al., 2018; Shamout et al., 2020; Baker et al.,
2020). This can often be predicted based on a
limited amount of information. Computer pro-
grams alert doctors when a patient’s condition is
likely to become critical. Doctors respond with
a treatment adapted to the patient’s condition,
which may include ignoring the alert.

(3) Diabetic retinopathy detection (Raghu et al.,
2019). Deep learning has shown great capabili-
ties to detect diabetic retinopathy in pictures of
the eye. This has led to computer programs that
inform doctors by assigning scores to to images.
Doctors incorporate these scores into their deci-
sion making (Beede et al., 2020).

In all three examples, machine learning provides ad-
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Figure 1: Illustrated application of our model: The computer is advising a human doctor. The computer
recommends to perform action A or B. After consulting her additional private information, the human finally
decides to perform action B.

vice, but final decisions are left to the human. More-
over, human decision makers base their decisions on
additional private information that is unavailable to
the machine. In the COMPAS example, the judge ob-
tains additional information from the trail and the in-
teraction with the defendant, attorney and prosecutor
(Lakkaraju et al., 2017). In the medical example, pri-
vate information might consist of non-digitized parts
of the patient’s medical history, or diseases that run in
the family of the patient (Goldenberg and Engelhardt,
2019). Even in the diabetic retinopathy example, the
final treatment decision is typically based on more in-
formation than just the picture of the eye.

In addition to the presence of private information, it
has long been argued that human-machine cooperation
is hampered by a certain degree of opacity (Leonelli,
2020). Indeed, despite a lot of work on explainable
machine learning, computers cannot explain their de-
cisions to humans the way other humans can, and com-
puters cannot really understand free-form human ex-
planations.

How can we design computer programs that optimally
advise human decision makers in tasks such as (1)-(3)?
What does “optimally” even mean in these contexts?
To provide precise answers to these questions, we pro-
pose a contextual bandit model with two players that
aims to capture the most important properties of the
above decision problems.

The two players in our model, who we refer to as “the
human” and “the machine”, interact according to the
following protocol (illustrated in Figure 1). In every
round, the first player (the machine) receives private
contextual information and makes a recommendation
to the second player (the human). This recommen-
dation can be a suggested action, but it can also be
a confidence region, a colorfully highlighted image or
any other summary of the received context. In the

COMPAS example, the recommendation is the risk
assessment score. Given the recommendation and her
own private contextual information, the human finally
decides on an action. Conditional on context and the
chosen action, a reward signal is obtained. Action and
reward are observed by both players, and they share
the same goal: to maximize the obtained rewards.

We endow each of the players with a finite set of de-
cision rules or policies, which is the simplest possible
learning setting. The goal is to minimize the minimax
regret with respect to the two decision rules that work
best together. We first analyze the case where the hu-
man does not attempt to learn (Section 4). However,
we believe that the fact that human decision makers
have to learn how to “interpret” machine recommen-
dations is a crucial aspect of human-machine decision
making. In cardiac arrest prediction, for example, doc-
tors have reported to learn over time how to interpret
machine alerts and integrate them into existing clinical
practice. We therefore also consider the problem where
human and machine both have to learn (Section 5).

The main objective of this paper is to gain a the-
oretical understanding of an emerging number of
human-machine decision making problems, such as
(1)-(3). By considering the interaction between two
abstract decision makers in the presence of private
information and opacity, we aim to provide a general
analysis of the potential and limitations of human-
machine decision making. While our main intention
is to set a theoretical baseline for more applied work
in human-machine interaction, we also hope that
our proposed model and newly introduced problems
will spark theoreticians interest into various aspects
of the human-machine learning problem. Our main
contributions are the following.



Sebastian Bordt, Ulrike von Luxburg

• We prove that private information and opacity
significantly impact the hardness of two-player de-
cision making. Private information and opacity
each lead to a worst-case lower bound of orderp
TN1 (Theorem 3). Here N1 is the number of

policies of the first player. Without private infor-
mation and opacity, the two players can obtain
an e�cient expected regret of

p
2TK ln(N1N2)

(Proposition 1). Here N2 is the number of poli-
cies of the second player.

• We show that a simple coordination device –
telling the machine which policy to use – allows
the human to learn e�ciently. Specifically, the
P2-EXP4 algorithm allows to upper bound the
expected minimax regret by

p
2TKN1 ln(N1N2)

(Theorem 4), also in the presence of private infor-
mation and opacity.

• We derive a criterion – policy space independence
– that allows to learn with an expected regret
of
p

8T max{K, |R|} ln(max{N1, N2}) (Theorem
6). Here |R| is the number of possible machine
recommendations. If policy space independence
holds and |R| is small, the two players can learn
e�ciently.

• In Sections 6 and 7, we show that various ap-
proaches in the literature can be better under-
stood within the context of our model. In par-
ticular, policy space independence is implicit in
much of the existing literature. The peculiar case
of treatment recommendations is left as Conjec-
ture 7.

2 Our model: The computer reports
to the human, who then decides

Formally, our model is a contextual bandit model
with two players, depicted in Figure 2. In round
t = 1, . . . , T , Player 1 (the machine) first observes con-
text xt 2 X . Player 1 then chooses a recommendation
rt 2 R, potentially at random. Here, R is the space of
all possible recommendations that the first player can
make. Next, Player 2 (the human) observes context
zt 2 Z and the chosen recommendation rt. Player 2
then, potentially at random, chooses an action at 2 A.
This action is revealed to both players, and they re-
ceive a reward signal yt 2 [0, 1]. Here X and Z are ar-
bitrary spaces of private contexts (one for each player),
and A = {1, . . . ,K} is a finite set of K actions.

2.1 Formal setup

Both players are endowed with a finite set of policies.
Their common goal is to take optimal actions. Let

In round t = 1, ..., T

1. Context xt 2 X is revealed to Player 1

2. Player 1 decides on a recommendation rt 2 R

3. Context zt 2 Z and recommendation rt are
revealed to Player 2

4. Player 2 decides on an action at 2 A

5. Reward yt 2 [0, 1] and action at are revealed
to both players

Figure 2: Interaction in our contextual bandit model.

⇧1 ✓ RX be a finite set of policies for the first player,
and ⇧2 ✓ AR⇥Z a finite set of policies for the second
player. Given two policies f 2 ⇧1 and g 2 ⇧2, we
obtain the resulting joint policy ⇡(x, z) = g(f(x), z).
This joint policy is a complete decision rule for the
problem, translating context into actions. Let ⇧ =
⇧2 ⇥ ⇧1 be the space of all combinations of policies
that the two players can possibly realize. For a tuple
⇡ = (g, f) 2 ⇧, we slightly abuse notation and write
⇡(x, z) = g(f(x), z) to refer to the corresponding joint
policy.1 Moreover, we denote the number of policies
N1 = |⇧1| and N2 = |⇧2|. We have N = |⇧| = N1N2.

An algorithm for the two players is a pair A =
(A1, A2). Here A1 = (A1,t)Tt=1 and A2 = (A2,t)Tt=1

are two collections of measurable functions that spec-
ify the decision rules of both players at all points in
time. The domains of these functions specify which
variables are observable to which player at what time.
Thus, A1,t is a function of x1, . . . , xt, whereas A2,t is
a function of r1, . . . , rt and z1, . . . , zt. The details of
this can be found in Supplement A.1.

