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Optimization
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Convex set

Consider a set N C V in a vector space V The set 2

is called souver it for all t e 0,1 and

for all n 12 I

try n t er

Intuition the line connecting th e is completely
inside I

convex not convex



Intersections of convex sets are convex

Easy to see from the definition

If A B are two convex sets then also A n B is

convex



Convex function
Consider a vector space V a set S V and

a function f s IR The function f is called
convex if
strictly convex

SL is a couver set

Kte coin f txt tly fly In t fly

futuition the line connecting fitt and y figs is

above the graph of the function
a

convex Tours



Examples
convex not sound

Lei Lei

Liife

Lil



Differentiable convex fets

Prof A differentiable function f Rd IR is convex iff

for all y Rd

f yl f ex of cal y l

f

y tf'Fly it



flouver sublevel sets courer

Observation for convex functions g the subled sets

Sa 1 girl a are convex

9 3
941 0 9 2

gix 0

Funnily it is not true the other way round a function can have all

sublevel sets louver while the tuition itself is not convex



Strongly conver fat
Consider a fat defined on a convex domain For simplicity

let us assume that it is differentiable
We say that

fis µ strongly convex if for all x y
1129

fly fixt fly y e Elly all

Intuition lower bound N on the curvature

Intuition on IR

a linear function is louver but not strongly louver

if f is twice differentiable then f is convex iff f 20

f is N strongly courer if f so with 7 N



Strongly louver question

quadratic
f

ff ftp.t x x

flly 112

III

in

1

function f is above the quadratic approximation of f



Operations that preserve convexity of functions

Weighted rucus fr for convel we was 0 then

f Ʃ wifi is louver

Pointwise max fr if louver Then g 1 1 more feet flexi

is convex

W
pointwise maximum pointwise minimum
is louver is not louver



2 Lipschitz and L smooth

A function f is called L Lipshitz if there exists a

constant L 0 such that

flat fivil L Hu ult for all u v er

If f is differentiable this is equivalent to 118ft L

intuition upper bound on steepness

A differentiable function is called L smooth if its

gradient is L Lipschitz

upper bound L on the curvature



Convexity and second derivatives
Hessian symmetric

propositions f I S C Rd open conver Assume that

fish continuouslydiperutable then

f is souver if the Hession of f is positive semi definite Ax

f is strictly convex if the Hessian positive definite

f is strongly convex with para N if the the smallest eigenvalue

min of the Hessian satisfies

1min Hai µ for all red

Proof exercise



Convexity and first derivatives

Proposition

Let f A IR SC Rd be tenuousydikentalland
I an open souver set then

f is convex if ke y er

fry 414 flat Y 7

f is strictly convex if we have strict inequality

f is strongly louver with parameto µ if kt yes

fryl feel fit y Ux yl2

Proof exercise



Condition number
lowerboundon upperbound

on curvature

gravature

If f is µ strongly convex and β
smooth

and is twice differentiable then all eigenvalues of the

Hessian are in the interval N P

We then denote by K A
µ

the condition number

often it is also defined with the Hessiandirectly as

ratio of the largest to smallest eigenvalue of
the Hessian

will see important for gradient descent



Jensen's inequality
intuition Let f be convex

Convex if int to 1 tail 20 we have

f Entiti nitwit

Can extend this to finite sums if Inti n t so then

f EI titi E tiffit

Can extend this to integrals arbitrary measure

f f x dpa fix dries

or f E x1 E f x1 when E is the expectation

This is called Jensen's inequality for convex functions



Convex functions and global optima

Theorem

Any local minimum of a convex function is also

a global minimum

non conver fats

opt
local opt global opt global opt



 

