
 

Probability measure

Given space 1 abstract space

Need a G algebra it on R measurable events

A c A A e A

N

Ai ie µ C it U Ai e it countablecurious

in

0 I e A

countable intersections

A measure p ou CR et in a function

µ A o a

that is countably additive If Ai ie µ is
a sequence

of pairwise disjoint sets men

ii Ail Eg plait

A measure P on a measwalle space R A is called

a pubasihea.ve if PCR 1 1

The elements in A ar called eared

Then Cr et Pl is called apobabipace



trampleThrowouedier1 2 O it 9 r o algebra generated

by the elementary events fr 123 6

P cau da be defined uniquely by assigning

P Enl PC123 PC163 f
For example P r 53 PCH t Plcs I

Th ie firstdie
second

re n 2 6 t fair 63 din 1427 Ce 3

A P R

p Ci j 316

Example 27 Normal distribution

I 112

A Bone o algebra 1
170

fµ IR R

r't art I
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P it Co n A N

PLA is ftp.ocxi de
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Different types of probability measures

Disease
R f en ez finite or at most countable

A Pcr
We define a probability measure Pi it Ed r by

assigning probabilities to the elementary events

p Eri p

win OE pi E A E pi 1

For A c A we assign

PCA E pi
il tic A

Examples f on a coin distribution ou Q

i

For e e IR we define the Diracmeasive on

IR DCR by setting

if x c A

J CA
o otherwise

Sometimes this is called a pointmass

at a point x



A discrete measure on R can be written as a sum of

Dirac measures For example throwing a die can be described

as 1g Jn t Iz t t of

Measurswithaduis

Consider CR DCR and the Lebesgue measure 1

Consider a function f IR IRzo that is measurable

and satisfies f di h Jfc dx

we v ou IR

tena
v A ffa DX A

A

v is the probability measure ou IR Daryl with f
Notation r f A

Question Can we describe every prob measure on 4124 Darn

in terms of a density Answer no

Counterexample do Dirac measure



Def A prob measure r ou IR Don l is called

us with respect to another meaning on Cera Deery

if every p null
set is also a v nullah

b BE 8412 y
B so r B1 O

tf

µ Al o aff dy
O

Example N lo al k f

A
Example do A because

if 031 0 but do 037 1

in
cm

m.Ty

following two statements are equivalent

c.eeu.hr



i i

Proofideay
r 2 easy

z r we need to construct a density

Consider the set of all functions g with the following

properties

g is
measurable g E O

g p E v that is

v a e 8cal
afgdp

E V A

Observe g O satisfies CA so G is not empty

If g h both satisfy C
then supCg h satisfies Cal

Define yr sup fg dp and construct a

gEg

sequence gulue µ such that lion gudy s p

Define density f sup gu

Now pron f does the job Dan



Det p r measursou R t r is calledsingular

wrt p if there exists A c it such that

µ cats
0 but v CA 1 0 Notation µ I v

If IR

f do

Example h 1 do

Theorem Decomposition by Lebesgue

i ii
V K p and Vz L p

Example V I co n t do 1

Vs Vn 1 Vz WH ri i f NCO 1 vz I do

Proof Let Np be the setof all
null sets wrt y

C it

X ie sup f r CA l A c If

Can construct a countable sequence Au ueµ Au CNy



such that V Au Tx By coundable additivityooo

we get UAN L
uCIN

N

Deline i Ans v An N
c

Vzi A r CA n N

on the job
Dan

cauhiibuhouuoutiviad.hu
that

is singular wrt t

construct the Cantor set
e

Start with Co Eo AT
Remove middle part

Cn i 0 u 73 I 11 11

neuron middlepartsfrom all
intervals

s Cz 1 1 1 1 1 I M

The cantor sit in the limit
in thisprocess



Now construct a probability distribution

Consider the Colfer of the sets Co Ce Ce

Co

µ
uniform ou can

union on Cannock isi

J g

Cz i

7

or
Take limit Can prove many strange

properties

Cowher set is compact
non empty empty interior

the calf of f is continuous r is a prob
measure

But X c 0

a t r



 