Let D be a probability distribution over X⇥Z⇥[0, 1]A.
We consider an i.i.d. contextual bandit model where
tuples (xt, zt, Yt) are i.i.d. draws from D. Let Y (⇡) =
E(x,z,Y )⇠D [Y (⇡(x, z))] be the expected reward of a
joint policy ⇡. Let ⇡? 2 argmax⇡2⇧ Y (⇡) be a
policy combination that maximizes the expected re-
ward. The expected regret after T rounds is given

by RegT = E
h
T Y (⇡?)�

PT
t=1 Yt(at)

i
, where the ex-

pectation is over D and the randomly selected ac-
tions and recommendations. The central quantity
of analysis is the minimax regret, given by RT =
infA supD sup|⇧1|=N1

sup|⇧2|=N2
RegT .

1Depending on ⇧1 and ⇧2, di↵erent tuples (g, f) can
give rise to the same policy ⇡ : X ⇥ Z ! A.
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2.2 First thoughts and discussion of
modelling assumptions

Private context. This is our approach to model pri-
vate information. In real-world decision making prob-
lems such as (1)-(3), humans often have access to in-
formation that is not available to any algorithm. A
reason for this might be that some information, such
a detailed health record, is not yet available in elec-
tronic form. However, we also believe that in many of
the tasks where machine learning is increasingly being
deployed at, formulating all relevant aspects as inputs
to an algorithm is impossible. This is because ma-
chine learning is increasingly being deployed in social
contexts where researchers have long accepted the fact
that its impossible to exhaustively collect all relevant
variables (Angrist and Pischke, 2008). Our model also
allows for private contextual information of the ma-
chine. In the medical domain, an algorithm might have
access to a patient’s genome data, which could never
be entirely surveyed by a human. Unobserved vari-
ables might also occur in unexpected situations, such
as when both decision makers coordinate a decision
based on the same image. Here algorithms have been
shown to rely on high-frequency patterns that are im-
perceptible to humans (Ilyas et al., 2019; Makino et al.,
2020).

Private policy spaces. We model opacity by keep-
ing knowledge about the policy spaces to the respective
players. Intuitively, this means that the players cannot
deliberate about what happened: The machine does
not know which actions the human would have chosen
had it chosen a di↵erent recommendation. Similarly,
the human does not know which recommendations the
machine considered but decided against. While pol-
icy spaces are private, we place no restrictions on the
algorithms that both players might run.

The space of recommendations. The space of rec-
ommendations R is the interface by which the first
player can transmit information to the second player
(Goodrich and Schultz, 2007). For the first player, it
plays the role of an action space (providing a recom-
mendation is the action that the first player takes).
For the second player, it resembles additional contex-
tual information. In the analysis, will turn out to be
useful to restrict the size of the space of recommen-
dations (Section 6). A large space of recommenda-
tions allows the machine to provide the human with
rich contextual information. This includes the sce-
nario where the machine attempts to “explain” pre-
dictions in some rich space. A concrete example of
this would be when the machine provides a saliency
map (Simonyan et al., 2014; Selvaraju et al., 2017).
In contrast, a small space of recommendations allows
the machine to suggest concrete actions, or to raise an

alert. A priori, it seems unclear which of these two ap-
proaches will be more useful. On one hand, we might
want the machine to provide the human with as much
information as possible. On the other hand, it might
be more e�cient if the machine directly suggests which
actions to perform. In Sections 3-5, we remain agnos-
tic about the nature of the space of recommendations.
The special case of treatment recommendations is dis-
cussed in Section 7.

What makes the model di�cult? For both play-
ers, the di�culty arises from the fact that contextual
information and policy space of the other player are
unknown. This gives rise to a coordination problem.
Each player would like to find the optimal policy that
works best in combination with the strategy chosen by
the other player. This is di�cult because knowledge
about the other player’s decision problem is limited.

Online learning. Our model is an online learning
model. This allows us to study the process by which
the two decision makers coordinate and arrive at de-
cisions. In practice, an algorithm would always be
trained on a historical dataset before it starts to in-
teract with a human decision maker. However, if we
continuously gather data in order to retrain and im-
prove our algorithm, we are implicitly engaging in an
online learning procedure. We are directly considering
an online learning model since this allows us to study
the principal limitations and possibilities of various ap-
proaches. For more details on online and repeated su-
pervised learning we refer the reader to Supplement E.

Worst-case analysis. Intuitively, a strategy of the
two players might work well for some decision problems
and fail for others. Considering the minimax regret
means that we would like to find guarantees that can
be achieved under all possible circumstances. That
said, it is interesting to ask how much better the two
players can do if we assume that the decision problem
is ’benign’ – a question that we turn to in Section 6.

3 Two baselines for the expected
regret

How well can we expect the two players to coordinate,
and what are the consequences of private information
and opacity for two-player decision making? To pro-
vide answers to these questions, we are first going to
consider our model without private information and
opacity. No private information means that X = Z
and xt = zt for all t. No opacity means that the algo-
rithm of the first player is also a function of the policy
space of the second player and vice-versa.

Proposition 1. (Regret without private infor-
mation and opacity) Without private information
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and opacity, the two players can obtain an expected
regret of p

2TK ln(N1N2).

All proofs are deferred to the Supplement. The regret
bound in Proposition 1 is as good as we can expect at
all.2 It is the same regret that would be achieved by a
hypothetical single decision maker who had access to
all contextual information and both policy spaces, us-
ing EXP4 (Auer et al., 2002; Lattimore and Szepesvari,
2019). Proposition 1 demonstrates that our hardness
result (Theorem 3) is a consequence of private infor-
mation and opacity, and not due to the way in which
the two players interact in our model.

A second baseline is given by the coordination strat-
egy where players naively try all policy combinations.
This strategy also works with private information and
opacity. Using the MOSS algorithm by Audibert and
Bubeck (2010):

Proposition 2. (Naively trying all policy com-
binations) By treating the policies in ⇧ as di↵erent
arms of a stochastic bandit, we obtain

RT  O
⇣p

TN1N2

⌘
.

Under private information and opacity, can the two
players do better than what is suggested by Proposi-
tion 2? The question becomes whether it is possible to
move N1 and N2 inside the logarithm, at the expense
of a factor of K. Why is this important? A regret
bound of order

p
N means that the policy space is not

dealt with e�ciently. It corresponds to systematic trial
and error on every single policy. Quite to the contrary,
a regret bound of order

p
lnN means that the decision

maker can compare many policies simultaneously. It
prepares the way to deal with infinite policy spaces and
learn rich function classes (Beygelzimer et al., 2010).

4 A lower bound for optimal
algorithmic advice

Before we turn to the full problem where human and
machine both have to learn, we focus on the problem
of the machine. That is we assume that the human
does not have to learn how to interpret machine rec-
ommendations. This is a significant simplification, but
the result will be instructive. We are going to show
that private information and opacity each lead to a
lower of order

p
TN1.

2For adversarial contextual bandits, the boundp
TK ln(N) has been shown to be tight up to a factor

of lnK by Seldin and Lugosi (2016). Note that we are con-
cerned with statistical optimality and set computational
concerns aside.

Formally, we assume that the second player follows a
fixed decision rule that deterministically translates rec-
ommendations rt and contextual information zt into
actions. The first player has N1 di↵erent policies and
wants to learn the best one. How di�cult is this learn-
ing problem? Note that we do not place any restric-
tions on the space of recommendations R. However,
the ultimate number of actions K is small. Can the
first player make use of this fact and solve the problem
e�ciently? In the presence of private information or
opacity, this is not the case.

Theorem 3. (Lower bound in the number of
policies of the first player) Assume that Player 2
only plays actions that are suggested by policies in ⇧2.
Let N2 = 1 and K = 2. There exists a universal con-
stant c > 0 such that

RT � c
p
TN1.

