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Justify all your claims.

Exercise 1 (Multivariate distributions with densities, 3+2 points). Let X,Y be two
real-valued random variables.

a) Consider the joint density

1
fX,Y(xa y) = E eXp (_2$2 - y2 - $2y2) ) T,y € Rv

of X and Y, where ¢ = fRQ exp (—2£E2 —y? - x2y2) d(z,y) is the normalizing constant.
Compute the marginal densities fx(z) and fy(y), as well as the conditional densities
Ix|y=y(z) and fy|x—;(y). What are the names and parameters of the distributions given
by the conditional densities?

Hint: You can use without proof that [ exp(—a(x + b)?)dz = \/g fora>0beR.

b) Consider a positive joint density fx y(z,y) and prove the continuous versions of Bayes’
formula and the law of total probability for all z,y € R:

Frix—aly) = fxw?;:g)fy(y)

(Bayes’ formula)

and

fy(y) = /RfYX:x(y)fX(:r)dx (Law of total probability)

Exercise 2 (Conditional Expectation, 2422 points).
Let (Q,.A, P) be a probability space and X,Y,Z € £L2(Q, A, P). The conditional covariance of
X,Y given Z is defined as

Cov(X,Y | Z)=E(XY | Z)-E(X | 2)E(Y | Z).
The conditional variance of X given Z is defined as Var(X | Z) := Cov(X, X | Z).
a) The law of total expectation states
E(X) = E(E(X | Y))
for two random variables X,Y. Prove this law for two discrete random variables.
b) Prove the law of total covariance, which states
Cov(X,Y) =E(Cov(X,Y | Z))+ Cov(E(X | 2),E(Y | Z))
and deduce that
Var(X) = E(Var(X | Z)) + Var(E(X | Z)),
which is known as the law of total variance. You may use the law of total expectation,

although we only proved it for discrete random variables.
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c) What is the interpretation of the formula in b) and the intuitive meaning of the two sum-
mands? You can choose to explain either the covariance formula or the variance formula.
Find real-life examples for X,Y, Z, where Cov(X,Y') is non-zero but E(Cov(X,Y | Z))
vanishes. You do not need to make this mathematically rigorous, just explain your example
and why the terms behave as they do.

Exercise 3 (Unbiased estimators are not always useful, 2-+1+2 points).
Let X ~ Pois(—0.5log#) be a Poisson-distributed random variable with 6 € © = (0,1). We
now want to estimate 6 based on one sample of X.

a) Consider the estimator U = (—1)*. Prove that U is the only unbiased estimator for 6.
Hint: Use the equality exp(z) = > 72 %17 Additionally, use the fact that

Zakﬂzzbkﬁ Vz € (0,00) = ar=b; VkeN.
k=0 k=0

b) What is the MSE(U, 6)?

c) Now consider another estimator V' = 1oy, (X). Is V unbiased? Prove that MSE(V, ) <
MSE(U, 0) for all 6 € ©.

Remark: 1ay, s the function that maps all even numbers to 1 and all odd numbers to 0.

Exercise 4 (Consistency, 4 points). Consider the statistical model F; = {Unif(]0,¢]) | ¢ €
(0,00)}. Given an independent sample X7, ..., X;,, we estimate ¢t by

t, ;= max X,.
1=1,....,n

Show that this estimator is strongly consistent.