Cumulativedistributunction

Let P is a prob measure on GR BURI

Define the funhlen F IR R e t P T o

We say that F is a cumulative distribution function cdf 1
that is it satisfies the following proton properties

i F is monotonically increasing

lim Fai 0 lim Fu 1
to

x s

Cii F is continuous from the right

Hulu sequence with Xu x

i.e Xu Z Xuan and Xu x then also

FCtu Fox

F

1

O

a50
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ma dinar
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1

to

let F IR R be a function
with properties i and Cii

Then there aint a unique prob measure P
ou IR BCR

such that P J FIX



 

Randomvariablethet
Let R it P1 be a probability space I et be

another measurable space A mapping X I I

is called ar iae if X is measurable i e

f An e f i k rt w E R I Xcw c An e A

x I
r

people in the height
world

persons thatare Fi at least 170

A
at least neocon
fall

P A O h

Exaupte.am wodice

I Ci j i j c In 63 5 12 12

it P Er
it Bcr

p Ci ji fs

X sum of the two values

X I 2 12 Ci j l i it g

Is measurable



Defy A random variable X i ri T induces a measure

on the target space

For A c it we define

P t P x h F

This is a probability measure ou E et and it is

called the distribution

Det X r it p El et The the family

X x II I Feit

is a r algebra on R and it is called theo aleebra

induced
it is the smallest 6 algebra ou r that makes X measurable



 

Conditionalprobabilities

P An B P A and B

P Au B
An B

poi or B

is camp posasini space

A B e it P Bl 0 then

P AI B
P AnB

is called the

P B

a y of A given B

theorem The mopping Pp A o n A PCAIB is a

probability measure ou r t it is called theconditional

d h of P with respect to B



trample SL all persons on earth

A Pcr

P uniform

Event Ai person hasbeen vaccinated

B person has disease

P disease vaccinated

Il
l

disease notdiaaa

O
ie

P vaccinated disease

Example two dice

P sum is 10 I first die was 5



 

Bayesformulalaw.tk
bihty Let Bn Bz Bu be a disjoint

partition of R with Bi E A forall c and Aed Then

u n

g p A PCA I Bi P Bi PC An Bi
in a

a

sunny rainy

Bay ula

P AI Bi P Bi Plan B

R Bil A
PCAI Bi PCpi

P A

Example breast cancer screening
above 40 have breast cancer

Assume 1 of all women

90 of women with breast cancer
6 will be Kohtpontin trueposition

8 of women
without breastcancerwill receive a positive

result as well false positives

Gim Mah a woman rescuer receives a positive test result what is

the likelihood that she has breast cancer



P positive cancer P cancer

P cancer positive

p por I cauw PCcauw t P postwar Plena

0.9 O oh
to

0.9 0.01 t 0.08 0.99



 

Independency

Couridu a probability space R A P Twoevents

A B C it are called int if

p An B PCA PCB

observation A is independentof B PCA I B PCA

A H Ai ie ie is obedient

if for all finite subats J c I we have

P C n Ai IT PC Ai
it ie

family is called pairwise independent t
ki j c I

P Aina P Ai Maj This does not

imply independence

Two ables X I In Yi r Dz

are called if their
induced G algebras Oct orcut

are independent

K A e Oct Berck P An B i PCA PCB



Notationfor independence

A 1 B

X IL Y



 

Expectation Cdiscretecaset

Consider a discrete random variable X I IR

that is X R is at most countable

Definer S A P prob space S c R at most

countable X I S random variable

f E Irl p X r L then

ES

E X Efg r PCker is called the expectation of X

sometimespeople wirite EX Ek or IECH

E S

Toss a coin R head tail A PCR p head p
p tail h p

O C p c r

X i r on head 1 hail 1 3 O

Eckl O P X O e l P X r a p
r p p

Test error of a classifier

Def A rr is called centered if Ect o



Import
ru ru

Linear E a X i b Y a E X t b E Y

I t
C112 GIR

K 4 independent E X YI E X E Y

ind

Leix I P k ri Y y

Kiy IP K ee P 4 y
nm

Hilly jl

Kilkksei Play D

do a



 