The lower bound in Theorem 3 is as strong as it can
possibly be. It shows that the first player has to solve
a bandit problem that depends not on the number of
actions K, but on the number of policies N1.

Supplement A.4 contains two proofs of Theorem 3.
The first proof constructs problem instances with pri-
vate information but without opacity, and the second
proof constructs problem instances with opacity but
without private information.3 In conclusion, both pri-
vate information and opacity can significantly impact
on the hardness of two-player decision making.

Remark 1. The reader might be worried by the fact
that we fixed Player 2. Indeed, even if the policy space
of the second player consists of a single decision rule,
it might be optimal to deviate in order to facilitate co-
ordination. To alleviate such concerns, Supplement C
presents a problem class that allows the second player
to choose actions arbitrarily. We discuss the general
issue of encoding information about the policy spaces
in actions and recommendations in Supplement F.

5 E�cient learning for a human who
controls the machine

We now consider the full problem of human-machine
learning where the human learns how to interpret ma-
chine recommendations. Intuitively, the human tries
to figure out how to act on machine advice. At the
same time, the machine tries to determine how to ad-
vise the human. How should the two players coordi-
nate? Is it possible that both explore simultaneously?

3From a theoretical perspective it might not be surpris-
ing that private information and opacity have the same
consequences. Ultimately, what matters are the expert
predictions that result from the interaction of context and
policy (Cesa-Bianchi and Lugosi, 2006).
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Algorithm P2-EXP4

Parameters: ⌘ > 0, � > 0
Initialization: Q1 2 [0, 1]N1⇥N2 with Q1,ij = 1

N1N2

For each t = 1, ..., T

1. Player 2 tells Player 1 to play policy it according
to qti =

PN2
j=1 Qt,ij

2. Player 1 recommends rt = fit(xt)

3. Player 2 chooses action at according to (1)

4. Players receive reward yt and Player 2 estimates

ŷtk = 1� 1{at=k}
qt,itptk+� (1� yt)

5. Player 2 propagates rewards to policies
Ŷt,ij = 1{it 6=i} + 1{it=i}ŷt,gj(rt,zt)

6. Player 2 updates Qt using exponential weighting

Qt+1,ij =
exp(⌘Ŷt,ij)Qt,ijP

l,m exp(⌘(Ŷt,lm)Qt,lm

Figure 3: The P2-EXP4 algorithm allows the second
player to explore e�ciently.

From Theorem 3 in the previous section, we already
know that the learning problem of the machine is hard,
even if the human sticks to a single policy. We are
now going to show that a simple coordination device
allows the human to explore e�ciently: We allow the
human to tell the machine which policy to use. Intu-
itively, we can perceive the N1 di↵erent policies of the
machine as di↵erent computer programs. The human
tries to learn which of these computer programs to use.
In doing so, the human can explore with exponential
weighting, but only on its own policy space, and not
on the policy space of the machine. This idea is for-
malized in the P2-EXP4 (Player 2-EXP4) algorithm,
depicted in Figure 3. Theorem 4 shows that P2-EXP4
nearly allows to match the lower bound in Theorem 3.

Theorem 4. (Logarithmic regret in the number
of policies of the second player) The P2-EXP4
algorithm with ⌘ =

p
2 log(N1N2)/(TKN1) and � = 0

satisfies

RT 
p
2TKN1 ln(N1N2).

The proof of Theorem 4 is in Supplement A.5. We now
describe the algorithm. Player 2 maintains a probabil-
ity distribution Qt over the space of all policies ⇧. In
every round t, Player 2 first chooses a policy fit for
Player 1 by drawing it from the marginal distribution
of Qt over ⇧1. After obtaining a recommendation rt
and context zt, Player 2 draws at according to the in-

duced probability distribution over actions

P(at = k) = ptk with ptk =

PN2

j=1 Qt,it,j1{gj(rt,zt)=k}
PN2

j=1 Qt,it,j

.

(1)
With the reward signal yt, Player 2 computes
importance-weighted reward estimates for all policies
and then uses an exponential weighting scheme to up-
date Qt.

Remark 2. The proof of Theorem 4 relies on the fact
that the updates performed by P2-EXP4 are equiva-
lent to the updates performed by EXP4 on a related
bandit problem with KN1 actions. As a consequence,
all results for EXP4 carry over to P2-EXP4. In par-
ticular, for � > 0, P2-EXP4 is a variant of EXP4-
IX (Neu, 2015). This implies that P2-EXP4 enjoys
high-probability regret guarantees. Furthermore, The-
orem 4 also holds when contexts and payo↵s are de-
termined by an adversary.

6 E�cient learning for the machine,
subject to further assumptions

We now discuss additional assumptions on the struc-
ture of the problem that allow for more e�cient learn-
ing. The first idea is to restrict the size of the space of
recommendations R. If the machine directly recom-
mends actions, for example, we have R = A. The sec-
ond idea is to resolve the coordination problem. This
can be done via an assumption on the function spaces
of both players that we term policy space independence.
While policy space independence is an abstract crite-
rion, we outline a number of practical examples where
it is satisfied.

This section also relates our work to a number of re-
cently proposed techniques for human-machine inter-
action (Madras et al., 2018; Raghu et al., 2019; Wilder
et al., 2020). We will show that policy space indepen-
dence is implicit in much of the existing literature on
human-machine decision making.

6.1 Policy space independence

We now give an abstract condition that resolves the co-
ordination problem and allows both players to learn in-
dependently. It is an assumption on the policy spaces.
The rationale is that assumptions on the policy spaces
can implicitly define how human and machine interact.

Definition 5 (Policy space independence). We
say that the two policy spaces ⇧1 and ⇧2 are indepen-
dent with respect to D if, for all f1, f2 2 ⇧1 and all
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g1, g2 2 ⇧2,

Y
�
g1(f1(x), z)

�
� Y

�
g1(f2(x), z)

�

= Y
�
g2(f1(x), z)

�
)� Y

�
g2(f2(x), z)

�
.

Intuitively, whether policy f1 performs better than
policy f2 does not depend on the policy chosen by
the second player. Similarly, whether policy g1 per-
forms better than policy g2 does not depend on the
policy chosen by the first player. Hence, the learning
problems of both players are decoupled. The following
theorem shows that policy space independence allows
to e�ciently learn both policy spaces.

Theorem 6 (Logarithmic regret under policy
space independence). Under policy space indepen-
dence, if both players explore independently using
EXP4,

RT 
p

8T max{K, |R|} ln(max{N1, N2}).

The proof of Theorem 6 is in Supplement A.6. In
contrast to Theorem 4, both N1 and N2 appear inside
the logarithm. This is at the expense of a factor |R|.

6.2 Allocating decisions between human and
machine

If |R| is small and policy space independence holds,
the two players can obtain an e�cient expected regret
(Theorem 6). But what does this amount to in prac-
tice? First note that we can constrain the policy space
of the human by specifying rules for how to interact
with the machine. For example: “If the machine de-
picts ’action a’, then perform action a”. This leads
to the following example: Policy space independence
holds when there exists a fixed rule that allocates ev-
ery decision to either the human or the machine. In
medical applications, this would mean that there ex-
ists some procedure that determines whether a given
case should be decided by the doctor or the machine.
For diabetic retinopathy detection, such a procedure
was recently proposed by Raghu et al. (2019), who
also demonstrate that the approach can lead to sub-
stantial benefits in practice. In our model, the rule can
be any predicate P (z), that is the human decides who
decides. It can also be any predicate P (x), that is the
machine decides who decides. Importantly, in order
to satisfy policy space independence, the rule cannot
be learned while the decision makers learn themselves.
We formally show in Supplement B how fixed rules
that allocate decisions result in policy space indepen-
dence.

