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Point estimates

bias variance

consistence



Standard setup in parametric statistics

We assume that data is generated by a particular

family of distributions for example

F N n o

edge
noThe family F is called the_icalmodl

More generally F fo
Ispace
of all possibleparameters

one particular
parameter

We are given a sample to Xn fo typically iid

but the true underlying is unknown



Conventions

Parameter space capital theta

True unknown parameter lower lane theta

Po Eo refers to the probability expectation

under the distribution fo

Estimates hypically get a hot Ñ



Point estimation

The goal of point estimation is to
estimate

Def Given a statistical model F for

and a sample ni Xn fo e F A point estimator Q
of parameter is a function

is g x1 tu



Bias of an estimator

Def the bias of such an estimator is defined as

List E l_ E
w Estimate true para

erectation wrt the distribution fo
the true one

Intuition repeat the procedure very often infinitely often

and average over the estimate Én

An estimate isubiard if its bias is zero



Variance and standard error

Def the variance of an estimator is defined as

varo.CI ecorresponding
standard deviation

is called the standarderrorse Typically se

is unknown but it can be estimated s



Example 0,1

Xp tu Berhoulli
p parameter TheETT

Pn I E ti an estimateof p

Ep pin Ep til E Eto p

Thus pin is unbiased because

Ep pin p p p
O

The standard error of this
estimate is

se VVarpcp.it V1VapnT YETT
We can for example estimate it by

ie vent



Example weight of baby

Distribution of
individual
data pt n 2900

gramm 6 500

not

distribution of the estimate in



Mean squared error

If the mean squared error MSE of an estimate is

the quantity

MSE E 01 EFÉn 05
Yuministic



Bias Variance decomposition

theorem bias variance decomposition

1fki.ie
bias oil var coin

estimate



Proof Eo On 0

E Fit Eater

Eq ÉÉÉ 2E É É É 1 E
EEG

2leoi ol.EEET
ke Eoeo
O

Efi.fm EEE

bias Fn an



Example

F NCN 5 1 er 0

Sample Yes Xn N N G with unknown µ 5 iid

I Inti is an unbiased estimate of µ

8,2 1 x f first estiwah
in

22 is t E ti il second estimate



ECÉ I o so the bias is 102

ECG 6 unbiand

Var
2 1

var Gi 3

MSE Gn bias var Ef 04

MSE 0

MSE Gi MSE GI



Consistent estimator

Def A point estimator In of is consistent

strongly consistent if

n in probability a s

as u so

Theorem If an estimate satisfies bias 0 and se 0

as us to the the estimate is consistent
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Confidence sets

Def A 1 α confidence interval for a parameter

Q EIR is an interval on an but where

an a try tu bn b to yn are functions

of the sample Xr tu such that

P
q

on 1 α for all of

aluministic random
Y uowul
paramitu

L
1 a is called the coverage of the confidence interval



Illustration

First confidence set

true distr
second confidence

iii it a
at

in 1 2 of he repetitions the truen is

inside the red interval



Example

Coin flips with P X 1 p P X o 1 p

p E 0,1 unknown Want to estimate it

1 Observe tri tu fp

Pn is 1 ti Choon a confidence level α

now want to define on an but To this end deline

iii

cni pn En put n
is a CI with coverageIto n α



Proof example

Proof By Hoefding inequality for any
t we have

P 1pm pl t

left
set α 2081 24ᵗʰ

lieand solve for

log E 2nt t 7
Choa En t



 

fmarimmtihetin.atestimator



Motivating example

F A 1 A symmetric new matrix ai e 0,1

adjacency matrices of graphs

Eve krandom walks how the graph of length 10

Goal reconstruct estimate A

Idea among all adjacency matrices
A F select the

one that has the highest likelihood to have produced the

random walks you have
observed

Maximum likelihood approach



Likelihood

Parametric family F f 1 Go1EEipoinrstn ta foet
The likelihood of the data given a parameter G