Varivarion
discrete case

DEI k 4 SL et P R discrete rvs with

E K2 D E 42 ca

The
par y E x Echl

is called the variance of X

and Ivar H Ox µis called the standard tea tea

deviation
high variance
moderate variance

Cov Xie E X Ek Y Ecce is called

the covariance of X and Y

gyu in Corin e E n r is called the

64 correlation coefficient

If CovCt41 0 ther k and Y are called uncorrelated

More generally for ke 1N we define the tears

Eckk h thmoment

E H EAM hth centered moment



t.mn

EX

Intuitionaboutovaria
Cov X 41 E x Earl 4 Ecce

i positive large covariance
su

name
far 0.9

demand

negative Cor

loverin absolute values

ie
se og

t i c



Uncorrelated D independence

Y independence

Properties

Var X E x xi

Cov Xie E x YI EUI E Y

E att b a EK i b

Var a X b a'Var X

Cov X 4 Cov Y X

Var ft 4 Vark x Var 4 t Cov 44

k 9 independent Cov 441 0

X 9 independent 4 Var X 14 Vale Var Yl



 

Expectinthe
generalsetting

Lk R A P X R R IX measurable and

Ikki dp a
r

R A P prob space X R IR with distribution

Pe RCPI X e L R A P The expectation

of X is then defined as

E X J X IP x DP cry

SL IR

can of densityf i

Le fore da

tf Kk c L R chip then

E Xk ehDP is called the h th moment of X

If X E L CR et P we define

Vark E x Ect 1
2

Gv Kit E x ECHL 9 Ecce



 

Chebysheri es

Sc4wwt iuequaity

X Y C L2 R A P then

E X 412 E E te E K2

Markovinequality E O f o o oof

f monotonically increasing
Then

E f 141
P 141 E E

f E

a particular
E 141

p 141 E E
E

Chebyshevinequality E O X E ice it P then

Var X

P l x Ece 1 E E
E
2

heyquantity in learning theory



 

Examples of probability distributions

Discretedistributions

hu dir.ou 1 u P i In

Binomialditribution ou fo u

Toss a coin u times independently each timewith

probability p of observing head Die Denote head r ta tO

X ie A heads

P X h ie L pk n p
h

poissoudistibut iuo.IN

Parameter A o
Intuition number of incoming

f kik th e
t

calls at a hotline

I

coutiuuousdistibu.hu

UuiZuh'en ou Ca b constant density

II
b



Normal distribution on IR

Density parametro p
menu sr rhd deviation

fm.cn ftp.eepl Yj

Ht

Notation N y o

Some first properties

Xn N poi Y N N Mi6 X 4 independent

Then HY N N int µ
one ioi



distriihiddimwieu

x r in a pie Ekil p Fm

E R with Ei Cov Ki X called covariancematrix

A

fME Fine n
ah EeeutEam

Notation Nlp E

Prof E is psd and symmetric

Gunquence I was real valued non negative age

O

k kn tu are independent s E
o

t



to

IN Nlp Et Y N N M E
independent then

Xt Y n N eatyr Ez

Mixtures

Consider In z ith with OE Iti E r and E Iii 1

Consider the following
density

feel Ti fpi.ci



 