6.3 Learning to defer

Another example of policy space independence is given
by learning to defer (Madras et al., 2018; Mozannar

and Sontag, 2020). Learning to defer is characterized
by two assumptions. First, the human is a fixed de-
cision maker who does not learn. Second, the space
of recommendations is given by R = A [ {D}, where
D denotes that the decision is deferred to the human.
As can be seen from Definition 5, fixing any of the two
decision makers always results in policy space indepen-
dence. According to Theorem 6, the regret of learning
to defer is thus bounded by

p
8T (K + 1) ln(N1).4

6.4 Other approaches

With some notable exceptions (Hilgard et al., 2019),
the literature on human-machine decision making of-
ten relies on assumptions similar to fixed rules that
allocate decisions and learning to defer (De et al.,
2020a,b). It is usually assumed that the human is a
fixed decision maker whose performance on the given
task can be queried or deferred to (Wilder et al., 2020;
Pradier et al., 2021). Specifically, the human does not
have to learn how to interact with the machine. More-
over, machine recommendations usually equal actions,
with some room for special recommendations in order
to involve the human. Viewed through the lens of our
model, all of these approaches satisfy policy space in-
dependence. In light of Theorem 6, they all allow for
e�cient learning.

7 How di�cult are treatment
recommendations?

In the last section, we have seen that the learning prob-
lem of the machine can be simplified by (1) choosing
R = A and (2) fixing the human decision maker. In
Section 4, we have seen that the condition R = A is
crucial (after all, the lower bound was derived for a
fixed human decision maker). But is it equally neces-
sary to choose |⇧2| = 1? This is interesting because
R = A is satisfied, among others, in screening scenar-
ios. These are the binary classification problems stud-
ied in the literature on fairness and machine learning
(Kleinberg et al., 2019; Barocas et al., 2019). Here a
decision problem might be whether to give a loan or
to admit a student to a university. It is often argued
that such machine suggestion should still be reviewed
by humans (De-Arteaga et al., 2020).

In our model, binary predictions that are reviewed by
humans correspond to R = A = {0, 1} and |⇧2| > 1
(assuming that the human learns when to override ma-
chine predictions). If either N1 = 1 or N2 = 1, EXP4
allows to bound the expected regret by

p
4T ln(N2)

and
p
4T ln(N1), respectively. Therefore, consider the

corner case N1 = N2. If we assume that the sec-

4For N2 = 1, the constant could be improved to 2.
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ond player can tell the first player which policy to
use, P2-EXP4 allows to bound the expected regret byp

8TN1 ln(N1). We conjecture that this is tight up
to a constant factor, i.e. that treatment recommenda-
tions are di�cult.

Conjecture 7. (Lower bound in the number of
policies if R and A are small) Let R = A = {0, 1}
and N1 = N2. We conjecture that there exists a uni-
versal constant c > 0 such that

RT � c
p

TN1 lnN1.

Supplement D details a problem instance that we be-
lieve to be worst-case.5

8 Related Literature

Researchers have long asked how humans can interact
with computers and robots (Sheridan and Verplank,
1978; Goodrich and Schultz, 2007; Parasuraman et al.,
2000). In machine learning, researchers increasingly
study how humans and automated decision making
systems can interact (Tonekaboni et al., 2019; Car-
roll et al., 2019; Lucic et al., 2020; De-Arteaga et al.,
2020). A number of recent works have argued that
joint human-machine decision making can outperform
a single human or a single machine (Lakhani and Sun-
daram, 2017; Raghu et al., 2019; Patel et al., 2019).
Human-computer interaction and the social sciences
study the di↵erent ways in which machine recommen-
dations can influence and alter human decisions (Di-
etvorst et al., 2015; Green and Chen, 2019).

Multi-player multi-armed bandits (Kalathil et al.,
2014; Boursier and Perchet, 2019; Mart́ınez-Rubio
et al., 2019), economic game theory (Mas-Colell et al.,
1995; Von Neumann and Morgenstern, 2007) and com-
binations thereof (Sankararaman et al., 2021) also
study the interaction between multiple players. How-
ever, models in economic game theory are competi-
tive, and the cooperative models in multi-player multi-
armed bandits, often inspired by applications in wire-
less networks (Avner and Mannor, 2016), are symmet-
ric. In contrast, interaction our model is cooperative
and asymmetric – only the second player decides on
a payo↵-relevant action. Insofar as implicit communi-
cation between the two players is concerned, our work
probably relates most closely to Bubeck et al. (2020),
who study implicit communication in a symmetric col-
lision problem (compare also Supplement F).

5The reader might wonder whether interaction terms
betweenK andR appear in any bound. Beyond the special
regime R = A = {0, 1} and N1 = N2, this might well be
the case.

9 Discussion

The consequences of private information and
opacity. We have shown that private information
and opacity can have a significant e↵ect on human-
machine decision making. In the worst-case, the ma-
chine cannot advance beyond simple trial and error on
a small number of policies (Theorem 3). Does this im-
ply that we can never obtain good results in general
human-machine decision making problems where we
cannot make plausible assumptions on the presence of
private information and opacity? Not necessarily. It
does, however, imply that we need good priors for what
comprises successful human-machine cooperation on a
given task. Note that in practice, researchers often
obtain a small number of candidate machine policies
from historical data, then evaluate which one works
best with human decision makers (Sayres et al., 2019;
Tschandl et al., 2020). This approach is closely related
to running the P2-EXP4 algorithm: The policy space
of the machine consists of the candidate decision rules
that were obtained form historical data. In the absence
of further assumptions about the problem, we show
this approach to be essentially minimax optimal. In
some applications, it might be relatively easy to come
up with good machine policies. There are, however,
also problems where it is hard say how the machine
should best inform the human. Consider the exam-
ple where the machine informs the human about an
image: While there have been many empirically suc-
cessful attempts at such problems, there is still a big
debate about post-hoc explainability methods, what
properties they should have, and whether they should
be used at all (Adebayo et al., 2018; Rudin, 2019).

Di↵erent modalities of human-machine decision
making. We have seen in Section 6 that our model
possesses su�cient generality to analyze a wide ar-
ray of interaction protocols between humans and ma-
chines. Of course, there are many di↵erent settings
of human-machine decision making, and our model
can only serve as first step towards a formal analy-
sis. From a theoretical perspective, it remains an in-
teresting open question whether there are weaker as-
sumptions than policy space independence that allow
for e�cient learning (Theorem 6). One might also ask
whether distributional assumptions that restrict the
influence of unobserved variables on the outcome can
result in improved bounds. From a practitioner’s point
of view, the most important question is which assump-
tions are plausibly satisfied in applications.

Prediction problems. In many decision support sys-
tems, machine learning is merely used to solve a spe-
cific prediction or classification problem, whose out-
come is then transferred to the human. Examples are
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scores to predict criminal recidivism, cardiac arrest
and severity of diabetic retinopathy. While such an
approach is a straightforward way of human-machine
interaction, nothing guarantees that the approach will
be successful. For example, there have been numerous
concerns about the consequences of COMPAS scores
on the decision making of judges (Forrest, 2021). In
our view, the belief that the humans should be in-
formed with the scores of a particular prediction prob-
lem is a very strong prior on the policy space of the
machine: the policy space consists of a single policy. In
order to credibly identify successful forms of human-
machine cooperation, we should however consider a
variety of plausible machine policies, and also account
for the fact that human decision makers have to learn
how to interact with them. This is exactly the setting
that we consider in this paper.