is

Pg tain tu P Ya Xu G

I P til 0 notation



Maximum likelihood

To estimate the true parameter we now select

such that this likelihood is maximized

is argman
P Knin Yu I aggmar IIP ti 101

E

This is equivalent to the problem

argmat log I Philo asmat
logPY.iqfe

which is equivalent to minimizing the negative
log likelihood

maximum likelihood

again 10971 estimator MLE



Solving max likelihood problems

Sometimes this optimization pollen is easy
we might be able to solve it analytically rare

if you are lucky it is courer

Most typically it is not courex



Example for an analytic solution

Me X Poisson A this means that

P X x life it has ECKI A

Var X 1

Ocr th tu Poisson t

Want to construct the ML estimator for N

compute the likelihood

2111 Plain tall I



Example continued

t.sc E log

Now want to optimize for 1 Take the derivative art 1

f ch E 1 ti n o

t.EE

So I Ein ti is the MC estimate of 1 Do



MLE properties

From the theory side MLE often but not always

has nice properties

1 If the model F consists of nice lunchbus then

the MLE based on an iid sample is consistent

2 If F consists of nice functions the MLE
estimate Que

is asymphoncallynermal

ÉnLE
N 0,1 and

ncE N 0,11



approximate

3 This can be used to construct confidence intervals

an Que
Egle

Ence Zane

w̅
where 22,2 0 1 2 mass

mk

densityiii email INIT
III at

Ca is an approximate CI in the sense that

Pa e en 1 x as a so






















































































sufficient

identifiability



Sufficiency

Intuition given sample to Xn for E F

We typically count the large sample to a statistic

T xp tu in the extreme case one number

Question can we recover the true parameter from this statistic

If yes we would like to all the statistic T to Tu

sufficient



Sufficiency
which properties would we need to assert sufficiency

when we observe two samples to Xn and Xn ta

and Xn tu T Xn't n t then we would infer

the same

When we know ten tut then we would need some way to

estimate just band on

Formal definition is technical shipped



Identifiability

Sometimes families of distributions can be described in d feet

ways with dipent sets of parameters

Def A parameter for a family f for loe On is

identifiable if distinct values of correspond to distinct

pdfs in

G O fo for

Identifiability is a property of themodel itself not of
the data



Example identifiability

The problem of clustering consists in finding groups in data

From a statistical point of view this is equivalent to the problem

of decomposing the underlying distribution
as a mixture ray

p app 1 P2

overall distribution

Re on



Example identifiability

Depending on our statistical model such problems might be

identifiable or not Often parametric model on identifiable

for example
mixtures of conscious

Non parametric models for couple implicit
in kernel algorithms

are often not identifiable






















































































HepomusictestingI



Motivation

Example Two drugs Dr D2 we measure number of

days to recovery for both drugs x th treated with Dr
th ta Dz

days for
drug2

Ñm
10

Question is Drug 1 better than Aug 2



General idea

will be consider the distributions of the estimates In µ
If they are for apart we would say that they are difent

away
ur of9 1 i

Mar1distribution

of An
distribution of Ñ2

But how do we know what far apart is



Want to test whether a coin is fair

Nad hypothesis Ho coin is fair
Ahnatehypothesis H coin is unfair
Saytemanytoin flips and estimate pin 1 ti