foptimizationproblemT



General optimization problem

objective function

min for
inequality constraint

domain off subject to gict 0 i t r

h 1 1 0 j n s

equality constraint

A point e D that satisfies all constraints is
called feasible

A minimizer is typically denoted by me optimal value as ft
ft fix



Couver optimization problem

An optimization problem is called convex if

the objective fat f is convex and defined on a convex

dowain

the inequality constraint fits gi are souver

the equality constraint fat hi are linear

Lajits b O



Feasible set is sourer

The set of feasible points of a convex optimisation

problem is convex

domain D is courex

o For each inequality constraint girl o the set

girl 0 is souver

For each equality constraint hj 1 1 0 the set

1 4 it o it convex

The intersection of convex sets is convex



Standard algorithms to solve count problems

Some variant of gradient descent
see next letter



What if the set of feasible points is not convex

feasiblepoint form a
feasiblepointsform a

convex set
now louver set bad

objective

gradient descent

level gradient descent might fail to fid
setsof works the global optimum
objective fit



Local global unique solutions

theory Consider a convex optimization problem Then

Any locally optimal point is also globally optimal

If the objective fat f is strictly convex and there exists

a global optimum it then it is unique



Linear optimisation problem

Given cerd AE 112m be 111 a linear program in

standard form looks as follows

min linear objective fit
and

Cᵗ

subject to Ax b 0 linear constraints

had the inequality
component wise

A linear program is a particular case of a louver optimisation problem



Standard alg to solve linear programs

The simplex algorithm it exploits the geometric

structure of the domain

domain is a simplex because of linear ionstraints

optimum sits in one of the corners

simplex alg jumps from corner to corner in a clever way

lunge Wikipedia



Quadratic optimization problem

Given c e Rd Q E 1rad symmetric Ae 112Mt berm

Be 11
d

y e
IRK

a quadratic program in standard form is given as

min xᵗQx cte quadratic objective
112A

s.tn Ax b linear constraints

Bx y

If Q is positive definite then the problem is convex



Quadratil optimisation with quadratic constraints

If the constraints are quadratic the problem

is not always courer

QCQP

if

quadratic
program



Different kinds of optimization problems

we often distinguish different kinds of optimisation problems
C disirch or not gradiente

Differentiable do first derivatives exist firstorder
methods

Twice differentiable do second derivation exist
Herrious second ordermeth

convex you convex

Does the function just have one global minimum or do

local minima exist

Wv v



Equivalent optimization problems

consider the optimization problem

yik fitt subject
to e c

Let h IR IR be a monotone function and consider

r
h t 1 1 sit xe C

the two are equivalent optimization problems they
have

the same solutions

Example Tx is not souver but

F is louvex



Change of variables

Consider a bijective mapping 0 IR IR and assume that

its image cover the set C C R then the two problems

main fax sit xe C

min f d ly it Q H1 E C

Y

are equivalent have the same solutions

Example min x tys.t.it y 1

use polar coordinates cos y sin

Then the problem is min cos sin without any constraint

constraint is automaticallysatisfied we got rid of it



Equivalent optimization problems

then are many other ways to transform
optimization problems

Eliminating equality
constraints introducing slack

variables

In practice it can make a big difference

see machine learning lectures for many examples



First vs second order methods

First order methods exploit gradient information to find a

direction of desient

gradient descent AD

stochastic gradient descent SGD

Second order methods additionally exploit the second derivatives

Herrian to determine the ship size

Newton

B F GS



 

constraintcoureeoptimization.itprimal dual Lagrangian

Linature Boyd Convex optimization
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Lagrangian: intuitive point of view
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Lagrange multiplier for equality constraints

Consider the following convex optimization problem:

minimize f(x)

subject to g(x) = 0

where f and g are convex.

We make serval simplifying assumptions for now

eg convexity in order to get an intuition

for the Lagrange approach

Lab we then prove everything formally without wary of the
assumption
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Lagrange multiplier for equality constraints (2)

Recall: if g is convex, then it sublevel-sets are convex:

Sublevel set: {x|g(x)  c} (the green set in the figure)
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Lagrange multiplier for equality constraints (3)

Gradient (equality constraint): For any point x on the “surface”
{g(x) = 0} the gradient rg(x) is orthogonal to the surface itself.