Human learning model. In our model, there are
no constraints on the algorithm that the two players
might run. We also remain entirely agnostic about the
policy spaces of both players. This serve the purpose
of generality and keeps our work closely aligned with
the extant literature on contextual bandits. However,
these two assumptions are also major simplifications,
especially insofar as the human decision maker is con-
cerned. Indeed, it is a well-known fact that humans
are not perfectly rational decision makers and have
problems to deal with probabilities (Gigerenzer and
Kurzenhaeuser, 2005; Kahneman and Frederick, 2005).
A human would not be able to correctly perform the
updates prescribed by P2-EXP4, MOSS, or any other
bandit algorithm for that matter. The results provided
in this paper apply to two perfectly rational decision
makers who have access to arbitrary computational
and cognitive resources. Two decision makers who
only have access to limited computational and cogni-
tive resources might hope to achieve as much, but will
in general not be able to do any better. Of course it is
an interesting question to ask how specific behavioral
assumptions on the the human decision maker, such as
bounded rationality (Selten, 1990) or biases when deal-
ing with machine recommendations (Green and Chen,
2019) influence optimal interaction. In the context of
our model, such assumptions might take the form of
assumptions on the policy space of the human, or the
way in which the second decision maker selects policies
in every round. This might be an interesting avenue
for future research. Note, however, that in the context
of our model, “the human” does not necessarily corre-
spond to a single (biological) human. In most applica-
tions that we are interested in (compare (1)-(3) in Sec-
tion 1), there are many di↵erent judges or doctors that
interact with a given machine learning system. While
these human decision makers certainly learn individu-
ally how to interpret machine recommendations, they

also engage in a collective learning procedure (Rako↵,
2021). While questions around the correct modelling
of human-machine interaction are certainly very inter-
esting, our objective in this paper is not to propose
a universal model of human-machine interaction. In-
stead, our objective is to propose a model that is as
simple as possible while still being able to capture the
relations that we are interested in.

Exploration in high-stakes decision making
problems. In many human-machine decision mak-
ing problems, direct exploration is highly problematic
(for example in medical applications). In these appli-
cations, it is often impossible to explore according to
an online algorithm during deployment. Instead, ex-
ploration is only possible during certain development
stages (e.g. when we evaluate in a controlled study
how doctors respond to di↵erent kinds of machine rec-
ommendations). In bandit models in particular, there
are a number of di↵erent approaches – such as batch-
ing and o✏ine learning – that can be taken in order to
model constraints on exploration (Amani et al., 2019;
Liu et al., 2020). In any case, full online learning, that
is the modelling approach taken in this paper, can only
serve as a simple theoretical model for the process in
which algorithmic decision aids are developed, tested
and refined in practice (compare also Supplement E).

Ethical impact. This work discusses statistical ef-
ficiency, which is in itself not a su�cient criterion to
justify automation. This is especially true in medicine,
an area that is believed to experience the widespread
deployment of machine learning systems in the future
(Froomkin et al., 2019; Grote and Berens, 2020). Au-
tomated decision making may also arise in undesired
contexts. However, it remains important to under-
stand it in the scenarios where it is desirable. As our
work concerns theoretical foundations, theorems and
proofs, we do not believe that it will have immediate
negative consequences.
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Supplementary Material:
A Bandit Model for Human-Machine Decision Making

with Private Information and Opacity

A Proofs of theorems in the main paper

A.1 Additional definitions

LetH1,t 2 (X⇥R⇥A⇥[0, 1])t andH2,t 2 (R⇥Z⇥A⇥[0, 1])t be the histories of Player 1 and Player 2, respectively.
Let D(X) denote the space of probability distributions over a space X, and F(X) the set of all finite subsets of
X. An algorithm A is a pair A = (A1, A2) of two collections of measurable functions A1 = (A1,t)Tt=1 and A2 =
(A2,t)Tt=1. For t = 1, we have A1,1 : F(RX )⇥X ! D(R) and A2,1 : F(AR⇥Z)⇥R⇥Z ! D(A). For t = 2, . . . , T ,
we have A1,t : F(RX )⇥ X ⇥H1,t�1 ! D(R) and A2,t : F(AR⇥Z)⇥R⇥ Z ⇥H2,t�1 ! D(A). In Section 5, we
allow Player 2 to tell Player 1 which policy to use. This means that there is an additional collection of measurable
functions (A3,t)Tt=1 with A3,1 : F(AR⇥Z) ! D({1, . . . , N1}) and A3,t : F(AR⇥Z) ⇥ H2,t�1 ! D({1, . . . , N1})
for t = 2, . . . , T . These functions specify the (possibly randomized) policies that Player 2 tells Player 1 to use.
A1 consists of the fixed functions that implement the said policy choices for the first player. Additionally, the
history of Player 2 and domain of functions in A2 contain the policy that Player 1 was told to use.

A.2 Proof of Proposition 1

Proof. Without private information and opacity, the two players can perform actions that are equivalent to
EXP4 run on the joint policy space ⇧ (the EXP4 Algorithm is reproduced in Supplement Figure 4). Note that
without opacity, both players have access to ⇧. Since xt = zt, they are also able to evaluate ⇡(xt, zt) for all
⇡ 2 ⇧. Hence, a trivial solution would be that the second player ignores the recommendations made by the first
player and simply performs EXP4. The result then follows from the standard analysis of EXP4 (Lattimore and
Szepesvari, 2019, Theorem 18.1). A solution more in line with the interaction in our model would be that the
first player recommends, in each round, rt according to P(rt = r) = qtr where

qtr =
N1X

i=1

N2X

j=1

Qt,ij1{fi(xt)=r}.

Here Qt 2 RN1⇥N2 is the matrix maintained by EXP4 as described in Supplement Figure 4. The second player
would then choose at according to P(at = k) = ptk with

ptk =

PN1

i=1

PN2

j=1 Qt,ij1{fi(xt)=rt^gj(rt,zt)=k}

qt,rt
,

i.e. there is a policy gt 2 ⇧2 s.t. at = gt(rt, zt), while the action is again chosen exactly as in EXP4.

A.3 Proof of Proposition 2

Proof. Both players privately label their policies from 0, . . . , N1 � 1 and 0, . . . , N2 � 1. Before the game starts,
both players agree on a deterministic strategy for solving an N -armed stochastic bandit problem. In round t,
where arm 0  i  N � 1 is to be pulled in the N -armed stochastic bandit problem, for i = a · N2 + b with
0  b < N2, Player 1 plays policy a and Player 2 plays policy b. Since a deterministic strategy determines the
next arm to be pulled solely on the basis of past pulled arms and obtained rewards, both players know which
of the N arms is to be pulled in each round. Agreeing on MOSS (Minimax Optimal Strategy in the Stochastic
case), a variant of UCB, allows the two players to bound the minimax regret by 25

p
TN (Audibert and Bubeck

(2010), Theorem 24).
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A.4 Proof of Theorem 3

A.4.1 Proof with private information

Proof. The idea is to construct a decision problem where the first player has to solve an N1-armed stochastic
Bernoulli bandit. The result then follows from the lower bound for stochastic Bernoulli bandits (e.g. Exercise
15.4 in Lattimore and Szepesvari (2019)). Note that Player 2 has only a single policy, i.e. ⇧2 = {g}. Thus,
the assumption that Player 2 only plays actions that are suggested by policies in ⇧2 e↵ectively fixes A2, the
algorithm of the second player.

