
U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

0

Statistical Machine Learning

Ulrike von Luxburg

Summer 2020
Department of Computer Science, University of Tübingen

(Version as of August 19, 2020)

All lectures have been videorecorded, you can find them on youtube.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1

Table of contents

Introduction to Machine Learning

What is machine learning? .7
Motivating examples and applications . 8
Machine learning as inductive inference .22

Warmup . 45
The kNNalgorithm . 46

Formal setup .73
Standard setup for supervised learning .74
Statistical and Bayesian decision theory . 86
Optimal prediction functions in closed form .102

... for classification under 0-1 loss . 103

... for regression under L2 loss . 115
Basic learning principles: ERM, RRM . 122

Linear methods for supervised learning

Linear methods for regression . 139
Linear least squares regression . 140
Feature representation of data . 165
Feature normalization . 175
Least squares with linear combination of basis functions . 178
Ridge regression: least squares with L2-regularization . 186
Lasso: least squares with L1-regularization .205
(∗) Probabilistic interpretation of linear regression . 222
Selecting parameters by cross validation . 227

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2

Table of contents (2)

Linear methods for classification . 241
Intuition . 242
Linear discriminant analysis .249
Logistic regression . 272
(∗) Probabilistic interpretation of linear classification . 286
Evaluation of classification results .293
Linear support vector machines . 324

Intuition and primal . 325
Excursion: convex optimization, primal, Lagrangian, dual . 350
Deriving the dual problem . 351
Important properties of SVMs . 365

Kernel methods for supervised learning
Positive definite kernels . 375

Intuition .376
Definition and properties of kernels . 386
Reproducing kernel Hilbert space and feature maps . 409

Support vector machines with kernels . 432
Regression methods with kernels . 452

Kernelized least squares . 453
Kernel ridge regression . 461

How to center and normalize in the feature space . 466

Randomized methods: bagging, boosting and friends
(*) Random Forests . 479
(*) Boosting .507

Other important approches you should learn about
Neural networks and deep learning: SKIPPED, see other lectures in the department . 526
Probabilistic / Bayesian methods: SKIPPED, see other lectures in the department .527

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3

Table of contents (3)

Unsupervised learning

Dimensionality reduction and embedding . 529
Classical PCA . 530
Kernel PCA . 557
Multi-dimensional scaling . 582
Random projections and the Theorem of Johnson-Lindenstrauss . 599
Graph-based machine learning algorithms: introduction . 630
Isomap . 638
(*) t-SNE . 652

Clustering . 673
K-means and kernel k-means . 683

Standard k-means algorithm . 684
Linkage algorithms for hierarchical clustering . 708
A glimpse on spectral graph theory . 717

Unnormalized Laplacians . 719
Normalized Laplacians . 733
Cheeger constant . 739

Spectral clustering . 752
Unnormalized spectral clustering . 762
Normalized spectral clustering . 785
Regularized spectral clustering . 790

Introduction to learning theory

The standard theory for supervised learning .798
Learning Theory: setup and main questions . 799
Controlling the estimation error: generalization bounds .808

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4

Table of contents (4)

Capacity measures for function classes . 822
Finite classes . 823
Shattering coefficient . 835
VC dimension .845
Rademacher complexity . 857

Controlling the approximation error . 863
Getting back to Occam’s razor . 871

(*) The No-Free-Lunch Theorem . 882

Machine Learning in the context of society

The issues with ML . 895

Fairness . 913
Why can ML be unfair? . 914
Data and measurement .939
Some basic notions of fairness . 949
Technical approaches to improve fairness . 973
Tradeoffs . 987

Energy footprint of ML .993

Explainability . 1006

Low rank matrix methods
Introduction: recommender systems, collaborative filtering . 1020
Matrix factorization basics . 1024
Low rank matrix completion . 1032
Compressed sensing . 1075

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5

Table of contents (5)

(*) Ranking from pairwise comparisons
Introduction . 1120
Simple but effective counting algorithm . 1129
Learning to rank . 1149
Application: distance completion problem . 1161
Spectral ranking . 1174
Google page rank . 1178

Meta ML: How does research work? In general, and in Tübingen
Publications and reviewing in ML . 1197
How to find a good PhD position? . 1205
How does research funding work? In general, and in Tübingen . 1210

Mathematical Appendix
Recap: Probability theory . 1222

Discrete probability theory . 1223
Continuous probability theory .1261

Recap: Linear algebra . 1275
The maths . 1276
Some numerical procedures you should know . 1315

Excursion to convex optimization: primal, dual, Lagrangian . 1318
Convex optimization problems: intuition . 1319
Lagrangian: intuitive point of view .1329
Lagrangian: formal point of view . 1350

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6

Introduction to Machine
Learning

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7

What is machine learning?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8

Motivating examples and applications

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9

Hand-written digit recognition

Want to automatically recognize the postal code in the address
field of a letter:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

Hand-written digit recognition (2)

I Take a camera picture of the address

I Segment the image into individual letters and digits

I Image of a digit: 16× 16 greyscale image, corresponds to a
vector with 256 entries, each entry between 0 and 1 (0 =
white, 1 = black)

I Goal: want to know which digits they are, that is we want to
find a “correct” mapping f : [0, 1]256 → {0, 1, 2, ..., 9}.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

Hand-written digit recognition (3)

I Problem: it is impossible to hand-design such a rule!

The machine learning approach:
I Present many “training examples” to the computer:

(Xi, Yi)i=1,...,n such that Xi = greyscale image,
Yi ∈ {0, 1, 2, ..., 9} the true class label

I The computer is supposed “to learn” a function f that
correctly assigns digits to greyscale images

This problem is one of the “founding problems” of pattern
recognition and machine learning.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

Spam filtering

I Want to classify all emails into two classes: spam or not-spam

I Similar problem as above: hand-designed rules don’t work in
many cases

I So we are going to “train” the spam filter:

I Internally, the spam filter “updates its rules” based on the
training example it gets.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

Spam filtering (2)

This is a typical “online learning problem”: training arrives in an
online stream, rules have to be updated all the time

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

Object detection in general

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

Self-driving cars

I 2005, first breakthroughs in the DARPA grand challenge: Build
an autonomous car that can find its way 100 km through the
desert.

I By now: all major companies realize self-driving cars.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

Bioinformatics

Machine learning is used all over the place in bioinformatics:

I Classify different types of diseases based on microarray data

Image: Wikipedia

I Want to find drugs that can bind to a protein:

Images: BiochemLabSolutions.com

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

Bioinformatics (2)

In addition to all these applications, computa-
tional techniques are used to solve other problems,
such as efficient primer design for PCR, biological
image analysis and backtranslation of proteins (which
is, given the degeneration of the genetic code,
a complex combinatorial problem).

Machine learning consists in programming
computers to optimize a performance criterion
by using example data or past experience. The
optimized criterion can be the accuracy provided by
a predictive model—in a modelling problem—,
and the value of a fitness or evaluation function—in
an optimization problem.

In a modelling problem, the ‘learning’ term refers to
running a computer program to induce a model by
using training data or past experience. Machine
learning uses statistical theory when building
computational models since the objective is to

make inferences from a sample. The two main
steps in this process are to induce the model by
processing the huge amount of data and to represent
the model and making inferences efficiently. It must
be noticed that the efficiency of the learning and
inference algorithms, as well as their space and
time complexity and their transparency and inter-
pretability, can be as important as their predictive
accuracy. The process of transforming data into
knowledge is both iterative and interactive. The
iterative phase consists of several steps. In the first
step, we need to integrate and merge the different
sources of information into only one format. By
using data warehouse techniques, the detection and
resolution of outliers and inconsistencies are solved.
In the second step, it is necessary to select, clean and
transform the data. To carry out this step, we need to
eliminate or correct the uncorrected data, as well as

Figure 1: Classification of the topics wheremachine learningmethods are applied.