Intuition: to increase / decrease g(x), you need to move away from
the surface, not walk along the surface.
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Lagrange multiplier for equality constraints (4)

Gradient (objective function): Consider the point x⇤ on the
surface {g(x) = 0} for which f(x) is minimized. This point must
have the property that rf(x) is orthogonal to the surface.

Intuition: otherwise we could move a little along the surface to
decrease f(x).
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Lagrange multiplier for equality constraints (5)

Conequence: at the optimal point, rg(x) and rf(x) are parallel,
that is there exists some ⌫ 2 R such that rf(x) + ⌫rg(x) = 0.
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Lagrange multiplier for equality constraints (6)

We now define the Lagrangian function

L(x, ⌫) = f(x) + ⌫g(x)

where ⌫ 2 R is a new variable called Lagrance multiplier. Now
observe:

I The condition rf(x) + ⌫rg(x) = 0 is equivalent to
rxL(x, ⌫) = 0

I The condition g(x) = 0 is equivalent to r⌫L(x, ⌫) = 0.

To find an optimal point x⇤ we need to find a saddle point of
L(x, ⌫), that is a point such that both rxL(x, ⌫) and r⌫L(x, ⌫)
vanish.
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Simple example

Consider the problem to minimize f(x) subject to g(x) = 0, where
f, g : R2 ! R are defined as

f(x1, x2) = x2
1 + x2

2 � 1

g(x1, x2) = x1 + x2 � 1

Observe: it is hard to solve this problem by naive methods because
it is unclear how to take care of the constraints!

Solution by the Lagrange approach:

Write it in the standard form:

minimize x2
1 + x2

2 � 1

subject to x1 + x2 � 1 = 0
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Simple example (2)

The Lagrangian is

L(x, ⌫) = x2
1 + x2

2 � 1| {z }
f(x1,x2)

+⌫(x1 + x2 � 1| {z }
g(x1,x2)

)

Now compute the derivatives and set them to 0:

rx1L = 2x1 + ⌫
!
= 0

rx2L = 2x2 + ⌫
!
= 0

r⌫L = x1 + x2 � 1
!
= 0

If we solve this linear system of equations we obtain
(x⇤

1, x
⇤
2) = (0.5, 0.5).
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Lagrange multiplier for inequality constraints

Consider the following convex optimization problem:

minimize f(x)

subject to g(x)  0

where f and g are convex.

We now distinguish two cases: constraint is “active” or “inactive”:

1
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Lagrange multiplier for inequality constraints (2)

Case 1: Constraint is “active”, that is the optimal point is on the
surface g(x) = 0.

Again rf and rg are parallel in the optimal point.

But furthermore, the direction of derivatives matters:

I The derivative of g points outwards (at any point on the
surface g = 0). This is always the case if g is convex.

I Then the derivative of f is directed inwards (otherwise we
could decrease the objective by walking inside).
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Lagrange multiplier for inequality constraints (3)

So we have rf(x) = ��rg(x) for some value � > 0.
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Lagrange multiplier for inequality constraints (4)

Case 2: Constraint is “inactive”, that is the optimal point is not on
the surface g(x) = 0 but somewhere in the interior.

I Then we have rf = 0 at the solution (otherwise we could
decrease the objective value).

I We do not have any condition on rg (it is as if we would not
have this constraint).
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Lagrange multiplier for inequality constraints (5)

We can summarize both cases using the Lagrangian again. We now
define the Lagrangian

L(x,�) = f(x) + �g(x)

where the Lagrange multiplier has to be positive: � � 0.
I Case 1: constraint active, � > 0.

I Need to find a saddle point: rxL(x,�) = r�L(x,�) = 0.

I Case 2: constraint inactive, � = 0.
I Then L(x,�) = f(x). Hence rxL(x,�) = rxf(x)

!
= 0,

r�L(x,�) ⌘ 0.

I So in both cases we have again a saddle point of the
Lagrangian.
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Lagrange multiplier for inequality constraints (6)

Also in both cases we have �g(x⇤) = 0.

I Constraint active: � > 0, g(x⇤) = 0.

I Constraint inactive: � = 0, g(x⇤) 6= 0.