Let (X1t, . . . , XN1,t) 2 {0, 1}N1 be the payo↵s associated with an N1-armed stochastic Bernoulli bandit in round
t. By assumption K = 2, so A = {1, 2}. Player 1 does not need to receive any context, so let X = {;}. Choose
R = {1, . . . , N1} and ⇧1 = {fi|fi = i, i = 1, . . . , N1}. That is Player 1 has N1 policies, and policy fi constantly
suggests recommendation i. In e↵ect, recommendations and policies are really the same, namely the arms of a
stochastic bandit. Let Z = {0, 1}N1 and ⇧2 = {g} with g(r, z) = 1 + zr. For simplicity, let the payo↵ of Action
1 be 0 in all rounds. Conversely, let the payo↵ Action 2 be 1 in all rounds. Let the context vector zt of Player 2
be given by the payo↵s associated with the Bernoulli bandit, i.e. zt = (X1t, . . . , XN1,t).

In round t, when arm i 2 {1, . . . , N1} of the Bernoulli bandit has payo↵ Xit, Player 2 assigns recommendation
i to action 1 +Xit. This results in a reward of Xit. Thus, in round t, where Player 1 chooses recommendation
rt 2 {1, . . . , N1}, the observes reward is Xrt,t. To sum up, in every round, Player 1 incurs the reward of one of
the arms of the Bernoulli bandit, and this arm can be freely chosen by choosing the recommendation. Since zt is
not observed by Player 1, the payo↵s of all other arms of the Bernoulli bandit remain unknown. Every algorithm
for Player 1 gives rise to an algorithm for stochastic Bernoulli bandits and vice-versa, and we obtain the lower
bound.

A.4.2 Proof with opacity

Proof. As above, let A = {1, 2} and R = {1, . . . , N1}. Let (X1t, . . . , XN1,t) 2 {0, 1}N1 be the payo↵s associated
with an N1-armed stochastic Bernoulli bandit in round t. Now, in every round, both players receive the same
context vector x 2 {1, . . . ,M}. The recommendations of policies of Player 1 are as before and independent of
the context vector, ⇧1 = {fi|fi = i, i = 1, . . . , N1}.

The important part is the policy of Player 2, which is based on a function ĝ : {1, . . . ,M} ! {0, 1}N1 . Instead of
obtaining the payo↵s of the Bernoulli bandit directly as contextual information, Player 2 now uses the private
function ĝ to obtain these payo↵s from x. Naturally, ĝ is not known to Player 1. As above, the policy of Player
2 is given by g(r, x) = 1 + ĝ(x)r and action payo↵s are fixed to 0 and 1.

Let the context vector be uniformly distributed over {1, . . . ,M}. We have to make sure that the same context
vectors do not appear too often, since otherwise the first player could start to infer the payo↵s associated with
them. By choosing M large enough, context vectors up to time T are unique with probability arbitrarily close
to 1.

We still have to specify how to choose ĝ as a function from {1, . . . ,M} to {0, 1}N1 . For N1 and M fixed, there
are only finitely many of these functions. In order to realize a single desired Bernoulli bandit, draw ĝ according
to the probability distribution D̂ given by

PD̂(ĝ) =
MY

i=1

P
⇣
(X11, . . . , XN1,1) = ĝ(i)

⌘
.

In other words, for all i = 1, . . . ,M , the distribution of ĝ(i) over {0, 1}N1 is exactly that of the Bernoulli bandit.

By the same argument as in the prove with unknown context, if ĝ is drawn according to D̂, Player 1 has to solve
the Bernoulli bandit given by (X1t, . . . , XN1,t). Now recall that the minimax regret is given by

RT = inf
A1

sup
D

sup
|⇧1|=N1

sup
|⇧2|=1

RegT .

In particular,

sup
|⇧2|=1

RegT � sup
D̂

Eĝ⇠D̂

h
RegT

i
,
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EXP4

Parameters: ⌘ > 0, � > 0
Initialization: Vector Q1 2 [0, 1]N with Q1i = 1

N
For each t = 1, ..., T

1. Receive context xt

2. Choose action at according to ptk =
PN

i=1 Qti1{⇡i(xt)=k}.

3. Receive reward yt and estimate ŷtk = 1� 1{at=k}
ptk+� (1� yt)

4. Propagates rewards to experts Ŷti = ŷt,⇡i(xt)

5. Player 2 updates Qt using exponential weighting

Qt+1,i =
exp

⇣
⌘Ŷti

⌘
Qti

P
j exp

⇣
⌘Ŷtj

⌘
Qtj

Figure 4: EXP4. Adapted from Algorithm 11 in Lattimore and Szepesvari (2019).

which shows the lower bound in terms of the minimax expected regret for N1-armed stochastic Bernoulli bandits.

A.5 Proof of Theorem 4

Proof. Recall the EXP4 algorithm, reproduced in Supplement Figure 4. The idea of the proof is as follows. In
P2-EXP4, Player 2 maintains a probability distribution over the space of all policy combinations ⇧ and performs
importance-weighted updates. Player 2 does not know the policy space and context of Player 1. Therefore, in
every round, he only obtains information on policy combinations where fit , the function that the first player
actually played, is present. This restricts Player 2 and does not allow him to perform the sames updates as
EXP4. However, assume that all policy combinations where fit is not present had suggested di↵erent actions
than the policy combinations where fit is present. In this case, the updates in P2-EXP4 would be equivalent
to the updates of EXP4. Therefore, we now construct a bandit problem where two di↵erent policies of Player 1
never suggest the same action, and show that Algorithm 1 is equivalent to EXP4 on this related bandit problem.

Consider the adversarial contextual bandit problem with KN1 actions and policy space

⇧̃ =
n
hi,j

��i = 1, . . . , N1, j = 1, . . . , N2,

hi,j : X ⇥ Z ! {1, . . . ,KN1},

hi,j(x, z) = (i� 1)K + gj(fi(x), z)
o
.

This policy space consists of N policies, and there exists a natural bijection I between ⇧̃ and ⇧ given by
hi,j 7! gj(fi(·), ·). Let the adversarial payo↵s of this new problem be a function of the (adversarial or i.i.d.)
payo↵s of the original problem, namely

x̃t = (xt, zt)

and

Ỹt(k) = Yt

⇣
1 + ((k � 1)modK)

⌘
,

for all t = 1, . . . , T and k = 1, . . . ,KN1. Here Yt 2 [0, 1]A contains the payo↵s of the original problem, and
Ỹt 2 [0, 1]{1,...,KN1} the payo↵s of the new problem. By construction,

Ỹt

⇣
hi,j(x̃t)

⌘
= Yt

⇣
gj(fi(xt), zt)

⌘
.
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Therefore,

max
⇡̃2⇧̃

TX

t=1

Ỹt

⇣
⇡̃(x̃t)

⌘
= max

⇡2⇧

TX

t=1

Yt

⇣
⇡(xt, zt)

⌘
. (2)

We are now going to show that P2-EXP4 is equivalent to EXP4(-IX) on this adversarial contextual bandit
problem. In this proof, we denote all variables related this problem and EXP4 with a ⇠. For example, ãt is the
action chosen by EXP4 in round t, resulting in a payo↵ of ỹt. Since both P2-EXP4 and EXP4 are randomized,
equivalence means that there exists a coupling of the random variables drawn by both algorithms under which, in
all rounds, the probability distribution Qt maintained by P2-EXP4 is the probability distribution Q̃t maintained
by EXP4 (with respect to bijection I), ãt = (it � 1)K + at and ỹt = yt.