88 Larran‹ aga et al.

 at U
niversity H

am
burg on M

arch 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from

Figure from Larranaga et al., 2005

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

Medical image analysis

Skin cancer detection:

Figure taken from Esteva et al, Nature 2017

Machine learning achieves level comparable to best human experts.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

Machine Learning in Science

Example Archeology: ML approach to analyze the human genome
finds evidence for unknown human ancestor:

Nature communications, 2019

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

Language processing

I 2011: Computer “Watson” wins the american quiz show
“jeopardy”. It is a bit like “Wer wird Millionär”, but not so
much about facts and more about word games.

I Now: many breakthroughs, just talk to Siri or Alexa, or try the
DeepL translator ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

AlphaGo

Deep mind (google) constructed an computer player for the board
game GO. In March 2016 it defeated the 18-times world champion,
Lee Se-dol.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

Machine learning as inductive inference

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

What is machine learning?

First explanation:

I Development of algorithms which allow a computer to “learn”
specific tasks from training examples.

I Learning means that the computer can not only memorize the
seen examples, but can generalize to previously unseen
instances

I Ideally, the computer should use the examples to extract a
general “rule” how the specific task has to be performed
correctly.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

Deduction vs. Induction

WHO KNOWS WHAT INDUCTION AND DEDUCTION MEAN?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

Deduction vs. Induction (2)

Deductive inference is the process of reasoning from one or more
general statements (premises) to reach a logically certain
conclusion.

Example:

I Premise 1: every person in this room is a student.

I Premise 2: every student is older than 10 years.

I Conclusions: every person in this room is older than 10 years.

If the premises are correct, then all conclusions are correct
as well.

Nice in theory. Mathematics is based on this principle.
But no natural way to deal with uncertainty regarding the premises.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

Deduction vs. Induction (3)

Inductive inference: reasoning that constructs or evaluates
general propositions that are derived from specific examples.

Example:

I We drop lots of things, very often.

I In all our experiments, the things fall downwards, not upwards.

I So we conclude that likely, things always fall downwards when
we drop them.

Very important: we can never be sure, our conclusion can
be wrong!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

Deduction vs. Induction (4)

Humans do inductive reasoning all the time: we draw
uncertain conclusions from our relatively limited experiences.

Example:

I You come 10 minutes late to every lecture I give.

I The first 7 times I don’t complain.

I You conclude that I don’t care and it won’t have any
consequences.

I BUT you cannot be sure ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

Machine learning as inductive inference

Here comes now our second, more abstract description of what
machine learning is:

Machine learning tries to automate the process of inductive
inference.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

Why should machine learning work at all?

Consider the following simple regression example:

I Given: input-output pairs (Xi, Yi), Xi ∈ X , Yi ∈ Y .

I Goal: learn to predict the Y -values from the X-values, that is
we want to “learn” a suitable function f : X → Y .

EXAMPLE 1: WHAT DO YOU BELIEVE IS THE VALUE f(0.4)?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

Why should machine learning work at all? (2)

Here are two guesses:

WHICH ONE IS BETTER?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

Why should machine learning work at all? (3)

Now I tell you that, in fact, the function values Yi have been
generated by a uniform random number generator.

WHAT DO YOU PREDICT NOW AS THE OUTPUT TO THE
INPUT 0.4?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

Why should machine learning work at all? (4)

Consequence 1: we will only be able to learn if “there is
something we can learn”.

I Output Y “has something to do” with input X

I “Similar inputs” lead to “similar outputs”

I There is a “simple relationship” or “simple rule” to generate
the output for a given input

I The function f is “simple” (but caution, this is not the end of
the story, see later in the section on learning theory)

These assumptions are rarely made explicit, but something along
this line has to be satisfied, otherwise ML is doomed.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

Why should machine learning work at all? (5)

Consequence 2: We need to have an idea what we are
looking for. This is called the “inductive bias”. Learning is
impossible without such a bias.

Let’s try to get some intuition for what this means.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

Inductive bias: very simple example

Discrete input space X = {0.01, 0.02, ..., 1}.
Output space: Y = {0, 1}
Given: training examples (Xi, Yi)i=1,...,n ⊂ X × Y , assume there is
no label noise (all training labels are correct).
Goal: Learn a function f : X → Y based on the examples

Case 1: no inductive bias, every function f : X → Y can be
the correct one.

Formally:

I we want to find a function out of F := YX (the space of all
functions). This space contains 2100 functions.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

Inductive bias: very simple example (2)

I Now assume we have already 5 training points and their labels.

I This means that we can rule out all functions from F which do
not satisfy f(Xi) = Yi.
So we are left with 295 possible functions.

I Now we want to predict the value at a previously unseen point
X ′ ∈ X .

I There are 294 remaining functions with f(X ′) = 0 and the
same number of functions with f(X ′) = 1.
And there is no way we can decide which one is going
to be the best prediction.

I In fact, no matter how many data points we get, our
prediction on unseen points will be as bad as random guessing.

Without any further restrictions or assumptions, the
problem of machine learning would be ill posed!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

Inductive bias: very simple example (3)

A more formal way of stating this result is called the “No free lunch
theorem”. There is a section on this topic in the slides on learning
theory, you can read it if you want (we won’t discuss it in the
lecture though).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

Inductive bias: very simple example (4)

Case 2: model with an inductive bias.

I Assume we know that the true function is one out of two
functions: either the constant one function 1 or the constant
zero function 0.
Our hypothesis space is F = {0,1}.

I Again we assume that no noise exists.

I Then, after we have observed one training example, we know
exactly which function is the correct one and can make
predictions without any error.

If we have a (strong enough) inductive bias, we can predict
based on few training examples.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

Inductive bias: very simple example (5)

A bit too simplistic?

I Yes, the hypothesis F seems too restricted to be useful for
practice. The problem of selecting a good hypothesis class is
called model selection.

I And yes, we did not take noise into account (yet).

I And yes, we did not talk about what happens if the true
function is not contained in F after all.

The details of all this are quite tricky. It is the big success story
of machine learning theory to work out how exactly all these
things come together.

At the end of the course you will know all this, at least roughly ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

Overfitting, underfitting

Choosing a“reasonable function class F” is crucial.

Consider the following example:

I True function f : quadratic function

I Training points: Yi = f(Xi) + noise

I Red curve: F = all linear functions

I Blue curve: F = all polynomial functions

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

Overfitting, underfitting (2)

Overfitting:

I We can always find a function that explains all training points
very well or even exactly

I But such a function tends to be very complicated and models
the noise as well

I Predictions for unseen data points are poor (“large test error”)

I Low approximation error, high estimation error (; see later for
definitions)

Underfitting:

I Model is too simplistic

I But estimated functions are stable with respect to noise

I Large approximation error, low estimation error (; see later
for definitions)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

Excursion: Inductive bias in animal learning

Any “system” that learns has an inductive bias. Consider
learning in animals:

Rats get two choices of water. One choice makes them feel sick,
the other one doesn’t.

Experiment 1:

I Two types of water taste differently (neutral / sweet taste).

I Rats learn very fast not to drink the water that makes them
sick.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

Excursion: Inductive bias in animal learning (2)

Experiment 2:

I Same taste, but one type of water is presented together with
“audio-visual stimuli” (certain sounds and light conditions),
while the other type of water is presented without these
audio-visual stimuli.

I In this setting, rats did NOT learn to avoid the water that
makes them sick.