This is called the Karush-Kuhn-Tucker (KKT) condition.
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Simple example

What are the side lengths of a rectangle that maximize its area,
under the assumption that its perimeter is at most 1?

We need to solve the following optimization problem:

maximizex · y subject to 2x+ 2y  1

Bring the problem in standard form:

minimize(�x · y) subject to 2x+ 2y � 1  0

Form the Lagrangian:

L(x, y,�) = �xy + �(2x+ 2y � 1)
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Simple example (2)

Saddle point conditions / derivatives:

@L/@x = �y + 2�
!
= 0

@L/@y = �x+ 2�
!
= 0

@L/@� = 2x+ 2y � 1
!
= 0

Solving this system of three equations gives x = y = 0.25.
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Simple example (3)

Now need to see: when does this approach work, when does it not
work, what can we prove about it?
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Lagrangian: formal point of view
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Lagranigan and dual: formal definition

Consider the primal optimization problem

minimize f0(x)

subject to fi(x)  0 (i = 1, ...,m)

hj(x) = 0 (j = 1, ..., k)

Denote by x⇤ a solution of the problem and by p⇤ := f0(x⇤) the
objective value at the solution.
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Lagranigan and dual: formal definition (2)

Define the corresponding Lagrangian as follows:

I For each equality constraint j introduce a new variable ⌫j 2 R,
and for each inequality constraint i introduce a new variable
�i � 0. These variables are called Lagrange multipliers.

I Then define

L(x,�, ⌫) = f0(x) +
mX

i=1

�ifi(x) +
kX

j=1

⌫jhj(x)

Define the dual function g : Rm ⇥ Rk ! R by

g(�, ⌫) = inf
x
L(x,�, ⌫)

in E
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Dual function as lower bound on primal

Proposition 1 (Dual function is concave)

No matter whether the primal problem is convex or not, the dual
function is always concave in (�, ⌫).

Proof. For fixed x, L(x,�, ⌫) is linear in � and ⌫ and thus
concave. The dual function as a pointwise infimum over concave
functions is concave as well. ,

Note that concave is good, because we are going to maximize this
function later on.

f coucare
u n f convex

Convex concave
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Dual function as lower bound on primal (2)

Proposition 2 (Dual function as lower bound on primal)

For all �i � 0 and ⌫j 2 R we have g(�, ⌫)  p⇤.

Proof.
I Let x0 be a feasible point of the primal problem (that is, a

point that satisfies all constraints).

I For such a point we have

mX

i=1

�i|{z}
�0

fi(x0)| {z }
0

+
kX

i=1

⌫jhj(x0)| {z }
=0

 0

soluble of primal
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Dual function as lower bound on primal (3)
I This implies

L(x0,�, ⌫) = f0(x0) +
mX

i=1

�ifi(x0) +
kX

j=1

⌫jhj(x0)  f0(x0)

Note that this property holds in particular when x0 is x⇤.

I Moreover, for any x0 (and in particular for x0 := x⇤) we have

inf
x
L(x,�, ⌫)  L(x0,�, ⌫)

I Combining the last two properties gives

g(�, ⌫) = inf
x
L(x,�, ⌫)  L(x⇤,�, ⌫)  f0(x

⇤)

,

Him
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Dual optimization problem

Have seen: the dual function provides a lower bound on the primal
value. Finding the highest such lower bound is the task of the dual
problem:

We define the dual optimization problem as

max
�,⌫

g(�, ⌫) subject to �i � 0, ⌫j 2 R

Denote the solution of this problem by �⇤, ⌫⇤ and the corresponding
objective value d⇤ := g(�⇤, ⌫⇤).
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Dual optimization problem (2)

Dual vs Primal, some intuition:
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Dual optimization problem (3)
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Weak duality

Proposition 3 (Weak duality)

The solution d⇤ of the dual problem is always a lower bound for the
solution of the primal problem, that is d⇤  p⇤.

Proof. Follows directly from Proposition 2 above. ,

We call the di↵erence p⇤ � d⇤ the duality gap.
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Strong duality

I We say that strong duality holds if p⇤ = d⇤.