We want to rejectton if pt is far away from 0.5

Question far away

Look at the distribution of it under the null hypothesis

reject

retain I set S such that

Ppl in e s 95



More formal setup

statistical model F fo I Assume that

C C on U

Want to test
in

Sample data from the unknown fo compute a tIathic

Ctn tal Now we construct a rejection rgonR

such that T x tu Ru reject Ho

enc ital Ru retain Ho



Typical hypotheses are of the form

Ho 00 vs Hr G Go

Ho Go vs H

Two types of error can occur

aotmen.in i i
Ha true Type I error



Roles of Ho ve He

The role of the two hypothes is not symmetric

It is line a legal trial we believe to meless

Her is strong evidence against it

So if a test does not reject Ho it does not imply that

Ho is correct



Power of a test β

Def the Election of a test with rejection region R

is the function

p o Po T x ER

If Go then Tix should not end up in R

For such β f P Type I error

Ideally β Q should be small

If GE then we hope that T X E R So

βCal 1 P Type I error Here P Ont should be large



Level of a test

Def we say that
a test is of level α if

β O α
sup
E

Intuition worst case guarantee

no matter which Go we pick

the type I error is not law

than α

Intuition to remember α I type I error



Power of a test

We always specify the power of a bet against a fed alternative

parameter On E

The power of test against
altructive On is given as

1 Plan

Intuition β E n P type II error



Standard approach for testing

i.si ii
aminaaume

Then we can also look at the type I error
For example

among
several tests of level a you might now

choose

the one that has the smallest type
II error



Uniformly mostpowerful test

Def let J be a set of tests of level for testing

Ho E o
vs Hy o

A test in 5 with power function P O is

unifrulymostpowful UMP if

β o p o for all E G

and for all p that are power functions

for other tests in J

Kane in practice it is often impossible to find an UMP test



 

Example summer or winter

Assume we want to test whether it currently is summer or

winter Say we typically believe it is summer unless

evidence is against it

Ho Famine
H wink

Now we construct serval tests band on the away temperature of

the current day 1 measurement



Example summer or winter

Test 1 we look at the temperature outside Whenever it is

below 5 degrees we reject Ho and accept Hy

Type I error how often does it get below 5 in summer

say only in 5 of all summer days

P test injects Ho I Ho is true

Type II error how often does it get higher than 5 in

winh Say on 50 of the days

PC test rejects H L H Mel 50

Not so great



Example summer or winter

Test 2 So maybe 0 is a bad threshold

Reject Ho if T 0

Reduces type I error but still increases type I erro

Tests Reject if T 10

Increases type I error

Reduin type I error

Cannot really construct a good test why

Temperature distributions on overlapping

just 1 measurement

temp



type I error

1
summer

winn A

ioff.ua Tmr

type I error



Example summer or winter

often to incrich the power of a test we need more sample pts

Need to be independent

say I lit a date July 7 and away on the

temperatures on this day over the last 50 years

And same for wink Jan 10

Jaulo

J.fr

Jioawantemp on

50 years

threshold t



Example summer or winter

Test4 look outside the window If somebody with
skis is

walking by reject H summer and accept H winter

Type I error say
1 perhaps somebody just bought

skis in summer

Type I error 99 as well even if it is

winto don't see skies in front of wy window

a low power



Binomial example

We throw 5 coins with PC n OE o 1

Want to hit Ho vs Hy

Tests reject to if we observe 5 times 1 n a n in

Pour function β G Po inject 05

Test 2 reject Ho it in observe at least 3 times 1 001mn or

01017 or

Power fet P G Po 7,4 5 times11

g n o 9 0 1 0 05



Binomial example

Power functions of both tests β 10 Pe rejectHo

test 2

r
test

The



Binomial example

Power functions of both tests β 10 Pe rejectHo

IÉ type I error for 0.6

large

type I
or 0.5

Clare Tether



Binomial example

Power functions of both tests

Ff type if error say

for 0.7

huge

small good I

tritten



Binomial example

Would like to have such a power fit

Lf

How could we achieve this Increase the sample size



2 Test Wald test

If the distribution of the test
statistic is asymptotically normal

NCoin to
5

Ho 00 Hy 00

Test reject when 1 I
22 2

where

2am is the real ur sit the normal idf attains value



2 Test Wald test

Power of test increases with sample size

if
on

sampTrize



2 Test Wald test

Power of test increases with Effect size 10 001

Powerof 2 test

sample size



 

likelihood ratio tests



Neyman Peerson

Theorems Suppose we test Ho Go against Hy Q

Consider

T.IE ifffif
inline ratio

Assume we reject Ho if T k for some 61

If we choose k such that P T k α

then this is the most powerful level
α test



EE iihi iii oi.umm

consider the test statistic

T sup L Q

t or even simpler t ffps.tt
1

and we determine a parameter such that the rejection region

is of the form R T 1

In practice the difficulties are

compute the suprema in practice

fix R fir in theory



 