I Apparently, they cannot make a connection between “sound of
the food” and “sickness”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

Excursion: Inductive bias in animal learning (3)

Explanation:

I From the point of view of evolution, it makes a lot of sense
that the taste of food is related to whether it makes sick or
not, whereas this does not seem so useful for sounds coming
with food.

In our words: the rat has an inductive bias!

In psychology, this effect is called the “Garcia effect” (published in
a line of papers by John Garcia and co-workers in the 1960ies).

Reference: Garcia, John and Brett, Linda Phillips and Rusiniak, Kenneth W. Limits of
Darwinian conditioning. In S.B. Klein and R.R. Mowrer, editors, Contemporary learning
theories: instrumental conditioning theory and the impact of biological constraints, pages
181-204, 1989.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

Inductive bias, bottom line for now

Any successful learning algorithm has an inherent inductive
bias.

I We prefer to select a hypothesis from some “restricted” or
“small” function space F .

I Whether this function is “close to the truth” depends on
whether the model class F is “selected well” for the problem
at hand.

I Note: for some algorithms it is obvious what the inductive bias
is. For some algorithms it is hard to understand what exactly
the bias is. But if the algorithm works, there HAS TO
BE a bias. This is very important to keep in mind.

All these things will be made precise during the course of
this lecture.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

Warmup

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

The kNNalgorithm

Literature:
For the algorithm:
Hastie, Tibshirani, Friedman Section 2.3.2
Duda, Hart Section 4.5

For theory (not covered in this lecture): Devroye, Györfi, Lugosi: A
Probabilistic Theory of Pattern Recognition

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

A simple machine learning experiment

Data:

I Take a set of training points and labels (Xi, Yi)i=1,...,n. The
machine learning algorithm has access to this training input
and can use it to generate a classification rule f : X → {0, 1}.

I Take a set of test points (Xj, Yj)j=1,...,m. This set is
independent from the training set (“previously unseen points”)
and will be used to evaluate the success of the training
algorithm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

A simple machine learning experiment (2)

Assume our machine learning algorithm has used the training data
(Xi, Yi)i=1,...,n to construct a rule falg for predicting labels.

Training error:

I Predict the labels of all training points: Ŷi := falg(Xi).

I Compute the error (“loss”) of the classifier on each training
point:

`(Xi, Yi, Ŷi,) :=

{
0 if Ŷi = Yi

1 otherwise

This is called the “pointwise 0-1-loss”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

A simple machine learning experiment (3)

I Define the training error of the classifier (“risk of the
classifier”) as the average error over all training points:

Rtrain(falg) =
1

n

n∑
i=1

`(Xi, Yi, falg(Xi))

Later we will call this quantity the “empirical risk” of the classifier
(with respect to the 0-1-loss).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

A simple machine learning experiment (4)

Test error:

I Predict the labels of all test points: Ŷj := falg(Xj).

I Compute the error (loss) of the classifier on each test point:

`(Xj, Yj, Ŷj) :=

{
0 if Ŷj = Yj

1 otherwise

I Define the test error (risk) of the classifier as the average error
over all test points:

Rtest(falg) =
1

m

m∑
j=1

`(Xj, Yj, falg(Xj))

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

A simple machine learning experiment (5)

Technical remark:

I The quantity Rtest as defined above is an empirical quantity (it
depends on the test set). Later, we will define the true risk R
of the classifier, which is the expectation over this quanity.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

A simple machine learning experiment (6)

Remarks:

I Obviously, it is not so much of a challenge for an algorithm to
correctly predict the training labels (after all, the algorithm
gets to know these labels).

I Still, machine learning algorithms usually make training errors,
that is they construct a rule falg that does not perfectly fit the
training data.

I But the crucial measure of success is the performance of the
classifier on an independent test set.

I In particular, it is not the case that a low training error
automatically indicates a low test error or vice versa.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

The kNN classifier

Informally, the idea is this:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

The kNN classifier (2)

Given: Training points (Xi, Yi)i=1,...,n ⊂ X × {0, 1} and a
distance function d : X × X → R.
Goal: Construct a classifier f that predicts the labels from the
inputs.

I Given a test point X ′, compute all distances d(X ′, Xi) and
sort them in ascending order.

I Let Xi1 , ..., Xik be the first k points in this order (the k
nearest neighbors of X ′). We denote the set of these points by
kNN(X ′).

I Assign to Y ′ the majority label among the corresponding labels
Yi1 , ..., Yik , that is define

Y ′ =

{
0 if

∑k
j=1 Yij ≤ k/2

1 otherwise

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

Influence of the parameter k

The classification result will depend on the parameter k.

WHAT DO YOU THINK, IS IT BETTER TO HAVE k SMALL OR
LARGE?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

Influence of the parameter k (2)16 2. Overview of Supervised Learning

1-Nearest Neighbor Classifier

..

.

o
o

ooo

o

o

o

o

o

o

o

o

o
o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o o

oo

o
o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o ooo
o

o

o
oo o

o

o

o

o

o

o

o

oo
o

o
oo

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo
o

o
o oo

o

o

o

o

o

o

o

o

o

o

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mk at random with probability 1/10, and

2.3 Least Squares and Nearest Neighbors 15

15-Nearest Neighbor Classifier

.

..

.

o
o

ooo

o

o

o

o

o

o

o

o

o
o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o o

oo

o
o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o ooo
o

o

o
oo o

o

o

o

o

o

o

o

oo
o

o
oo

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo
o

o
o oo

o

o

o

o

o

o

o

o

o

o

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

Figure from Hastie/Tibshirani/Friedman:

I Yellow/blue circles: training points and their labels

I Yellow/blue little dots: if this were a test point, the kNN classifier would
classify the point as yellow/blue.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

Influence of the parameter k (3)

Generally:

I k too small ; overfitting
(Extreme case: k = 1, very wiggly and prone to noise, zero
training error)

I k too large ; underfitting
(Extreme case: k = n, then every point gets the same label,
namely the overall majority label)

I Theoretical analysis can reveal: k should be roughly of order
log n as n→∞ (we won’t prove it in this course, if you are
interested you might want to consider the book by Devroye et
al., see literature list).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

Application: simple mixture of Gaussians

Recap:

I Normal distribution in 1 dimension

I Multivariate normal distribution

I Mixture of Gaussians

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

Application: simple mixture of Gaussians (2)

We draw 100 points randomly from a mixture of two Gaussian
distributions. The figure shows a typical training set:

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

Application: simple mixture of Gaussians (3)

Conduct the following experiment:

1 for rep = 1, ...10
2 Draw n training points (Xi, Yi)i=1,...,n

3 Draw m test points (X ′i, Y
′
i)i=1,...,m

4 for k = k1, ..., ks
5 Predict the labels of all training points, using the k nearest

training points
6 ErrTrain(k,rep) = the training error, averaged over all

training points
7 Predict the labels of all test points, using the k nearest

training (!) points
8 ErrTest(k,rep) = the test error, averaged over all test

points
9 return For each k, return the average train and test error

(where the average is taken over the repetitions)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

Application: simple mixture of Gaussians (4)

... see matlab demo: demo_knn_classifier()

(play with size of training set, and with separation of classes)

The following figure shows the results:

I Left figures: errors in each individual repetition

I Right figure: errors averaged over all repetitions

demo_knn_classifier()

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

Application: simple mixture of Gaussians (5)

2 4 6 8 10 12

k

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Train errors (blue), test errors(red) for 10 repetitions

mixture of gaussians, 500 train and 100 test points

2 4 6 8 10 12

k

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12
average train and test errors

average train error (pt included)

average train error (pt not included)

average test err

(x-Axis: parameter k, y-axis: error)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

Application: simple mixture of Gaussians (6)

Note:

I For the kNNclassifier, the training error and test error are
about the same (it does not really “train” in the sense that it
selects a function that is particularly good on the training
data).