I This is not always the case, just under particular conditions.
Such conditions are called constraint qualifications in the
optimization literature.

I Convex optimization problems often satisfy strong duality, but
not always.



D
ra
ft

U
lr
ik
e
vo

n
L
u
xb

u
rg
:
M
at
h
em

at
ic
s
fo
r
M
ac

h
in
e
L
ea

rn
in
g

W
in
te
r
2
0
2
4
/
2
5

3
3

Strong duality (2)

Examples:

I Linear problems have strong duality

I Quadratic problems have strong duality

I There exist many convex problems that do not satisfy strong
duality. Here is an example:

minimizex,y exp(�x)

subject to x/y  0

y � 0

One can check that this is a convex problem, yet p⇤ = 1 and
d⇤ = 0.
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Strong duality: how to convert the solution of
the dual to the one of the primal

By strong duality: p⇤ = d⇤, that is we get the same objective
values. But how can we recover the primal variables x⇤ that lead to
this solution, if we just know the dual variables �⇤, ⌫⇤ of the
optimal dual solution?

EXERCISE!
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Strong duality implies saddle point

Proposition 4 (Strong duality implies saddle point)

Assume strong duality holds, let x⇤ be the solution of the primal
and (�⇤, ⌫⇤) the solution of the dual optimization problem. Then
(x⇤,�⇤, ⌫⇤) is a saddle point of the Lagrangian.
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Strong duality implies saddle point (2)
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Strong duality implies saddle point (3)

Proof.
I We first show that x⇤ is a minimizer of L(x,�⇤, ⌫⇤):

I By the strong duality assumption we have f0(x⇤) = g(�⇤, ⌫⇤).
I With this we get

f0(x
⇤) = g(�⇤, ⌫⇤) = inf

x
L(x,�⇤, ⌫⇤)  L(x⇤,�⇤, ⌫⇤)  f0(x

⇤)

(last inequality follows from Proposition 3).
I Because we have the same term on the left and side, we have

equality everywhere.
I So in particular, infx L(x,�⇤, ⌫⇤) = L(x⇤,�⇤, ⌫⇤).

I Then we show that (�⇤, ⌫⇤) are maximizers of L(x⇤,�, ⌫).
I This follows from the definition of (�⇤, ⌫⇤) as solutions of

max�,⌫ minx L(x,�, ⌫).

It

T.im
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Strong duality implies saddle point (4)
I Taken together we get

L(x⇤,�, ⌫)  L(x⇤,�⇤, ⌫⇤)  L(x,�⇤, ⌫⇤)

That is, (x⇤,�⇤, ⌫⇤) is a saddle point of the Lagrangian:
I It is a minimum for x (with fixed �⇤, ⌫⇤).
I It is a maximum for (�, ⌫) (with fixed x⇤).

,



D
ra
ft

U
lr
ik
e
vo

n
L
u
xb

u
rg
:
M
at
h
em

at
ic
s
fo
r
M
ac

h
in
e
L
ea

rn
in
g

W
in
te
r
2
0
2
4
/
2
5

3
9

Saddle point always implies primal solution

Proposition 5 (Saddlepoint implies primal solution)

If (x⇤,�⇤, ⌫⇤) is a saddle point of the Lagrangian, then x⇤ is always
a solution of the primal problem.

Proof. Not very di�cult, but we skip it. ,

Remarks:

I This proposition always holds (not only under strong duality).

I This proposition gives su�cient conditions for optimality.
Under additional assumptions (constraint qualifications) it is
also a necessary condition.
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Why is this whole approach useful?

I Whenever we have a saddle point of the Lagrangian, we have a
solution of our constraint optimization problem. This is great,
because otherwise we would not know how to solve it.

I If strong duality holds, we even know that any solution must
be a saddle point. So if we don’t find a saddle point, then we
know that no solution exists.