Gunrgureedfraudiniables

Consider ru Ki I IR ie IN X I R

si ut P a probability space

ki ie µ counges to X almost

P well Lim Xiao Kiwi 1
i

Notation Xi X a s

r Xi ie µ counts to X improbability

HE o P well Kiwi teal c 0

Let us check that these definitions make sense
We need to

pwn
that the events in Cal and z are in fact in the A

Casely
lim Xi cw X w

the N F N c IN Vu N i l Xuan Xiu I c 1h

So weget



w Kiwi Xan

few Yen IN Kuw tank I act

countable unions Xu X are measurable

and interactions
Ipa xl is measurable

so I 3 e it

3 Xu X i s

Xu k ELP and IlXi X Ilp 0

4 Let M 112 be the set of all probability measures on

Ccr Dar Assume thin C M IR N E M Ra

bar is space of bounded continuous functions

µn y weakly

tf c Cbca If dpn f dy

m taken

tret let



TEecursioni

In functional analysis a sequence Hulu in a

Banach space B couwm weably it for all

bounded liu functionals f we have that

fam fix i.e for all f e B

Space M GR itself is not a Banach space

but C M 112 space of all bounded measures

The dual space of the coral is Cb Nu

L

5 Xi K R A P R The sequence Xu

couwgesind ibuhu.to X i

the distribution Pen counge to Px weakly

We have the following implications
but none of the missing

imma i in
X K
in probability

y
µ



trample convergence a s in prob but not in C

Xn IR s R y ow
h for 0 Ex c In
O ohuwin

T
be 70 Xu cry 0

are

I
n n

Cau formally see a s in prob

But no coungence in L

Eixample coumpuce in prob in l but not a s

sliding blocks

fr Ha

fr A
o nay fs Here a

Fi
f 4 Atco ngy f s A Is FG HEY a

k le kn



Example Cour in distribution but not in pub

Xu o l R kn Xz o EE LI
X HE n

Obviously Xu 7 X in pus but

Pe L o t da Px Px i Px

so Xu X in distribution



 

motelli
R A P prob space Au u sequence of events is A

P Au infinitely often P Au i o

P wer I w e An for infinitely many u

Proposition Xu X v.v ou R A P

Xu X a s s

V E 0 P f f Ku XI E inf often O

proof inuinen

lim Xu X

Hk Hu XI In at most finihly often

N Itu Xl 1h at moot fin other

KEIN

EN f Ku XI I inf ofteng
complement



Theorem Consider a sequence of enure Au u
c it

P

n If E Plan D then PC Au i o O

n n

2 If plant D and if Hulu are independent

then P An i o A

Application in leaving theory

Assume that P Itu et F c du and

assume that E of L Then you can use

us 1

Borel Cantrell to prove that

p Ku XI I i o O

Mus Xu X a s



 

Limit LI

CTShrouglawoflarIuunbos

Xu R A P R i id identically distributed and

independent Assume the mean pi E xn

and Var Xn 62 N Then

Lim F E ti p a s and in L2

Many versions of this theorem exist slightly relaxing iid

Strong law Coeurpuree a s

Weah law s couwpuce in posability

Centrality
Xilie µ iid rv with meany variance 62

Consider the rr Sn En ti We normalize it to

u Sn n p which has mean 0 and
I n i

fi
standard dev il

then Yu Y in distribution where 4N NCO r



Illustration Xi coin head 1 tail to

Sn Eti e o n

Ti

ten



 

Couceutraliouinequalities
Motivation random projections

i
Rd d large

want to project in Rl l small

fJo LiWw

Cau guarantee for certain parameters E k

n E Il Xi xjHµd E Haki ITH 111pl

E nee Il ti X Hind

Construction proof steps

41 Assume you know Uri X Hpd 1

Compute E Hathi ITC x Hype easy

G PCH Ica ice ill El I t



Hoefdinginequality
rich Pl 142,8

i

i i
P Sheet E eepf

E Cbi air

im
h

t 0
mean

of5h

lppliaahouofltoeffding.SI

Prop Xilie µ iid rv a E Xi E b r let k have the same

Thea I EX Ece a s

distribution as Hee Xi

Proofs Hoeffding

Pl I Ee Earl El E exc 2,1

P Fn Eri Eee c t



PCFEC xi EC x t Earl fI e

Combined we get

Pl l I Eti e cell t t 2 apt flat
Now want to apply Borel Cautelli to get a s couwance