I Depending on whether a point is considered to be part of its
own kNN neighborhood or not, the train error differs a bit.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

Application: hand written digits

Data:

Represented as 16× 16 greyscale image. That is, each digit
corresponds to a vector of length 256 with entries in [0, 1].

Task 1: Learn to distinguish between 1 and 8
Task 2: Learn to distinguish between 3 and 8

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

Application: hand written digits (2)

Setup:

I To apply the kNN rule we need to define a distance function
between digits.

I For simplicity, we use the Euclidean distance between the
vectors:
for X = (X1, ..., X256)t and X ′ = (X ′1, ..., X

′
256)t we set

d(X,X ′) =

(
256∑
s=1

(Xs −X ′s)2

)1/2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

Application: hand written digits (3)

Results task 1 (digit 1 vs digit 8):

2 4 6 8 10 12

k

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Train errors (blue), test errors(red) for 10 repetitions

Digits 1 vs 8, 500 train and 100 test points

2 4 6 8 10 12

k

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
average train and test errors

average train error (pt included)

average train error (pt not included)

average test err

(x-Axis: parameter k, y-axis: error)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

Application: hand written digits (4)

WHAT DO YOU THINK, IS THIS GOOD OR BAD?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

Application: hand written digits (5)

Results task 2 (digit 3 vs digit 8):

2 4 6 8 10 12

k

0

0.02

0.04

0.06

0.08

0.1

0.12
Train errors (blue), test errors(red) for 10 repetitions

Digits 3 vs 8, 500 train and 100 test points

2 4 6 8 10 12

k

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
average train and test errors

average train error (pt included)

average train error (pt not included)

average test err

These results are surprisingly good!!!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

Influence of the similarity function

The choice of the similarity function is crucial as well:

I The performance of kNNrules can only be good if the distance
function encodes the “relevant information”.

Example: you want to classify mushrooms as “edible” or “not
edible” and as distance function between mushrooms you use
the difference in weight ...

I In many applications it is not so obvious how to define a good
distance or similarity function
Example: you want to classify the genre of songs. How do you
compute a similarity between different songs???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

Inductive bias

WHAT DO YOU THINK IS THE INDUCTIVE BIAS IN THIS
ALGORITHM? WHAT KIND OF FUNCTIONS ARE
“PREFERRED” OR “LEARNED”?

Input points that are close to each other should have the
same label

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

Inductive bias

WHAT DO YOU THINK IS THE INDUCTIVE BIAS IN THIS
ALGORITHM? WHAT KIND OF FUNCTIONS ARE
“PREFERRED” OR “LEARNED”?

Input points that are close to each other should have the
same label

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

Extensions

I The kNN rule can easily used for regression as well: As output
value take the average over the labels in the neighborhood.

I kNN-based algorithms can also be used for many other tasks
such as density estimation, outlier detection, clustering, etc.
We will see more example during the semester.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

Summary

In practice:

I The kNN classifier is about the simplest classifier that exists.

I But often it performs quite reasonably.

I Whatever your specific machine learning task is, you should
always consider the kNN classifier as a baseline.

In theory:

I One can prove that in the limit of infinitely many data points,
the kNN classifier is “consistent”, that is it learns the best
possible function (see next lecture).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

Formal setup

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

Standard setup for supervised learning

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

Let’s become more formal now

We now want to introduce the formal setup for supervised
statistical learning.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

The underlying space

I Input space X , output space Y
I Sometimes, the spaces X or Y have some mathematical

structure (topology, metric, vector space, etc), or we try to
construct such a structure.

I We assume that each space endowed with a σ-algebra, to be
able to define a probability measure on the space. We ignore
this issue in the following (for real world machine learning this
is not an issue).

I Probability distribution P on the product space X × Y
(with product sigma algebra)
I no assumption on the form of the probability distribution
I both input varibles and output variables (!) are random

quantities

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

A classifier / prediction function

A classifier or a prediction function is simply a function f : X → Y .

We now need to be able to measure how “good” a classifier /
prediction function is.

Depends on the problem we want to solve, e.g.

I If Y discrete: classification

I If Y = R: regression

I Other output spaces are possible as well, for example
”structured prediction”

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

Loss function

The loss function measures how “expensive” an error is:

A loss function is a function ` : X × Y × Y → R≥0.
Example:

I The 0-1-loss function for classification is defined as

`(x, y, y′) =

{
0 if y = y′

1 otherwise

I The squared loss for regression is defined as

`(x, y, y′) = (y − y′)2

Note: the choice of a loss function influences the inductive bias.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

Loss function (2)

Note:

I In some applications, it is important that the loss also depends
on x.

CAN YOU COME UP WITH AN EXAMPLE?

I In some applications, it is important that the loss depends on
the order of y and y′ (the type of error)

CAN YOU COME UP WITH AN EXAMPLE?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

True Risk

The true risk (or true expected loss) of a prediction function
f : X → Y (with respect to loss function `) is defined as

R(f) := E
(
`(X, Y, f(X)))

where the expectation is over the random draw of (X, Y) according
to the probability distribution P on X × Y .

The goal of machine learning is to use the training data to
construct a function fn whose true risk is as small as possible.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

Bayes risk and Bayes classifier

What is the best function we can think of?

I The Bayes risk is defined as

R∗ := inf{R(f)
∣∣ f : X → Y , f measurable }

(we won’t discuss measurability, if you’ve never heard of it
then simply assume that f can be any function you want).

I In case the infimum is attained, the corresponding function

f ∗ := argminR(f)

is called the Bayes classifier / Bayes predictor.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

The training data and learning

Assume we are given supervised training data:

I We draw n training points (Xi, Yi)i=1,...,n ∈ X × Y
i.i.d. (independent and identically distributed) according to
probability distribution P .

Note: “i.i.d.” is a strong assumption!!! Can you come up with a
situation where this might not be satisifed?

The goal of learning is to construct a function fn that has
true risk close to the Bayes risk, that is R(fn) ≈ R∗.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

Consistency of a learning algorithm

Consider an infinite sequence of data points (Xi, Yi)i∈N that have
been drawn i.i.d. from distribution P over X × Y . Denote by fn
the learning rule that has been constructed by an algorithm A
based on the first n training points.

I We say that the algorithm A is consistent (for probability
distribution P) if the risk R(fn) of its selected function fn
converges to the Bayes risk, that is

∀ε > 0 : lim
n→∞

P (R(fn)−R∗ > ε) = 0.

(Note: Here convergence is “in probability”, for those who
know what that means; if we have convergence almost surely,
the algorithm is called strongly consistent. If you don’t know
these notions, don’t worry)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

Consistency of a learning algorithm (2)

I We say that algorithm A is universally consistent if it is
consistent for all possible probability distributions P over
X × Y .

Ultimately, what we want to find learning algorithms that
are universally consistent: No matter what the underlying
probability distribution is, when we have seen “enough data
points”, then the true risk of our learning rule fn will be arbitrarily
close to the best possible risk.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

Consistency of a learning algorithm (3)

For quite some time it was unknown whether universally consistent
algorithms exist at all. The first positive answer was in 1977 when
Stone proved that the kNN classifier is universally consistent.

Since then many algorithms have been found to be universally
consistent, among them support vector machines, boosting, random
forests, and many more.

Understanding the underlying principles behind these algorithms is
the focus of this course, and in the learning theory part we will take
a glimpse on how to get consistency statements.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

Statistical and Bayesian decision theory

Literature:

I Hastie, Section 2.4 - 2.9 (parts only)

I Devroye, Section 2

I Duda/Hart, Section 2 (only parts of it, very technical)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

What if we know all the underlying quantities?