I If your original minimization problem is not convex, at least its
dual is a concave maximization problem (or, by changing the
sign, a convex minimization problem). If the duality gap is
small, then it might make sense to solve the dual instead of
the primal (you will not find the optimal solution, but maybe a
solution that is close).
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Gradient descent vanilla version

Assume we want to solve an optimization problem

min f w

wer

where f I IR SCIR f differentiable

Gradient descent starts with a randomly chosen start

point wo and then makes a small step in the direction

opposite of the gradient Vf food of step size ft

Frown



Intuition Gradient descent and contow lines

coupon
sa

Observe

gradient of a function

is orthogonal to its

contour lines

t
a Gradient descent ships are

orthogonal to
contour

liver



Why does it help if f is differentiable

Well we want to compute gradients

If we don't have gradients our life really becomes hard

In ML we always construct our problems
in such a way that

the loss fat is differentiable in the end We might sacrifice

many things
when modeling a problem but not differentiability

n surrogah loss functions



Why does converity help

For now court fat GD typically finds local

optime but not theglobal one

If f is convex we know we found the global optimum

or



Why can it help if we have strong convexity

Functions that are strongly source cannot have long

arbitrarily flat parts On ruil parts GD would take

forever But if f is strongly cover this does not exist

I
courer but not strongly louver strongly cover

Mathematically for strongly convert we can estimate howfar we

are of work from the optimal pt

In ML we can sometimes achieve strong convexity through

regularisation



Why does smoothness help

GD makes ships in direction of gradient

but if gradient itself changes wildly then already ath a small

ship we can be in trouble

14 is L smooth gradient only ihangesslowly so gradient step

walur sense

The smoother f the large steps we can dare to take

for example in the theorems below we shoot a constant

step size ft

in practice out ofher decreases the step size our time see below



Recap Condition number

If f is µ strongly convex and β
smooth and is twice

continuously differentiable then all eigenvalues of the

Hessian are in the interval N P

We then denote by K B
µ

the condition number

often it is also defined with the Hessiandirectly as

ratio of the largest to smallest eigenvalue of
the Hessian

It always holds that µ β Mur K 1



Intuition for condition number

Condition number small N β

contow lines of the function on close to a circle

Condition number large

coulow lines very elongated

K small K large



Intuition speed of convergence

0

É
K small GD louvugh fest K large GD courgesflowly

Steps orthogonal to the outow lines stipe orthogonal to the coulow

take us prettystraight to the center lines jump wildly



Choosing a starting point

Typically a random point Parameter often initialized

with Gaussian noise of the correct size

Sometimes out uses a warm start use a first heuristic

to guess a good starting point

note that this is not what fine tuning is
see next slide



Fine tuning

in complex models Somebody trains say an image

classifier or a language model on huge amounts of data

We take the trained model and
would like to run GD directly

on the model but typically we don't have access to the

original architecture
and parameter space Then m just

use the representation that has been
learned by the

original model and train a second classifier on top



Stopping conditions

Once you obsen that the objectie doesn't change

a lot a bit unclear in practice

In deep learning people often continue training
even

though the training error is pretty much 0

representation still might change

As opposed to traditional numeries we as not interested

to minimise the objective fit We want a small

test error resp a good representation of me data



Convergence of GD smooth convex

no lower bound on
upper bd on curvature
swvatur

Term Assume that F is L smoothand convex with a global minimizer 2 x

Choosing step size ft NL the iterates felt of GD satisfy

F et F 12 1 I E 4 2 11

linear
convergence



Some mon intuition for this theorem

Court but not strongly convel Could have a situation

like this need to make sure that a minimum does exist

assumption or 2ᵗ
f

If we would walk from to n on a direct line with ships