We proceed by induction over t. The induction hypothesis is that equivalence holds up to round t. This is
obviously true in the first round since both Qt and Q̃t are initialized to be uniform. In round t, EXP4 chooses an
action ãt 2 {1, . . . ,KN1}. This action ãt can be uniquely written as ãt = (̂it�1)K+ ât for some ît 2 {1, . . . , N1}
and ât 2 {1, . . . ,K}. By construction, it is exactly policies hi,1, . . . , hi,N2 that suggest actions

(i� 1)K + 1, . . . , iK.

Hence,

P
⇣
ît = i

⌘
=

N2X

j=1

Qt,ij = P(it = i),

where the first equality is due to the induction hypothesis and the second due to the definition of qti in P2-EXP4.
Since they have the same distribution, ît and it can be perfectly coupled. Additionally, and already subject to
this coupling,

P(ât = k | it = i) =
P(ãt = (i� 1)K + k)

P(it = i)

=

PN2

j=1 Qt,ij1�hi,j(x̃t)=(i�1)K+k
 

PN2

j=1 Qt,ij

= P(at = k | it = i)

where we used the definition of at in Equation (1) of the main paper and the fact that

hi,j(x̃t) = (i� 1)K + k () gj(fi(xt), zt) = k.

Thus, conditional on it, ât and at have the same distribution. Therefore, ât and at can be perfectly coupled,
too, and we arrive at ãt = (it � 1)K + at. From the definition of Ỹt, it follows that ỹt = yt.

It remains to show that the update Qt ! Qt+1 in P2-EXP4 agrees with EXP4. We have to show that Ŷt in
P2-EXP4 agrees with the importance-weighted reward estimates of EXP4. We distinguish three cases. The first
case is i = it and gj(fi(xt), zt) = at. Here it holds that

Ŷt,ij = 0 + 1� 1

qt,it pt,at + �
(1� yt)

= 1� 1

p̃tk + �
(1� ỹt).

The second case is i = it and gj(fi(xt), zt) 6= at. Here it holds that Ŷt,ij = 0 + 1 = 1. The third case is i 6= it.

Here it holds that Ŷt,ij = 1 + 0 = 1, too. In all three cases, the update agrees exactly with EXP4.

We have shown that
PT

t=1 yt =
PT

t=1 ỹt. Subtracting this from (2), we see that

max
⇡2⇧

TX

t=1

Yt

⇣
⇡(xt, zt)

⌘
�

TX

t=1

yt = max
⇡̃2⇧̃

TX

t=1

Ỹt

⇣
⇡̃(x̃t)

⌘
�

TX

t=1

ỹt. (3)
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From the analysis of EXP4, e.g. from Theorem 18.1 in Lattimore and Szepesvari (2019), we know that

E
 
max
⇡̃2⇧̃

TX

t=1

⇡̃(x̃t)�
TX

t=1

ỹt

!

p

2TKN1 ln(N1N2)

for � = 0 and ⌘ =
p

2 log(N1N2)/(TKN1), which implies the desired bound.

A.6 Proof of Theorem 6

Proof. Assume that |R| < 1, otherwise the bound is vacuous. Let f1 and f2 be two policies of Player 1. In
general, the expected regret under f1 and f2 depends on the policy choice of Player 2. Specifically, there might be
g1 and g2 such that Y

�
g1(f1(x), z)

�
> Y

�
g1(f2(x), z)

�
and Y

�
g2(f1(x), z)

�
< Y

�
g2(f2(x), z)

�
. Let ⇡? = (g?, f?)

be an optimal policy combination. Under policy space independence, the quantities

Reg(f) = Y
�
g(f?(x), z)

�
� Y

�
g(f(x), z)

�

and
Reg(g) = Y

�
g?(f(x), z)

�
� Y

�
g(f(x), z)

�

are well-defined. Moreover,
Y
�
⇡?

�
� Y

�
g(f(x), z)

�
= Reg(g) + Reg(f).

That both players explore independently using EXP4 means the following. Player 2 uses EXP4 on A with
⌘1 =

p
2 log(N2)/(TK) and �1 = 0. Player 1 considers recommendations as actions and uses EXP4 on R with

⌘2 =
p

2 log(N1)/(T |R|) and �2 = 0. In round t, there exist policies fit and gjt such that rt = fit(xt) and
at = gjt(fit(xt), zt). Player 1 solves the adversarial contextual bandit problem with context xt, action space R
and policy space ⇧1. Player 2 solves the adversarial contextual bandit problem with context (rt, zt), action space
A and policy space ⇧2. Player 1 provides adversarial context for Player 2, and Player 2 provides adversarial
payo↵ for Player 1. Because of policy space independence, this independent exploration strategy also controls
the joint expected regret.

First note that it and jt are functions of the history and can be considered drawn before the tuple (xt, zt, Yt).
The expected regret in round t is given by

E(xt,zt,Yt)⇠D

h
Yt(g?(f?(xt), zt)� Yt(gjt(fit(xt), zt))

i
= Y

�
g?(f?(x), z)

�
� Y

�
gjt(fit(x), z)

�
.

Making use of policy space independence, the right hand side can be rewritten as

Y
�
g?(f?(x), z)

�
� Y

�
g?(fit(x), z)

�
+ Y

�
g?(fit(x), z)

�
� Y

�
gjt(fit(x), z)

�

= Y
�
gjt(f?(x), z)

�
� Y

�
gjt(fit(x), z)

�
+ Y

�
g?(fit(x), z)

�
� Y

�
gjt(fit(x), z)

�
.

Summing over t, the expected regret is given by

RegT =
TX

t=1

h
Y
�
gjt(f?(x), z)

�
� Y

�
gjt(fit(x), z)

�i

+
TX

t=1

h
Y
�
g?(fit(x), z)

�
� Y

�
gjt(fit(x), z)

�i
.

The first sum is the expected regret in the adversarial contextual bandit problem of the first player. The second
sum is the expected regret in the adversarial contextual bandit problem of the second player. From the analysis
of EXP4, e.g. from Theorem 18.1 in Lattimore and Szepesvari (2019), we obtain

TX

t=1

h
Y
�
gjt(f?(x), z)

�
� Y

�
gjt(fit(x), z)

�i

p

2T |R| lnN1

and
TX

t=1

h
Y
�
g?(fit(x), z)

�
� Y

�
gjt(fit(x), z)

�i

p

2TK lnN2,

which implies the desired bound.
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B Fixed rules that allocate decisions result in policy space independence

In this section we formalize the example given in Section 6.2. We show that fixed rules that allocate decisions to
either the human or the machine result in policy space independence. Let R = A (treatment recommendations),
D : Z 7! {0, 1} (the human decides who decides), ⇧̃2 : Z ! A (the human’s own decision rules) and

⇧2 = {g|g = D(z)g̃(z) + (1�D(z))r, g̃ 2 ⇧̃2}.

Here r = f(x) where f 2 ⇧1 is the decision rule used by the machine. Now, for all f 2 ⇧1 and g 2 ⇧2, and all
distributions D,

Y (g(f(x), z)) = E(x,y,z)⇠D[Y (g(f(x), z))]

= P(D(z) = 0)E[Y (g(f(x), z))|D(z) = 0]

+ P(D(z) = 1)E[Y (g(f(x), z))|D(z) = 1]

= P(D(z) = 0)E[Y (f(x))|D(z) = 0] + P(D(z) = 1)E[Y (g̃(z))|D(z) = 1].

Thus,

Y (g1(f1(x), z))� Y (g1(f2(x), z)) = P(D(z) = 0)E[Y (f1(x))� Y (f2(x))|D(z) = 0]

= Y (g2(f1(x), z))� Y (g2(f2(x), z))

for all f1, f2 2 ⇧1, g1, g2 2 ⇧2 and all distributions D. In the key step of the derivation, we did not use the fact
that D was a (measurable) function of Z. Indeed, the sample space can be partitioned with respect to any event
D.