Before we dive into machine learning principles, let’s consider how
we would solve classification if we had perfect knowledge of the
probability distribution P .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

Running example: Male or female?

Predict gender of a person from body height:

HOW WOULD YOU PROCEED? ???

140 160 180 200

0.01

0.02

0.03

marginal P(X)

140 160 180 200

0.01

0.02

0.03

Class conditionals P(X | Y)

female
male

female male0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ilit

y

priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m if Y=f) l(f if Y=m)0

0.2

0.4

0.6

0.8

lo
ss

loss weights

140 160 180 200

0.1

0.2

0.3

0.4

pointwise loss
 P(Y=m | X=x) * l(f if true m)

predict f
predict m

140 160 180 200
0.1

0.15

0.2

0.25

0.3

position of decision threshold

overall risk at given threshold
GIVEN THIS INFORMATION, HOW WOULD YOU LABEL THE
INPUT X = 160?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

Running example: Male or female?

Predict gender of a person from body height:

HOW WOULD YOU PROCEED? ???

140 160 180 200

0.01

0.02

0.03

marginal P(X)

140 160 180 200

0.01

0.02

0.03

Class conditionals P(X | Y)

female
male

female male0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ilit

y

priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m if Y=f) l(f if Y=m)0

0.2

0.4

0.6

0.8
lo

ss
loss weights

140 160 180 200

0.1

0.2

0.3

0.4

pointwise loss
 P(Y=m | X=x) * l(f if true m)

predict f
predict m

140 160 180 200
0.1

0.15

0.2

0.25

0.3

position of decision threshold

overall risk at given threshold
GIVEN THIS INFORMATION, HOW WOULD YOU LABEL THE
INPUT X = 160?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

Approach 1: just look at priors (a bit stupid)

Decide based on class prior probabilities P (Y).

I If you don’t have any clue what to do, you could simply use
the following rule:
You always predict the label of the “larger class”, that is

fn(X) =

{
m if P (Y = m) > P (Y = f)

f otherwise

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

Approach 1: just look at priors (a bit stupid) (2)

Visually: select the higher bar

140 160 180 200

0.01

0.02

0.03

marginal P(X)

140 160 180 200

0.01

0.02

0.03

Class conditionals P(X | Y)

female
male

female male0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ilit

y

priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m if Y=f) l(f if Y=m)0

0.2

0.4

0.6

0.8

lo
ss

loss weights

140 160 180 200

0.1

0.2

0.3

0.4

pointwise loss
 P(Y=m | X=x) * l(f if true m)

predict f
predict m

140 160 180 200
0.1

0.15

0.2

0.25

0.3

position of decision threshold

overall risk at given threshold

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

Approach 2: maximum likelihood principle

Decide based on the likelihood functions P (X|Y) (maximum
likelihood approach).

I Consider the class conditional distributions P (X|Y=m) and
P (X|Y = f).

140 160 180 200

0.01

0.02

0.03

marginal P(X)

140 160 180 200

0.01

0.02

0.03

Class conditionals P(X | Y)

female
male

female male0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ilit

y

priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m if Y=f) l(f if Y=m)0

0.2

0.4

0.6

0.8
lo

ss
loss weights

140 160 180 200

0.1

0.2

0.3

0.4

pointwise loss
 P(Y=m | X=x) * l(f if true m)

predict f
predict m

140 160 180 200
0.1

0.15

0.2

0.25

0.3

position of decision threshold

overall risk at given threshold

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

Approach 2: maximum likelihood principle (2)

I Then predict the label with the higher likelihood:

fn(x) =

{
m if P (X = x|Y = m) > P (X = x|Y = f)

f otherwise

Visually: select according to which curve is higher

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

Approach 3: Bayesian a posteriori criterion

Decide based on the posterior distributions P (Y |X) (“Bayesian
maximum a posteriori approach”):

I Compute the posterior probabilities

P (Y = m|X = x) =
P (X = x|Y = m) · P (Y = m)

P (X = x)

I Predict by the following rule:

fn(x) =

{
m if P (Y = m|X = x) > P (Y = f |X = x)

f otherwise

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

Approach 3: Bayesian a posteriori criterion (2)

Visually: select according to which curve is higher

140 160 180 200

0.01

0.02

0.03

marginal P(X)

140 160 180 200

0.01

0.02

0.03

Class conditionals P(X | Y)

female
male

female male0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ilit

y

priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m if Y=f) l(f if Y=m)0

0.2

0.4

0.6

0.8

lo
ss

loss weights

140 160 180 200

0.1

0.2

0.3

0.4

pointwise loss
 P(Y=m | X=x) * l(f if true m)

predict f
predict m

140 160 180 200
0.1

0.15

0.2

0.25

0.3

position of decision threshold

overall risk at given threshold

(figure is for uniform prior)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

Approach: also take costs of errors into account

Take the “costs” of errors into account:

I Define a loss function `(x, y, ŷ) that tells you how much loss
you incur by classifying the label of x as ŷ if the true label is y.

I The risk R(ŷ|X = x) := E(`(x, Y, ŷ)) is the expected loss we
incur at point x when predicting ŷ (where the expectation is
over the randomness in the sample, in this case only the
randomness concerning the true label Y of x).

I Consider the expected conditional risk at point x

R(ŷ|X = x) = `(x,m, ŷ)P (Y = m
∣∣ X = x)

+ `(x, f, ŷ)P (Y = f
∣∣ X = x)

I Use Bayes decision rule: Select the label fn(X) for which the
conditional risk is minimal.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

Example: male vs female

Run demo_bayesian_decision_theory.m

demo_bayesian_decision_theory.m

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

Example: male vs female (2)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

marginal P(X)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Class conditionals P(X | Y)

female
male

female male

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m,true=f) l(f,true=m)
0

0.5

1

1.5

2
loss weights

140 160 180 200

0.2

0.4

0.6

0.8

pointwise risk
 R(prediction | X =x)

prediction=f
prediction=m

position of decision threshold
140 160 180 200

0.2

0.25

0.3

0.35

0.4

0.45

0.5

overall risk at given threshold

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

Example: male vs female (3)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035
marginal P(X)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Class conditionals P(X | Y)

female
male

female male

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m,true=f) l(f,true=m)
0

0.5

1

1.5

2
loss weights

140 160 180 200

0.2

0.4

0.6

0.8

pointwise risk
 R(prediction | X =x)

prediction=f
prediction=m

position of decision threshold
140 160 180 200

0.2

0.3

0.4

0.5

0.6

overall risk at given threshold

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

Example: male vs female (4)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

marginal P(X)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Class conditionals P(X | Y)

female
male

female male

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m,true=f) l(f,true=m)
0

0.5

1

1.5

2
loss weights

140 160 180 200

0.5

1

1.5

pointwise risk
 R(prediction | X =x)

prediction=f
prediction=m

position of decision threshold
140 160 180 200

0.2

0.4

0.6

0.8

1

overall risk at given threshold

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0

Example: male vs female (5)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035
marginal P(X)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Class conditionals P(X | Y)

female
male

female male

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m,true=f) l(f,true=m)
0

0.5

1

1.5

2
loss weights

140 160 180 200

0.5

1

1.5

pointwise risk
 R(prediction | X =x)

prediction=f
prediction=m

position of decision threshold
140 160 180 200

0.2

0.4

0.6

0.8

1

1.2

overall risk at given threshold

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1

Example: male vs female (6)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035
marginal P(X)

140 160 180 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Class conditionals P(X | Y)

female
male

female male

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
priors P(Y)

140 160 180 200

0.2

0.4

0.6

0.8

posteriors P(Y|X)

l(m,true=f) l(f,true=m)
0

0.5

1

1.5

2
loss weights

140 160 180 200

0.5

1

1.5

pointwise risk
 R(prediction | X =x)

prediction=f
prediction=m

position of decision threshold
140 160 180 200

0.2

0.3

0.4

0.5

0.6
overall risk at given threshold

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2

Optimal prediction functions in closed form

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3

... for classification under 0-1 loss

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4

Regression function (context of classification)

Consider (X, Y) drawn according to a probability distribution P on
the product space X × {0, 1}. We want to describe the distribution
P in terms of two other quantities:

I Let µ be the marginal distribution of X, that is
µ(A) = P (X ∈ A).