Ip
ratuest



pvaluese

Consider a test at level α and denote its

rejection region as Rx
Recall P Type I error

The smaller α the more difficult does it get to reject
Ho

we often even have that R C R g

rejection region for a

cm emTecionngien
for x ̅



p value

bet the frame is defined as

p inf α 1 T tenia G R2

i e the smallest for which the level x test would

reject the null hypothesis

Intuition smaller p values are
better more evidence for

rejecting the wall



Example baby boys and girls

sample dinitation in

Sample many babygirls many baby boys

1
Tg Seg mean wight No I

distribution of
rut statistics

ite

for a large test will find a statistically

significant difference
small p



Statistically significant

Convention p 0.05 significant

p 0 on highly significant

Even though an effect might be
statistically

significantit might not be scientifically significant

For example the effect size might be tiny



p value does not give the probability that

the null hypothesis is true is not a re in the

frequentist setup

We can have small p values yet the elect size

can be tiny

A large p value
is not uncerarily strong evidence

for Ho It could just mean that our test her

little power



 

likelihood ratio tests



Neyman Peerson

Theorems Suppose we test Ho Go against Hy Q

Consider

T.IE fFfi e
inline ratio

Assume we reject Ho if T c for some c

If we choose k such that Pq T c α

then this is the most powerful level
α test



More general likelihood ratio test

pa pace o
of Then we

consider the test statistic

T sup L Q

i or even simpler t.fi gtt
o

and we determine a parameter such that the rejection region

is of the form R T 1

In practice the difficulties are

compute the suprema in practice

fix R fir in theory



 

Ip
ratuest



pvaluese

Consider a test at level α and denote its

rejection region as Rx
Recall P Type I error

The smaller α the more difficult does it get to reject
Ho

we often even have that R C R g

rejection region for a

cm emTecionngien
for x ̅



p value

bet the frame is defined as

p inf α 1 T tenia G R2

i e the smallest for which the level x test would

reject the null hypothesis

Intuition smaller p values are
better more evidence for

rejecting the wall less error



Example baby boys and girls

sample dinitation in

Sample many babygirls many baby boys

1
Tg Seg mean wight No a set

distribution of
rut statistics

ite

for a large test will find a statistically

significant difference
small p






















































































Imultipletistingt



Motivation
Example gene expression data

patients with cancer control group

generf
t201cn

pgene2
gg

c
g

aa

a
testwill

sitgene1000m
M

Assume we run for each gene a test of level

P Test i makes type I error 5 Now we have in tests



P at least one of the tests makes a type I error

P t makes error of t error of of tm makes error

1 P no error in tn and no error in t and
c filpendence

1 IEP no error in ti 1 1095 1

min 0.05

m 10 0 40

m 50 0 92

Many wrong tente



Family wire error rate EWER

Definition Consider a family of m tests The

family wise error rate FWER is theprobability

Matatleastonetype I error occurs in the family

EWER P t makes type I error of
62

tm makes type I error



Bouleroui correction

Assume we run in tests and we want to achieve

a FWER e.g 2 0.05 Then we run

them
the individual tests with level In Single

FNER P at least one type I error

P t error of te

E m single m.in α



Boutroni discussion

Bouleroni controls the FWER

Advantage simple correct

Disadvantage too conservative low power kid type II error

the test barely discons anything



False discovery rate FDR
1

Def Assume we have a family of in tests We call

f not

the Ediscontyrae

Benjamini Hochberg Controling FDR



i
Run the m individual tests and evaluate their

p values

Sort p values increasingly pan Piz peg Epin

Deline thresholds li i In
pFind the largest index io ejiton

such that
plio lio

below mend line if
Reject the hypotheses for

Tf Traintis 1 io retain all

the others



Theorem Benjamin Hochberg

If the Benjamin Hochberg procedure is applied

YId me tests are independent then regardless of

how many wall hypotheses
are true and regardless of

the distribution of p values when the well is false

we obtain FDR α

Remark similar approach also works without independence assumtion

many modifications exist



Intuition

Under the will hypothesis the p values always have a

uniform distribution on o 1

Iii
is

densityof values
density of p
values underHo under He



If we have some Ho and some H being the at this the

dunh would maybe look
like this

ii

here we have hopefully many of the Hys
but

we also have some to s

Goal set threshold t such that FDR satisfies what

we want



Integral of the pink area Expected numberof pralues

corresponding to Hs meat are below t

Integral of blue area No

tz

By moving t from 0 to 1 we control the FDR

For ti the FDR is small

tz large





General Remarks

BH tends to lean more power than Bonferoui

BH controls FDR not FWER Cowalltype I error

BH works best in spara regime
where out lew

ests reject the null

But gives guarantees on FDR but in general does not

minimize it

When all the Ho are true BH Bonferoui



 