of size 1 we would need 1100 2 11 L many ships

constant in the bound



Some mon intuition for their theorem

Note that in ML we often do not have globally court

problems
So this bound might tell us something

about

how fast we courage to
the local optimum in the basin

of attraction of our starting point

Kaeo

No guarantee about convergence to global optimum



Courgence of GD smooth strongly convex

Theorem Assume that F is L smooth and µ strongly convex

Demoh by K the condition number let me be global minion

Choosing step size Nt 1 the ituatic felt of ad on F satisfy

FIGE F n
ᵗ
710.1 Final

Ifl F 10.1 F net ep t

exponential convergence



Remake about this theorem

K is always 21 so 1 Jo AC so

n
ᵗ

0 as t.to

Constant F 0 1 Ffr It on the rhs now measures the

distance between start and end in the obj fat not the

orig space Can do this because of strong courity

If in don't have restrictions on the domain of f strong

courity implin the existence of global minimin 2

Courause speed is surprisingly fast



Coury vs strongly convex

Couregure for strongly couver ion is much faster



Issues with the step size

If the step size is too small convergence of GD can take

forever

If the step size is too large GD might never courage

because we always miss the optimum

the algorithm could even diverge

Ca ML step size is called the learning rate



Learning rate decay

Unless one does something more clever one typically uses

a learning rate decay for elauple

do exp h t ep t exponential decay

at 90 11th t
1

inverse decay

the parameto k is the decay rate



Line search to determine step size

Want to perform a gradient step ten t α of Kel

where we took the step size at such that we minimise

fixt in this dination

aggin f E α Vf rel

can for example use binary search to approximate at

Computationally aperitive not so often and in M



Line search interition

whole line in directio

of Pflat for the

fi

Li Thich

obj fat f is
minimized

mmasan.mn
along line in directi

of Of 2 for point
on which obj fit f
is minimized

starting point of ad etc



Using momentum idea

Consider a situation where we zig Tag slowly towards our

destination Nuno

Ida let the descent direction inherit some part from the

previous one such that we get more of an average feeling

Traditional Wt lot he fewel

Momentum Wet We β flat n 207 we

i
momentum friction previous current

gradient gradient



Using momentum idea

It avoids the zig neg

It gains speed in steep anas that might help to

travel task or flat ports

Might overshoot at the solution

like a marble that runs on the lose surface



Vanishing gradient problem

occur if the gradient corresponding to some parameter

get so small that they barely change

Particularly the case in deep networks where
the gradients of

the network parameter get multiplied deving backpropagation

Partial derivation of parameter
in the first layers can get

very small

Particularly for Coo functions
with

i e tanh

not for ReLU

lots of suggestions in DNN
literature is

batch normalization



Exploding gradient problem

opposite of vanishing gradients in early layer gradients

get too large uncontrollable behavior

Reason either if night are too large flinitialization

or gradient too large Dwi 1 n gradient slipping

lots of solutions
discussed in the DNN literature

eg ship connections



Just one little teaser lose landscape in deep learning

the loss landscape in deep learning when we try to optimize

parameter of a neural network is highly non cound

However it seems that many of the local optima one linde are

already global optima

Belkin Fit without fear
remarkable properties of deeplearning 2021
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Motivation

In ML we typically minimize the training loss of the form

gowl E.nl fusti Yi

when ti tilian n
are our training pointsand I is a lose fat

for example the squared
loss the logistic loss and w are the parametus

we optimize

The gradient Dgswl is

g WI 1 De fail y
T
a fums



Idea sample the gradient

Consider the gradient Dg WI 1 Dl 4 it y

If u is large

It is really costly to compute it

the data set might have redundancies so we see similar info often

For a statistical point of view whenever you see a lag sum

of random quantities you guess that

the sum is close to its expected value

this might still be true if you subsample turns

Also because we are interested in the test error in the end a bit of stockesticity