I Define the so-called regression (!)-function:

η(x) := E(Y
∣∣ X = x)

I In the special case of classification, the regression function can
be rewritten as

η(x) = 0 · P (Y = 0
∣∣ X = x) + 1 · P (Y = 1

∣∣ X = x)

= P (Y = 1
∣∣ X = x)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5

Regression function (context of classification) (2)

Intuition:

I If η(x) is close to 0 or close to 1, then classifying x is easy.

I If η(x) is close to 0.5, then classifying x is difficult.

WHY?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6

Regression function (context of classification) (3)

Proposition 1 (Unique decomposition)

The probability distribution P is uniquely determined by µ and η.

Intuition (discrete case): We can rewrite

P (X = x, Y = 1) = P (Y = 1|X = x)P (X = x)

= η(x)µ(x)

and similarly

P (X = x, Y = 0) = P (Y = 0|X = x)P (X = x)

= (1− η(x))µ(x)

So we can express the probability of any event (x, y) in terms of
η and µ.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7

Regression function (context of classification) (4)

Formal proof for the general case:
... see the book of Devroye, Györfi, Lugosi, first pages.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8

Explicit form of the Bayes classifier

Consider the 0-1-loss function. Recall:

I the risk of a classifier under the 0-1-loss counts “how often”
the classifier fails, that is

R(f) = E(`(X, Y, f(X))) = E(1f(X)6=Y) = P (f(X) 6= Y).

I The Bayes classifier f ∗ was defined as the classifier that
minimizes the true risk. This is an implicit definition, we don’t
yet have a formula for it.

Now consider the following classifier:

f ◦(x) :=

{
1 if η(x) ≥ 1/2

0 otherwise

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9

Explicit form of the Bayes classifier (2)

Theorem 2 (f ◦ is the Bayes classifier)

Consider classification with 0-1-loss. Let f : X → {0, 1} be any
(measurable) classifier and f ◦ the classifier defined above. Then
R(f) ≥ R(f o).

Before we prove it, digest what this means:

I The theorem shows that f ◦ = f ∗ (WHY?)

I Consequence: in the particular case of classification with the
0-1-loss, we have an explicit formula for the Bayes classifier.

I In practice, this doesn’t help, WHY?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0

Explicit form of the Bayes classifier (3)

Proof of Theorem 2:
Step 1: Consider any fixed classifier f : X → {0, 1} and compute
its error probability at some fixed point x:

P (f(x) 6= Y
∣∣ X = x)

= 1− P (f(x) = Y |X = x)

= 1− P (f(x) = 1, Y = 1
∣∣ X = x)− P (f(x) = 0, Y = 0

∣∣ X = x)

(∗)
= 1− 1f(x)=1P (Y = 1|X = x)− 1f(x)=0P (Y = 0|X = x)

= 1− 1f(x)=1η(x)− 1f(x)=0(1− η(x))

For step (∗), observe that f(x) is a deterministic function.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1

Explicit form of the Bayes classifier (4)

Step 2: Now compare the pointwise error of any particular
classifier f to the one of f ◦:

P (f(X) 6=Y
∣∣ X = x)− P (f ◦(X) 6= Y

∣∣ X = x)

= ... plug in the formula from last page and simplify ...

= (2η(x)− 1)(1f◦(x)=1 − 1f(x)=1)

(∗∗)
≥ 0

To see the last step (∗∗):

I if f ◦(x) = 1, then η(x) ≥ 0.5, so both terms ≥ 0.

I if f ◦(x) = 0, then η(x) ≤ 0.5, so both terms ≤ 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2

Explicit form of the Bayes classifier (5)

Step 3: We have seen that for all fixed values x, the probability of
error satisfies

P (f(X) 6=Y
∣∣ X = x) ≥ P (f ◦(X) 6= Y

∣∣ X = x)

Because this holds for any individual value of x, it also holds in
expectation over all x. This implies

R(f) ≥ R(f ◦).

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3

Explicit form of the Bayes classifier (6)

Remarks:

I If we work with 0-1-loss and if we know the underlying
probability distribution and hence the regression function, then
we don’t need to “learn”, we can simply write down what the
optimal classifier is.

I For many other loss functions one can also explicitly compute
the optimal classifier. We will see one more example in a
minute: regression with squared loss.

I Problem in practice: we don’t know the regression function.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4

Plug-in classifier

Simple idea: If we don’t know the underlying distribution, but are
given some training data, simply estimate the regression function
η(x) by some quantity ηn(x) and build the plugin-classifier

fn :=

{
1 if ηn(x) ≥ 0.5

0 otherwise

I In theory: It can be shown that the plugin-approach is
universally consistent. That is, in the limit of infinitely many
training points, the classifier is going to converge to the best
one out there. ,

I In practice: Estimating densities is notoriously hard, in
particular for high-dimensional input spaces. We would need a
ridiculous amount of training data. So unfortunately, the
plugin-approach is useless for practice. /

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5

... for regression under L2 loss

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6

Loss functions for regression

While in classification, there is a “natural loss function” (the
0-1-loss), there exist many loss functions for regression and it is not
so obvious which one is the most useful one.

In the following, let’s look at the classic case, the squared loss
function:

Squared loss (L2-loss): `(x, y, f(x)) = (f(x)− y)2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7

Regression function (for L2 regression)

As in the classification setting, we define the regression function:

η(x) = E(Y
∣∣ X = x)

We now want to show an explicit formula for the Bayes learner as
well. As in the classification case, we fix a particular loss function,
this time it is the squared loss.

We need one more intermediate result:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8

Regression function (for L2 regression) (2)

Proposition 3 (Decomposition)

We always have

E
(
|f(X)− Y |2

)
= E

(
|f(X)− η(X)|2

)
+ E

(
|η(X)− Y |2

)
.

Note: Getting a related inequality with ≤ is trivial (by the triangle
inequality), but the equality in this statement is not trivial.

Proof: just few lines, but needs advanced treatment of
conditional expectations, see also Gyorfi, Kohler, Krzyzak, Walk:
Distribution-free theory for noparametric regression, p.2. If you
don’t have the corresponding maths background, just ignore it.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9

Regression function (for L2 regression) (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0

Regression function (for L2 regression) (4)

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1

Explicit form of optimal solution under L2 loss

Define the following learning rule that predicts the real-valued
output based on the regression function η:

f ◦ : X → R, f ◦(x) := η(x)

Theorem 4 (Explicit form of optimal L2-solution)

The function f ◦ minimizes the L2-risk.

Proof. Follows directly from Proposition 3:

I Second expectation on the rhs does not depend on f .

I First expectation is always ≥ 0, and it is = 0 for
f(X) = η(X).

I So the whole right hand side is minimized by f(X) = η(X).

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2

Basic learning principles: ERM, RRM

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3

Two major principles

I Assume we operate in the standard setup, and are given a set
of training points (Xi, Yi).

I Based on these points we want to “learn” a function
f : X → Y that has as small true loss as possible.