2 n An Xi

n o
Plan Ecm t E 2 I ex 75

Sum

Substitute r Upf IIa e o n

Oban eepf Zn ti r

N

sum 2 E r 2 I C D

n O r r

Now Borl Cauhlli pins almost sue courupuce Bu

Remaki Hoeffding is tight cannot be improved without

furtherassumphbus
For fair coin tosses it is higher

But not tight if coin is biased
need other inequalities



Bernstein inequality

i i
o

PC E ti t I E eepf ntl
Z o't tr g

couceutrah.eu aUkfGcheuwiUbomdddifuce

Couridv a function fi 112 IR or more generally

f X IR for some arbitrary space X

We say that fleas
the bounded differences properly if

there exist coustauhr er r cu such that

sup l fkn I ki n ti Xian l i u

kn tu et
ti Et

f e ti n Fi Kien Xu E Ci

Example f Cen rule E xi and a c Xi e b ki then

f satisfies with Ci b a



McDiarmid X tu independent ru Xie Xi

f X e e In R function with bounded difference properly

Then for any t O

P fl x xn E fun Hull t

E expf Zte

E

Application

stability in ML

standard theoretical CS randomized algorithms

largest eigenvalue of a random symmetric matrix

A TI I
draw iid



 

Glivenko Cautellitheorem

F Cdf Fca P X e a

Xn Xu F iid

F
I

Fn

Fn IR d it
Ao

Eulalie tuEin Hexi Ea

Now fix one particular ao CCR

FnCano Icao by the law of large numbers

is a Binomial rv withBecause dtfeita

p P Kika

So ice is clear that Fu F pointwise i.e Kao 1

Now let's 606 at uniform convergence

theorem Xp Xu iid random variables with coff f

Let Fu be the empirical calf induced by
the sample then

pl sup l FuCai Fcat E E
a c112

E 8 Cuen expf

In particular sup IEn F l O a s

i e Fu F uniformly a s



Proof Oban LCN P farad FCao I c 0

for any fixeddo

Problem need to bow at

P sup l Fuca Fail E
a

difficult because R is uncounhadle

If we take a supremum on a finch uh

it is easier

P mae Entail E
is 1 h

P IU I E 1421 E or or Heal 2 E

E E P lait c

ien

1rich of the proof count of pp
to something finite

true fatHow could we achieve this

F
y h

F
induced6
given sample

Fu inducedby a

ghost sample

1 redgreenlit

red blue1 E 2 I green blue I



Steph Symmetrization by ghost sauple

Assume Xp Xu F independently short sample

Deuoh by Fu the empirical calf inducedby ghostsapee

Now it is easy to pion

P f sup l FuCai Fra I E

a

Iz p s p Itza t I E

Skp2_ i want to split this intw.hu

I Fu Cai Fu call I I En Hea c a Hee ca
I

Introduce Rademacher random variables on Gm i

si fAl oi fall safe

Distribution of is the same as the dish of the following

1 I Ea oilttsq.c.az Asa ic.az I

Now we lean



2 PC snap Fuca Fu call Ez

zp snap I EEoi Hae Ha aal l E

EEP s p II Esi I E t 2P same IIE oitteia.at Eu

osa

T

P Iu VI E E P lui E ar I r l E 1

Fright side is necessary for left side

4 p map
1ha E sitter yl 7 E

Steps Exploit finite structure

Fir Xn Xu condition on Xp Xu

we ou at tf u

Xi E a l

the rue tty e Ng sa Fo fired a car d Ly

her n al reali zahl

pf aap El Erik a
l E Ix Xu E

C feel suapPC.tn igiaE Xu

un Hoeffding C I



apply

5KPI Hoebeling to i

ka i

MEK ri ke cal s I 4 Xu

E 2 eye

combining errything gins
the theorem



 

Productspaceyjointributions

Consider two measurable spaces Rr Aa Reitz

Deline the p ae Centre An Az with

r e Iz Wr Wz l we C Rn wz C Rz

An Az An x Az AnCAi Az E Az

Consider two rvs in r h P r et

Xz R A P re Az

X xn Xz R A P Centre An Ine

kik can Kiwi Kiwi

The distribution Pq q
ou sheer it Iz is called

the di u af X andXz

Example in ML K Y where X is the inputdata Y is

the label

p eaave r Aa ez Az Pe two

prob spaces We define the Pr Pz on

the product space In Rq He Az as



P Pz Aa xAz Pn Aa Pz Az

a i ii i n

p
x q

Pr Pz



 

