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Justify all your claims.

Exercise 1 (Online gradient descent, 3+2+2+1 points).
Online learning is a machine learning method in which not all of the training data is available
from the beginning but sequentially revealed. The challenge lies in choosing parameters such
that the model fits the (unknown) data revealed in the next step well. Online learning is used,
for example, in scenarios where the data is dynamic, like the prediction of prices in financial
markets. One possibility of modelling this is by a loss function that changes with time.

Our setup is the following: At each time step t

• The learner chooses parameters wt

• An adversary (or nature) chooses a convex loss function ft

• The loss is ft(wt).

We fix a convex set U ⊆ Rd containing 0 as our parameter space. Our objective after T rounds
is

RT = max
u∈U

T∑
t=1

(ft(wt)− ft(u)),

which is the cumulative difference between the algorithm’s loss and the loss w.r.t. the optimal
parameter in hindsight. RT is also called regret.

We define online gradient descent by

w0 = 0, wt+1 = PU (wt − η∇ft(wt)),

where PU (v) = argmin
u∈U

∥u− v∥ is the projection onto U and η ∈ R.

In the following, we will prove that online gradient descent is a robust algorithm suited for our
scenario, as it yields a regret that only scales linearly in

√
T .

a) Prove the Pythagorean inequality, which states

∥y − ŷ∥2 + ∥ŷ − u∥2 ≤ ∥y − u∥2

for any u ∈ U , y ∈ Rd and ŷ = PU (y).

b) Show that for any u ∈ U it holds

⟨wt − u,∇ft(wt)⟩ ≤
∥wt − u∥2 − ∥wt+1 − u∥2

2η
+

η

2
∥∇ft(wt)∥2.
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c) Given ∥u∥ ≤ D and ∇|ft(u)| ≤ G for all u ∈ U , prove that it holds

RT = max
u∈U

T∑
t=1

(ft(wt)− ft(u)) ≤
D2

2η
+

η

2
TG2.

d) What choice of η minimizes the regret and which worst-case regret does it produce accord-
ing to the upper bound?

Exercise 2 (Formal proof of the existence of Langrange multipliers, 4 points).
For some differentiable functions f, g : Rd → R, consider the optimization problem

min
x∈Rd

f(x)

subject to g(x) = 0.

Prove that if x∗ is a minimum, it holds ∇f(x∗) + ν∇g(x∗) = 0 for some ν ∈ R.

You may assume that there exists a parametrization of the constraint boundary, that is, there
exists an injective differentiable function h : Rd−1 → Rd whose Jacobian has full rank, such that
the image of h equals

{
x ∈ Rd | g(x) = 0

}
.

Hint: Remember the chain rule from assignment 6, exercise 4c) and prove that ∇f(x∗) and
∇g(x∗) are both perpendicular to range(Dh(p)), where h(p) = x∗.

Exercise 3 (Differentiable approximation of L1-approximation, 3+4+1 points).
The function φ(u) =

√
u2 + ε, with parameter ε > 0, is sometimes used as a differentiable

approximation of the absolute value function |u|. To approximately solve the L1-norm approxi-
mation problem

min
x∈Rn

∥Ax− b∥1, (1)

where A ∈ Rm×n, b ∈ Rm, we instead solve the (differentiable) problem

min
x∈Rm

m∑
i=1

φ(ai · x− bi), (2)

where ai is the i-th row of A. We assume rk(A) = n. In the following, we will derive an error
bound for the relaxed problem.

a) Use the equivalent form

min
y∈Rm,x∈Rn

∥y∥1

subject to y −Ax+ b = 0,

of the L1-norm approximation problem to prove that its dual problem is given by

max
λ∈Rm

λtb

subject to |λi| ≤ 1 ∀i = 1, ...,m

λtA = 0.

b) Let p∗ ∈ R denote the optimal value of the L1-norm approximation problem (1). Let x̂
denote the optimal solution of the approximate problem (2), and let r̂ = Ax̂ − b denote
the associated residual. Show that

p∗ ≥
m∑
i=1

r̂2i√
r̂2i + ε

.

Hint: Use the dual problem derived in a) for some suitable λ.
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c) Conclude that

∥Ax̂− b∥1 ≤ p∗ +

m∑
i=1

|r̂i|

1− |r̂i|√
r̂2i + ε

 ,

which gives an error bound for the relaxed problem.

3