There are two major approaches to supervised learning:

I Empirical risk minimization (ERM)

I Regularized risk minimization (RRM)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4

Empirical risk minimization

As we don’t know P we cannot compute the true risk. But we can
compute the empirical risk based on a sample (Xi, Yi)i=1,...,n

Rn(f) :=
1

n

n∑
i=1

`(Xi, Yi, f(Xi))

The key point is that the empirical risk can be computed based on
the training points only.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5

Empirical risk minimization (2)

Empirical risk minimization approach:

I Define a set F of functions from X → Y .

I Within these functions, choose one that has the smallest
empirical risk:

fn := argmin
f∈F

Rn(f)

(might not be unique; for simplicity, let’s assume the minimizer
exists)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6

Estimation vs approximation error

With this approach, we can make two types of error:

I Denote by f̃ the true best function in the set F , that is
f̃ = argminf∈F R(f).

I The quantity R(fn)−R(f̃) is called the estimation error. It is
a random variable that depends on the random sample.

I The quantity R(f̃)−R(f ∗) is called the approximation error.
It is a deterministic quantity that does not depend on the
sample, but on the choice of the space F .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7

Estimation vs approximation error (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8

Estimation vs approximation error (3)

In the following sketch, one curve shows the approximation error,
one the estimation error.

I WHICH ONE IS WHICH?

I HOW WOULD THE CURVE OF THE TRUE RISK OF THE
CLASSIFIER LOOK LIKE?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9

Overfitting vs Underfitting

Coming back to the terms underfitting and overfitting:

I Underfitting happens if F is too small. In this case we have a
small estimation error but a large approximation error.

I Overfitting happens if F is too large. Then we have a high
estimation error but a small approximation error.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0

Bias-Variance tradeoff in L2-regression

Sometimes another decomposition of the errors is used. Can be
seen most easily for the case of regression with L2 loss:
Let fn be the function constructed by an algorithm on n points, and
f ∗ : Rd → R the true best function (the regression function). Then
we can decompose the pointwise expected L2 risk in two terms:

E(|fn(x)− f ∗(x)|2)

= E
((

fn(x)− E(fn(x))
)2
)

︸ ︷︷ ︸
Variance term

+
(
E(fn(x))− f ∗(x)

)2

︸ ︷︷ ︸
Bias term

I Variance term = the variance of the random variable fn(x).

I Bias term: measures how much E(fn) and f ∗ deviate.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1

Bias-Variance tradeoff in L2-regression (2)

Note: we always have ≤ (for any loss function), but for the L2-loss
we get equality (as we have seen in Proposition 3).

Proof. skipped (see Gyorfi, Kohler, Krzyzak, Walk: Distribution-free theory

for noparametric regression, p.24)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2

Bias-Variance tradeoff in L2-regression (3)

Intuition:

I Variance term: same intuition as estimation error, depends on
random data and the capacity of the function class F .

I The bias term: same intuition as the approximation error.
Does not depend on the data, just on the capacity of the
function class F .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3

Bias-Variance tradeoff in L2-regression (4)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4

ERM, remarks

I From a conceptual/theoretical side, ERM is a straight forward
learning principle.

I The key to the success / failure of ERM is to choose a “good”
function class F

I From the computational side, it is not always easy (depending
on function class and loss function, the problem can be quite
challenging: finding the minimizer of the 0-1-loss is often NP
hard.) This is why in practice we use convex relaxations of the
0-1-loss function, see later.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5

Regularized risk minimization

Crucial problem in ERM: choose F

Alternative approach:

I Let F be a very large space of functions.

I Define a regularizer Ω : F → R≥0 that measures how
“complex” a function is. Examples:
I F = polynomials, Ω(f) = degree of the polynomial f
I F = differentiable functions, Ω(f) = maximal slope

I Define the regularized risk

Rreg,n(f) := Rn(f) + λ · Ω(f)

Here λ > 0 is called regularization constant.

I Then choose f ∈ F to minimize the regularized risk.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6

Regularized risk minimization (2)

Intuition:

I If we can fit the data reasonably well with a “simple function”,
then choose such a simple function.

I If all simple functions lead to a very high empirical risk, then
better choose a more complex function.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

7

Regularized risk minimization (3)

WHAT HAPPENS IF λ IS VERY SMALL? VERY LARGE? Relation
to overfitting / underfitting, approximation / estimation error,
relationship to ERM?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

8

Linear methods for
supervised learning

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

9

Linear methods for regression

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

0

Linear least squares regression

Literature:

I Hastie/Tibshirani/Friedman Section 3

I Bishop Sec 3

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

1

Linear setup

I Assume we have training data (Xi, Yi) with Xi ∈ X := Rd and
Yi ∈ Y := R.

I We want to find the “best” linear function, that is a function
of the form

f(x) =
d∑
i=1

wix
(i) + b

where x = (x(1), ..., x(d))t ∈ Rd.

The wi are called “weights” and b the “offset” or “intercept”
or “threshold”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

2

Linear setup (2)

As loss function, we want to use the squared loss (L2 loss).

Formally, the linear least squares problem is the following:

(#) Find parameters w1, ..., wd ∈ R and b ∈ R such that the
empirical least squares error of the linear function f (as defined on
the last slide) is minimal:

1

n

n∑
i=1

(
Yi − f(Xi)

)2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

3

Example

Want to predict the shoe size of a person, based on many input
values:

I For each person X, we have a couple of real-valued
measurements: X(1) = height, X(2) = weight, X(3) = income,
X(4) =age.
(Note: some measurements are useful for the question, some
might not be useful)

I In this example, we might find that the following function is
good for predicting the shoe size:

shoesize =
2

10
height+ 0 · weight+ 0 · income+ 0 · age+ 1

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

4

Concise notation

I To write everything in a more concise form, we stack the
training inputs into a big matrix (each point is one row) and
the output in a big vector:

I Notation: the i-th training point consists of the vector
Xi ∈ Rd, its entries are denoted as Xi1, ..., Xid.

I Now we can write:

f(Xi) = 〈Xi, w〉+ b = (Xw)i + b

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

5

Concise notation (2)

I Formally, the linear least squares problem is the following:

(##) Determine w ∈ Rd and b ∈ R as to minimize the
empirical least squares error

1

n

n∑
i=1

(
Yi − ((Xw)i + b)

)2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

6

Getting rid of b

We want to write the problem even more concisely.

I Define the matrices

I Then we have

(X̃w̃)i =
d+1∑
k=1

X̃ikw̃k =
d∑

k=1

Xikwk + b = (Xw)i + b

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

7

Getting rid of b (2)

I Hence, there is a unique correspondence between the original
problem and the following new problem:

(###) determine w̃ ∈ Rd+1 as to minimize the empirical least
squares error

1

n

n∑
i=1

(
Yi − (X̃w̃)i

)2

=
1

n
‖Y − X̃w̃‖2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

8

Getting rid of b (3)

Without loss of generality, from now on we consider the simplified
problem that does not involve the intercept b. We also remove the
twiddles on the letters X̃ and w̃ to make notation simpler. We still
call the resulting problem (###).

(###) Determine w ∈ Rd as to minimize the empirical least
squares error

1

n

n∑
i=1

(
Yi − (Xw)i

)2

=
1

n
‖Y −Xw‖2

In the following, we sometimes consider different factors in front of
the norm (for example, we might drop the 1/n, and include a factor
1/2 for mathematical convenience). It doesn’t change the solution,
but the formulas then look nicer.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
4

9

ML ; Optimization problem

We can see:

I In order to solve (###), we need to solve an optimization
problem

I In this particular case, we will see in a minute that we can
solve it analytically.