Marginalisation

consider the joint distribution
P of two rug
knife

X xn Xz thetriffurter
is the original distribution of Xr ou Cha del namely

P Similarly for PqXr

Example in the discrete
case

Y X x Xz 9 I1

t

patpy I marginal distribution

p teal wrt 4

marginal Wrt X

Marginal distributions in case of densities

x 4 Cr it P CR BCN Z 44 Assume

that the joint distribution of Z has a density f ou 1122

then the following statements hold



r Both X and Y leave densities on CR DAR givenby
jointdensity

faces f
suu ow

4

f Cry dy

fu 41 f farci de
p

2 A dud 4 are independent iff

f x y fx ch fu cyl a s

Mixed cafes

For example consider X a continuous RV with density

and 4 a discrete ru

Say X income E R

4 yes or no discrete

Special case marginalsof multivariate
normal distributions

Idim Consider a 2 dim normal rv k Fh with mean

e Gilead and au E

Then the marginal distribution of X wit kn is again



a normal distribution with mean µ and war oil

se li
www.nalwrtk

is normal

h din
E RkT q c R Gro r the i

Ing c ai u

want to lookat the marginal of X wrt E

r I mean Fi fill f f

E.fm
Marin

A Fizz

in

k

Now the marginal of X wrt E is a normal distr on 112k

with mean F and Cov Inn



 

Couditionaldibutions

Dire i

know conditional probability PCA I B

defined for events A B c it and PCB 20

Let X 4 Sr A P R be discrete w e ye IR such that

p 4 y 70 Then we can define the conditional probability

measure P A 1 5 P KE A LY y
1114 1

this is a probability measure

Fo sswpiy4wwicahd
regular conditional probabilities shipped

coudihibuhbuhqih.es
Assume 2 x 4 has a joint density f 1122 7112

and marginal densities f fy IR 42 then the function

ft 14 4 Ct f
fu cyl

is there also a density on 112 called the si of

Xg y



Exampleiuoru.at nbuh6us

Em Enz
r I HI E 4 s

If X fin or N y El then the conditional distributions

of E Cin wrt He an is r'm by

p
Ile

N Mt In Eu e ft

Ea En En En

IE

Xn r



 

Conditional expectation

Det discretecase X Y R A P IR

assume X takes finihly countably many values

xn Xu EIR 4 haha finitely countably many values

yn you c IR always witha positive probability

in

E 4 Kiri E y P Y y taxi
j n

welldefined

Eixample two dice X first one Y second one independent

12

E sum It n E i P sum i Xia
i n

6
E Atk P Y kl x A
her

6

Cruel P 4 k nth f 4.5
her

So far we defined E Y 1 Xi xi but often we want to

consider the function E YIK w This is a ru

E 41 1 i R A M IR B

Leads to the following



Def discretecase X 4 as before then the

conditional expectation is defined as follows

E YIK f X with

fee
E 41 1 1 it PCA x o

arbitrary say 0 otherwise

G Yik is only defined a s

Now we want to move to the more general case

Sketch A continuous rv

4 discrete rv Yr i I 45

Want to look at E X K

Evil
her

Y yn Y Yz 4 43 44 45

Br Bz Bs By BE

want to define ECXLY is ECx Y yi Atp Iw

But need tomake sure that it is measwallewet Y
theb ur



Def conditional epectation ou Ln

Consider ru Xi R Fo P R Xe L Cr Fo P

f

i

n 2 is measurable Wrt F

2 For all A e F we have

Kdp f't dip
A A

t

I i
f I
l l
l l
l l

A
Existence of EC Xl F is not clear a priori it needs

to be proved

EC X1 Y E X lock

ExamsC
an extreme caus

X Y Then ECKIY X a s

X IL Y Ect 141 E X a s



canofjoiutdenr.tn

X 2 r IR have a joint density fee z

ekg R s 112 bounded set 4 g t Assume we

want to compute E Y IX Ecg z X
Y

Recall X has density feces If ex z dz

the conditional density at 2 gim Kee is

fy cel f if fxcxi.to
feel

Now consider hottie
g Ct fee Ces de now define

E YIK heel