Non parametricI



Nonparametrictests
Standard parametric scenario

Statistical model F fa Ge

distribution of the samples

AR
Tm

Obsure data compute a hit statistics forexample

the mean x ̅

Need to know the distribution of the test statistics T

under the null distribution
distribution of Tn

g
name nauer



Goodues of fit test got

Goodues of fit tests Goal is to test whether a data set

Teshmapalcular distribution to

Ho Fee Focx
true distribution that generated

the data

Hy Fce Fo x



Kolmogorov Smirnov test for gof

We consider the cdf

o

m

t
t

9f.gg

Fo cdf of the given distribution

Fu cdf of the data

Dn ER 1 Fact
Focus

By the Glivenko Cantelli theorem
we know that under

the null hypothesis Fu Fo uniformly a s



It is possible to compute the distribution of Du and it

is independent of Fo it just depends on n

From this we can compute rejection
thresholds

and design a test

Example looks like live

the data does not
come from Fo

I

Fffiiri.at



two sample test

n Xn For a first sample

T.fi t instotn
Yn Ym Fz a second sample distributed arc to F2

Question Fr F

Hg Fn F2 H1 F F Fz



Wilcoxon Manu Whitney test band on venue

It Pool the sample Lets 1hm ER

Sort thepooled sample in increasing order and retrieve

the rank of all points rank ti
rank Yi

Iette
I 11
2 7,23

ranks rank 2

fxtxtt kt



Compute the rank sums for both groups

red group Wred Ʃ rank til
i e redpopulation

Wblue Escue
pop

mama Yi

If red Whine is small we retain Ho

if large reject Ho



Extension to a multivariate setting using k nearest neighbors

Two samples we pool them

1 t

Eg
it

5NN

For each point we look at the colors of the

4 nearest neighbors

Under the null hypothesis we repeat that the

number of red neighbors number of blue neighbors



Permutation randomization tests

mean x ̅Sample Xr 1h It
mean

I
Yn groupI

Compute observed statistics Toyang mean red mean blue

Pool the Saple

For 6 1 103 shuffle the group unemburhip colors

Compute the defence Ty mean red mean blue



Tn 52 1 1 trood

W
Yiation

of Ti

Lee

Find quantile to determine rejection threshold

Check when the obsured Tossend on the time data is 5 t



 

