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Justify all your claims.

Exercise 1 (Convergence of random variables, 3+2+2 points).

a) Consider the probability space ([0, 1],B, λ), where B denotes the Borel-σ algebra on [0, 1]
and λ the Lebesgue measure. For every n ∈ N there exist unique h, k ∈ N0 with 0 ≤ k < 2h

such that n = 2h + k. We define a sequence of random variables Xn using these h, k as

Xn(ω) = 1[
k

2h
, k+1

2h

](ω) =
{
1, ω ∈

[
k
2h
, k+1

2h

]
0, otherwise

∀ω ∈ [0, 1] .

Prove that Xn → 0 as n → ∞ in probability and in L1, but not almost surely.

b) Consider a sequence of random variables X,X1, X2, . . . that satisfies Xn → X in proba-
bility as n → ∞. Prove that there exists a subsequence (Xnk

)k∈N for which Xnk
→ X

almost surely as k → ∞.

c) Find such a subsequence for the sequence given in a).

Exercise 2 (Limit theorems, 2+3 points).

a) A laundry bag contains one black and one white sock. Now Tom keeps throwing socks
into the laundry bag. Every sock he throws is either black with probability p ∈ [0, 1) or
white with probability 1− p, independently of the previous socks. Let Xn be the fraction
of black socks to total amount of socks and Yn the fraction of black to white socks after
n ∈ N throws. Prove that

(a) Xn → p almost surely as n → ∞ ,

(b) Yn → p
1−p almost surely as n → ∞ .

b) Consider an i.i.d. sequence of real-valued random variables (Xn)n∈N with µ = E [X1] ∈ R
and σ2 = Var[X1] < ∞. Define Sn :=

∑n
k=1Xk and let a, b ∈ R with a < b. Use the

central limit theorem to prove

P (a ≤ Sn ≤ b) = Φ

(
b− nµ√

nσ

)
− Φ

(
a− nµ√

nσ

)
+ o(1) ,

where Φ denotes the cumulative distribution function (cdf) of the standard normal distri-
bution and o(1) satisfies o(1) → 0 as n → ∞.
Hint: You may use the characterization

Xn −−−→
n→∞

X in distribution ⇔ Fn −−−→
n→∞

F uniformly on DF ,

where Fn and F denote the cdf’s of Xn and X, and DF = {x ∈ R | F is continuous at x}.
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Exercise 3. (Estimation error in learning theory, 3+2+2+1 points)
Let (X,Y ), (X1, Y1), ..., (Xn, Yn) be i.i.d. random variables Ω → Rd × R and consider a finite
set H of measurable prediction functions h : Rd → R.
For a measurable loss function l : R×R → [0, 1] we define the empirical risk of a predictor h as

Rn(h) :=
1

n

n∑
i=1

l(h(Xi), Yi)

and its true risk by
R(h) := E(l(h(X), Y )).

a) Let ε > 0. Prove that for the event An := {suph∈H |Rn(h)−R(h)| ≥ ε} it holds

P (An) ≤ M · e−2nε2

for some constant M > 0.

b) Let h ∈ H be fixed. Prove that Rn(h) → R(h) almost surely as n → ∞.

c) Define

hn := argmin
h∈H

Rn(h) and h∗ := argmin
h∈H

R(h) .

Prove that R(hn) → R(h∗) almost surely as n → ∞.
Hint: Show and use that

R(hn)−R(h∗) ≤ 2 sup
h∈H

|Rn(h)−R(h)| .

d) The result of c) does not hold any more in general if H is not finite. Explain why.
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