might perhaps prevent serve or fitting



Stochastic gradient descent vanilla

Given training ptr Ti 4 in and training lose

gewl.IE hfei.fi
with gradient

user

in each step of the algorithm

sample one training pt io Yi and compute the simplifie

gradient V1 fulfil Yio Pli at
make gradient step

Wttn Wt he Vli we

Until convergence



Stochastic gradient descent mini batch

instead of subsampling one point at each time one typically

subsamples a mini batch consisting of a number k of data points

then apply the same principle

sample Tin Yin Itinitin

Simplified gradient hi Wt D9h wt

gradient step wean Wt 9h We

To implement this choose a random permutation

of the data jet Then pick one batch after the other until one has

made our full pass through the
data

Typically one uses servall passes through the data set



I is one pass

TarunTetahl

Note that both variants vanilla and mini batch use the same principle

they replant the full gradient by
a random estimate of the gradient

introduces noise

large batches less noise smaller variance of the estimate



Stochastic gradient descent general view

More generally one can consider any estimate of the gradient 5

and use it in gradient descent

Wten wt 5 wt

typically one would require that this estimate
is unbiased

see later in the statish is part of the lecture

on arage
correct



First remarks

As the name suggests SGD is not a deterministic algorithm noisy updates

Some of the steps might even make a wrong step such that f is

increasing We hope though that ou average it will be fine

We save compute and storage compared
to the standard GD

All guaranties for SGD
would need to be statements

in epestation or with high probability

Subsampling is an unbiased estimate of the gradient but the random

errors do not decrease as we go along

lushad we will use a decreasing step size which will make the errors

smaller and smaller



Convergence of SGD convex

theorem Assume that F is convex B Lipsibitt and has a

Tiniwin Of that satisfin 40 0042 D Assume that the

gradients of the SGD itunks
are all bonded by a constant B

that is Igt Gt.nl 112 B for all t 1 and that the estimate

gt of the gradient is
unbiased Choose the ship size pt I.fi

Then the itoaks of SCD on F satisfy

E FCF F Q DB

W

aware iteak
T

where slowerthat

E If was



Digesting this theorem

No assumption about strong convexity
could lean really flatparty

no arc on smoothness Instead only that f is Lipchitz

Step size is decreasing
otherwise SGD would not converge because variance

does not decrease

this bound is epressed in tours of the awage itoak which is a

form of stabilizing the result



Convergence of SGD strongly convex

Consider a regularized problem of Me form G 0 F G YUGU

theory Assume F is couvet B Lipsilitt µ strongly courer Consider

the regularised problem and assume that it admits a unique

minimin then under the same assumptions as before unbiased

bounded Ugt led and choosing the step
size ft It

E GIEH GCOA
stepsdecrease

fash

fashcourogence



Remake

Smoothness does not help to improve a lot in the SGD case

SGD lounges slower than GD in tons of accuracy but needs

much less computation in termsof u the number of training pts

So if the computational
budget is limited it is the method of device

More relined bounds are
needed to understand the behavior of dilvent

SGD versions eg sampling
one gradient vs wing minibathes



Comparing the bounds

Resulting error Flo FCO I as a function of the

number t of steps performed

tables from the France'sBackbook



Final Remarks on SGD

To van SGD in practice people use millions of trials

and the choice of parameters and their scaling

as learning proceeds makes a lot of difference

Studying the behavior of SAD for all these scaling laws

is challenging in practice and in theory

beyond this lecture



Why is SGD so popular in ML

Large scale problems computational issues

Redundant data

Stochasticity introduced by SGD acts as regularizer in the

end we don't care about the training error so it does not matter

if we don't optimize it perfectly but we want to have a

small test error The SGD noise might help to prevent

over fitting
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Newton



Intuition 1 dim

Gradient descent only considers the first derivative of the function

Newton's method also looks at the second derivative and explain it to

choose a good ship size

Intuitively fit not just a line
but a parabola to the function at the

current data point given slope and curvature Then proceed to

the point where this parabolor 1 minimal

f



Newton method n dim

Consider the Taylor expansion of the objective fat to the second order

frwete flwelt e f welt f latt

Now search for E that minimizes f wet

f were f we f we I 0

Set update rule wet We



Newton method d dim

Can derive a similar argument in the d dim case resulting in the update

Wttn wt H fewer

gradientHessian

Particularly unful on convex fats with pd Hessians

Courgence on smooth functions might be faster than for standard GD

Trouble if Hessians are indefinite Isoddle pts or not even invertible



Computational costs

Computationally costly Hissian and its inverse

Approximation algorithm to the inverse of the Hessian exist

Conjugate gradient

Quasi Newton methods

BF AS algorithm