lbootstrapte.tt



Motivation

Motivation Yn Xa F no knowledge on F

want to estimate a parameter t F You

generate an estimate based on Xp tu want

to know how reliable is

The first thing to look at is the standard error se

If we have assumptions on F we can analytically

compute the distribution of the set

this is rare distribution of

i



We could also try to obtain many samples

41 Xn

4
i

x

and then estimate the distribution of

Problem need too 2

many samples 7772
then we could maybe build a hit on this



Idea of the bootstrap

Giru the sample ta th n estimate
rig

Draw a subsample of t Xu compute

repeat my other

3 histogram band

June
sampled data

Hope histogram of is clone to histogram

of 2 which is close to 1

Example estimate the standard
error of an estimate



Algorithm in pseudocode

Input t th

be of orifinal samplepoints

For be 1

number of bootstrap replication

gives us

Sam widow with m

from n tu

Estimate the parameter

Estimate the standard error re of theoriginal estimate

by Me
standard dev of the bootstrap replicates

i E E a
Tanof replicates

Does it always work



Courishing result for bootstrap

theorem consistency of the estimate of the
standard error

Assume that tri tu F iid and

E 11 1112 0

Let In g tri tu be the parameter that we estimate

Assume that g is continuously differentiable in a

neighborhood of µ Etn will a non zero gradient

Then the bootstrap estimate of the
standard error is

strongly consistent



Example where it goes wrong

tree Xn Uniform O where Q E O 1

unknown

Want to estimate the ML estimate of is simply

the largest number we obsure

max ti
ist n

Estimating the se by bootstrap is going to fail

Estimating tails or extreme
values by bootstrap is

problematic



Confidence sets by bootstrap

Iifiiii.mn
Generate bootstrap replicates It It
look at the histogramof the

055

1
7,1

a E Quantile b 1

1 2_ cdf



CI a b

It has coverage 1 α because approximately
because n B link

Po E E CI 1 2

subaquently you can construct bootstrap

tests in the obvious way

I iIi
Ho 0 vs Hn O



 

fbaperianntati.it



Frequentist vs Bayesian statistics

II.it E imitinsam
parameters are constants we cannot assign probabities tothem

statistics behaves well when repeated other

BYupf.fi ity degree of belief

parametus do have probabilities

have a prior belief about
the world update it

based on observed data



Bayesian statistics Me model

Assume a statistical model fol o e as in frequentist approach

It encodes our prior assumptions on the data generating process in

general

unknown want to estimate it



Bayesian approach prior distribution

We assume that we have a prior belief about

the parameters f O prior distribution
posterior

the parameter prior
nourendara



Bayesian statistics the likelihood

Obsen data Xr tu iid from some of the fo 0 unknown

We call f X 10 the likelihood of the data given
the paranek

density
data parameter

In frequentist world we could now use MLE to select the

para that maximian the likelihood



Bayesian statistics postuier

Now we update our belief we compute the

posterior using Bayes rule fct.tn

Hiiiii.tn Eiii
f tantalo f o do

Towningconstant
does not depend on Q anymore

The posterior is a dilution



Statistics derived from posterior

Now you can make statenets based on the posterior

If you want to ntwn one best guess for

you could use max of posterior MAP

mean of posterior

You can construct confidence intuvals

find a b such that

P o e a b 95



Discussion

Elgin interpret

natural way to incorporate prior knowledge

ad.MIL solutions are rare typically you have to solve

computationally hard problems

need to choose a prior



 

IHighdimensionalprobabilityT
and statistics

linator

Books Wainwright High dimensional
statistics

Vershynin High dim probability

Papers PIA in highdimensions Johnstone Paul 20181

Practice theoryand theoremsfor random matrix theory
in ML

Mahoney 20227



High dimensional statistics is different

General setting

high din data images feature band

genetic data
d is easily 100 or 1000

In some applications one also has very few

data points eg medical case 4 20 patient

I 1000 genetic markers

MC models had to ban man parametus m



Classic us high dim

Classic statistics d fixed us 0 LLN CLI

Modon regime d s o n s to

Different ways to model this the question it

always how to couple d and in and in

Eg dry court

Things behave very different
and unexpected in

this regime



Concentration phenomena

in high dim spaces



Norms of high dim vectors are concentrated

Consider him Xd independent ECT O Var Xi 1 1

Expected norm of X

E 1 11 EC ti IfEft d

Concentration of the norm

By Bernstein inequality one can prove

P 111 11 A t 2ap ct



Norms of high dim vectors are concentrated

Illustration

21in ddin

4

V2

NCO I X N O Id

Iiii Iiii
Ta



Norms of high dim vectors are concentrated

Simulations points drawn from d dim normal dish N 0 f Jd
in increasing dimensions D 2,3 10 100 1000



Volume of balls is concentrated along surface

Concentration can be seen from the pointof view of sampling previous

slide but also from the point of view of geometry

Bd A vol Bain Bd 1 E

ÉÉf
e

1ᵈ vol Basal n eld vol Bacall



Volume of unit balls gets tiny

the Euclidean volume of the mil ball in Rd

goes to
0 as d 0 2 dim

H
E

vol squall 1

ital TryE 0.75

as d increases

ÉÉ corners get
more volume

Volume of d dim unitball vol ball gets
smaller



Random vectors on the sphere are nearly orthogonal

Ea Ii drawn uniformly from spher

E 1 1471 and 0 if d is large

Distribution of 41,43 for two independent random rectors on the sphere

1

n

dtt

pct gets problematic see later



Random vectors on the sphere are nearly orthogonal

Simulations points drawn from d dim normal dish N 0 f Jd
in increasing dimensions d 2,3 10 100 1000