C Fixed second player in Theorem 3

In Theorem 3, we assumed that Player 2 only plays actions that are suggested by policies in ⇧2. We are
convinced that this assumption can be dropped if the problem instances in the respective proofs are modified in
the following two ways.

First, in every round, the relation between policies and recommendations should be entirely random. Concretely,
let the policies of Player 1 depend on a context vector x 2 {1, . . . ,M}. In every round, let xt be uniform on
{1, . . . ,M}. Moreover, choose M large enough such that every context vector occurs at most once up to time T .
For every x 2 {1, . . . ,M}, randomly draw a permutation ⇡x 2 SN1 . Choose the policy space of the first player
such that given context xt, policy fi recommends ⇡xt(i). In e↵ect, up to time T , the policies of Player 1 make
random recommendations, subject to the constraint that all recommendations be di↵erent.

Second, in every round, it should be entirely random which action gives the payo↵ of 1. Thus, for every
x 2 {1, . . . ,M}, randomly drawn one action to give a payo↵ of 1, and set the payo↵ of the other action to 0.

In the first proof of Theorem 3 (unknown context), permute the context vector z of Player 2 so that every policy
still gets the same payo↵ as it would in the original construction (considering both ⇡x and the permuted payo↵s).
In the second proof of Theorem 3 (unknown policy), let the policy of Player 2 encode the appropriately permuted
context vector.

Intuitively, if Player 2 knew which policies suggested which recommendations, Player 2 could e↵ectively learn
for Player 1. This is since Player 2 does always know the relation between recommendations and actions. In the
given problem instance, the relation between policies and recommendations is impossible to know, at least up to
time T .

D Problem instance for Conjecture 7

In this section we give a problem instance for Conjecture 7. We conjecture that it is a worst-case instance for
which the lower bound stated in Conjecture 7 holds.
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In every round, let one action give a payo↵ of 0 and the other a payo↵ of 1. Randomly decide in every round
which action gives the payo↵ of 1. Choose the context vector and policy class of Player 1 such that he uniformly
receives one of the 2N1 possible expert recommendations in every round. Ahead of time, select a policy of Player
1 and Player 2, respectively (the optimal policies). In every round, a policy for Player 2 gives a map R ! A.
With R = A = {0, 1}, there are 4 possible maps that we denote by (0, 0), (1, 0), (0, 1) and (1, 1). Here (1, 0) is
the map that maps recommendation 0 to Action 1 and recommendation 1 to action 0. For the optimal policy of
Player 2, let the relation between recommendations and actions be such that every policy of Player 1 except the
optimal policy receives an expected payo↵ of 0.5, and the optimal policy receives an expected payo↵ of 0.5 +�.
This can be achieved as follows. In round t, where the optimal policy recommends rt, map recommendation rt
to the action with a payo↵ of 1 with probability 0.5 +�. Similarly, map recommendation 1 � rt to the action
with a payo↵ of 1 with probability 0.5 � �. Note that since context vectors of Player 1 are drawn uniformly
at random, each policy makes the same recommendation as the optimal policy exactly half of the time. For all
other policies of Player 2, draw one of the 4 possible maps from recommendations to actions according to

P
�
(0, 0)

�
= 0.25��2, P

�
(1, 0)

�
= 0.25 +�2

P
�
(0, 1)

�
= 0.25 +�2, P

�
(1, 1)

�
= 0.25��2.

This distribution is chosen such that all other policies have the same marginal distribution over the maps from
recommendations to actions as the optimal policy.

Let us quickly outline why we think that this is a di�cult problem instance. Imagine that in every round, both
players choose a policy according to some decision rule. If both players choose their optimal policy, the expected
payo↵ is 0.5+�. Should any of the two players not choose their optimal policy, the expected payo↵ is 0.5 (for all
policy choices of the other player, also the optimal policy). Now consider what happens in the first round of the
game. Assume that both players choose a policy uniformly at random (uniformly choosing recommendations,
maps or actions does not reveal any information at all). Then, the expected payo↵ of the optimal policies of
both players is 0.5+ �

N1
. Thus, at least in the first round, the magnitude of the signal is �

N1
, while the magnitude

of the regret is �. While the magnitude of the signal increases as the other player starts to identify the optimal
policy, this strongly suggests that the regret does not scale logarithmically in N1.

E Online learning and repeated supervised learning

In this section we give some more detail on why online learning is the correct approach to study human-machine
decision making. Indeed, full online learning, as studied in our paper, is the most general and unrestricted way
to understand how decisions evolve over time. This is despite the fact that machine learning algorithms are often
not deployed in an online fashion. One reason for the latter is that online learning entails exploration which
usually requires informed consent of the individuals who are impacted by the decisions.

In practice, machine learning algorithms are usually trained on a historical dataset. In a human-machine decision
making context, one would then evaluate how well humans perform with the trained algorithm, or a given number
of trained algorithms. This might include some form of training for human decision makers plus a randomized
controlled trial. If one finds that a given system performs su�ciently well, it might be deployed . Although this
procedure is not an explicit online learning procedure, it is subject to the same limitations as online learning,
at least insofar as coordination between the two decision makers is concerned. Viewed through the lens of our
model, it could be interpreted as follows. First, the human makes a number of decisions, ignoring the machine
(this produces the historical dataset). Second, the machine decides on a number of candidate policies (this is the
supervised learning part). Third, the human tries to learn how to interpret the candidate policies of the machine
(as in Section 5). A slightly di↵erent interpretation would be to consider the result of supervised learning as
the initial policy space of the machine. More generally, full online learning is the theoretical limit of all sorts of
procedures that iterate between machine learning on a given dataset, evaluating how well something works with
humans in a real-world setting, collecting a bigger dataset, retraining our model in order to improve performance,
evaluating again with humans, and so on. Importantly, online learning covers the scenario where we continuously
collect data as a given system is running and then re-train it, say, once a year. In fact, full online learning places
as few constraints on learning as possible. For example, re-training a system only at fixed intervals introduces
an additional constraint often referred to as batching.
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F Opacity and implicit communication

In this section we discuss a theoretical subtlety that arises due to the way in which we set the problem up. This
gives more details on the discussion at the end of Section 4 and in Supplement C.

We model opacity by keeping knowledge about the policy spaces to the respective players. As is apparent from
the definition of the minimax regret in section 2.1, both players first fix the way in which they want to approach
the problem (the algorithm), then get to see the respective policy spaces. Importantly, we decided to place
no restrictions on the algorithm that the two players might run. This is because the algorithm is part of the
solution and not part of the problem. It also keeps our work closely aligned with the extant literature on online
learning. This assumption has, however, a subtle consequence. Namely, the algorithms of both players can be
arbitrarily well adapted. In a sense, before the game starts, the two players are allowed to get together in order
to discuss how the problem might be approached. During the game, players might then try to implicitly encode
information about policy spaces and context in actions and recommendations – according to some protocol that
they agreed upon in advance.

With regard to our original research question, elaborate implicit communication protocols between the two
players are of course unrealistic and even violate the idea of opacity. After all, it is implausible that a computer
program and a human decision maker would communicate with such means. In this regard, note that we ruled
out implicit communication protocols in Theorem 3 by assuming that the second player follows his one (and
only) policy.

From a theoretical perspective, the question of whether implicit communication protocols would make a di↵erence
nevertheless remains interesting (Bubeck et al., 2020). As we argue in Supplement C, we believe that this is not
the case.