Let's look at distances in

high dim spaces



If we are lucky pairwin distances are still meaning full

Johnson Lindustrauss

Can work as if we were in a low dimension

theorem of Johnson Linden stranos

Consider a point in IRd fit 70 One can find a linear map

f Ird Rk with k log 2 sail that

the distances do not change by mom Man E

In El Iti till Afiti figill 11 1 Ax till

random projections



But often in are not lucky random projections

look like single Gaussian

Unit Sd M Project X on a fixed vector v

1

then Xiv N oil in distribution

in practice this often also holds for non uniform data

We don't see any class or cluster structure



Distances in high dim spares are dominated by noise

N yn ri Ia Y N Me i Id

E 1 4112 E Ed lti kit

var ti ki to 4

EE.it n

classification
2 dim d dim jid

Iiiiii is

diet 11,41 Unn end small noise noise is signal



Within class distances 22 between stars distance

Miths of Gaussian with different variances

x x N µ on'Ial Y Y N 92 r Ed

within class distance

ECKX X 14 2dm Calais 1

2161 class 2

Between class distances

E 1 412 Upn wall d Coit64

It on or then d opto d 20,2

dashing is difficult between within less 2



ML consequence

different classes only heavily and are hard to distinguish

band on individual distances

Might hope for amphions
that tell us that ditually our

space does not have such a high dimension

Sparsity a book by Wainwright

manifold assumption



Let's take a look at matrices



Estimating covariance matrices in high dim

Assume in have a data points in d dimensions hid measuremen

Covariance matrix her d entres obvious trouble if u ced

The default estimate for the covariance matrix the sample cov matrix

I E titi might not converge to the tree

underlying wv matrix

If u is low and d is high
dm late the entries of me

sample covariance matrix are unreliable and do not courage

to the hut values If u ca d there is aloha



Estimating covariance matrices in high dim

Alternatively if d s u one needs to make structural assumption

for example

Spiked Covariance model where the signal just lives in

few data dimensions

Sparsity assumptions cov n n

Block matrix assumptions

cov 008
0



Eigenvalues

Consider a und matrix with iid random entries eg Gaussian N0,11

a points I dimensions each

The true covariance matrix is the identity

can we use the sample cov watrix to
estimate the eigenvalues of

the true cov matrix d numbers to estimate

Different things happen depending on the ratio dry



Eigenvalues

Lentminamnocenttae

Concentration theorem Vershynia book th 4.7.11

Tubgaussian vector in Rd demon by Ʃ the true covariance

Fille

Yofuve ME
Me M d

E 112 EU court usu
in

subgaurian if dm court mis how does not

please zepp f out min any more

12 operator urine distance between largesteigenvalues



Eigenvalues

If du court then the distribution of eigenvalues is known

Tidvadvertors whose entries are in'd with variance 1

the theorem of Marchenko Pasher
characterizes the distribution of

eigenvalues of the sample ou matrix as 1

It has a cloud form expression that I didnot want
to put on

the slide

General behavior

the large 1 the more the eigenvalues spread see

next slide



True lov matrix
Mikhman

is Id c all
true cigs are 1

true eigis 1

Figm byMMahoney
empirical ligs us limit distribution

for a matrix with standard

normal entries

d 20 d
n 1000 n 100 true eigenvalue is 1



Eigenvectors PIA in high dim

P A on high dim data is problematic to say the least

Even the leading eigenvector is typically inconsistent



Why should we care

Weights in a DNN can behave funny as well if you try to

analyze their statistics

I see for example papersbyM Mahoney



Outlook double descent

Finally let's look at model size in tours of the number of parameter

as well

Relation between model size in ML and owlitting

É

Long debate see the Statistical ML lecture next town