I For most other ML algorithms, we need to use optimization
algorithms to achieve this.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

0

Least squares regression is convex

Recap:

I Convex optimization problem (maths appendix, page 1321)

Proposition 5 (Least squares is convex)

The least squares optimization problem (###) is a convex
optimization problem.

Proof. Exercise

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

1

Solution, case of full rank

Recap:

I Inverse of a matrix

I Rank of a matrix

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

2

Solution, case of full rank (2)

Theorem 6 (Solution, case rank(X) = d)

Assume that X has rank d. Then the solution w of linear least
squares regression (###) is given by w = (X tX)−1X tY .

Proof intuition.

I Want to find the minimum of the function ‖Y −Xw‖2

I Take the derivative and set it to 0.

I Then we have to check that what we get is indeed a minimum
(in a 1-dimensional situation we would look at the second
derivative for this).

I The minimum then has to be a global minimum because the
objective function is convex.

We can either do all this by foot, coordinate-wise. Or we do it more
elegantly as follows:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

3

Solution, case of full rank (3)

Proof, formally. We write all equations in matrix form:

I Objective function: Obj : Rd → R, Obj(w) := 1
2
‖Y −Xw‖2

I Derivative: the gradient is a vector in Rd consisting of all
partial derivatives, it is given as
grad(Obj)(w) = −X t(Y −Xw).
(To see this, either use matrix derivatives or compute all the
partial derivatives by foot, see slide below.)

I Setting the gradient to zero gives the necessary condition:
X tY = (X tX)w. Ideally, we would like to solve this for w.

I We always have rank(X) = rank(X tX) = rank(XX t). In
particular, under the assumption that X has rank d, the matrix
X tX is of full rank, hence invertible.

I So we can solve for w by w = (X tX)−1X tY .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

4

Solution, case of full rank (4)

I Now we need to figure out whether this is indeed a minimum.
To this end, consider the Hessian matrix that contains all
second derivatives: H(Obj) = ∂2Obj

∂w ∂w′ = X tX.

I This matrix is positive semi-definite: obviously all eigenvalues
≥ 0,
(WHY ???)
and because of the rank condition we have > 0. So the
solution we computed above is indeed a local minimum.

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

5

Solution, case of full rank (5)

Side remark, here is the “derivative by foot”: To see that
the gradient is indeed given by the expression on the previous slide,
we again compute it, this time coordinate-wise:

I Objective function, written explicitly : Obj : Rd → R,

Obj(w) = 1
2
‖Y −Xw‖2 = 1

2

∑n
i=1

(
Yi −

∑
k wkX

(k)
i

)2

.

I Take partial derivatives, for each wk separately (attention, the
variables of this function are the wk, not the Xi)
∂ Obj(w)
∂wk

=
∑n

i=1

(
Yi −

∑
k wkX

(k)
i

)2(
−X(k)

i

)
I Now finally note that the right hand side agrees with the k-th

coordinate of the vector X t(Y −Xw).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

6

Solution, general case

Recap:

I Generalized inverse of a matrix (see maths appendix page
1303)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

7

Solution, general case (2)

Theorem 7 (Solution, case rank(X) < d)

Assume that X has rank < d.

1. Then a solution w of linear least squares regression (###) is
given by w = (X tX)+X tY , where X+ denotes the generalized
inverse of the matrix X.

2. This solution is not unique. But even if w1, w2 are two
different solutions, then their predictions agree on the training
data, that is 〈w1, Xi〉 = 〈w2, Xi〉 for all i = 1, ..., n.

Proof (sketch).

I As above we get the necessary condition X tY = (X tX)w.

I One can check that one particular vector w that satisfies this
condition is given as w = (X tX)+X tY (EXERCISE!)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

8

Solution, general case (3)

I So w = (X tX)+X tY is one solution to the problem, which
proves part 1 of the theorem.

I However, w is not unique:
I Let w be a solution and v any vector with Xv = 0 (exists

because X has rank < d).
I Then w + v is a solution as well (EXERCISE: CHECK IT BY

PLUGGING IT IN THE NECESSARY CONDITION).
I So our problem has many solution vectors. Note that all of

them lead to the same objective value.

I Moreover observe: all solutions give the same results on the
training points:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
5

9

Solution, general case (4)

I Let w1 be a solution, and w2 = w1 + v a solution as well.
Then the vector of all predictions on the training points looks
as follows:

Xw2︸︷︷︸
predictions by w2

= X(w1 + v) = Xw1 +Xv = Xw1︸︷︷︸
predictions by w1

So all solutions to the problem predict the same values on the
training points.

I But on the test points, the solutions will disagree. The
question is then which one to prefer. One idea here is to use
regularization, see below.

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

0

Relationship between n and d

n = number of points, d = dimension of the space.

WHAT DO YOU THINK IS EASIER IN A MACHINE LEARNING
CONTEXT?

I n high, d low

I d high, n low

I n ≈ d

??????????

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

1

Relationship between n and d (2)

Formally:

I the linear system we solve for least squares regression is
X tY = (X tX)w. It has d equations and d unknowns
(independently of the value of n).

I So either there exists a unique solution (case rank(X tX) = d)
or many solutions (case rank < d).

I Note that the system always has a solution, no matter how
large n is.

Intuition: we just want to find the best linear function, we
don’t require that it goes through the data points exactly.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

2

Relationship between n and d (3)

Informally, we interpret d as the number of parameters and n as the
number of constraints.

Case d� n: harmless

I This is the harmless case: we have many points in a
low-dimensional space. Here linear functions are not very
flexible, and we tend to not overfit (sometimes we underfit).

I This is the case that has been treated in traditional statistics
since a century.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

3

Relationship between n and d (4)

Case d� n: not quite as harmless

I Typically, it is a bad idea to have much more parameters than
constraints because it leads to overfitting.

I Geometric reason: if we have few points (n) in a very
high-dimensional space (d), then linear functions are very
powerful (in machine learning terms, the size of the function
class is large; see the section on learning theory later). This
leads to overfitting.

I This case has been investigated intensively during the last 20
years or so in statistics, in the field called “High-dimensional
statistics” (see the textbooks by Bühlmann and van der Geer
“Statistics for High-Dimensional Data:” or the one by Martin
Wainwright “High-dimensional statistics”.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

4

Summary: Linear least squares regression

I Regression problem, X = Rd, Y = R
I Loss function: L2-loss

I Function class F : set of all linear functions over X
I No regularization.

I Finding the linear function that minimizes the empirical L2-loss
is a convex optimization problem, and we can compute its
solution analytically.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

5

Feature representation of data

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

6

Feature representation of data

On the first glance, the assumption that the data points are in Rd

looks pretty restrictive. What if our data is not “numbers”?

It turns out that in many cases it is a good idea to represent
“objects” by “feature vectors”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

7

Feature representation of data (2)

Example: bag of words representation for texts

I Make a list of all words occurring in the text

I Throw away all words that are too common (“the”, “a”, “for”,
“you”, ...)

I Use “stemming” to throw away word endings (like the plural
“s”): we want to consider the word “horse” the same as
“horses”)

I For each text, count how often each word occurs

I The represent each text as a vector: each dimension
corresponds to one word, and the entry of the vector is how
often this word occurs in the given text.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

8

Feature representation of data (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
6

9

Feature representation of data (4)

Example: strings in a feature representation

I Given a string

I Represent it by counting substrings (can also allow substrings
with “gaps” in between)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

0

Feature representation of data (5)

Example: motif representation of graphs (such as chemical
molecules)

Count the occurrence of certain subgraphs (called motifs):

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

1

Feature representation of data (6)

Example: books and/or users in amazon.

I can describe a book by how often it was bought by each user

I or by how often it was bought together with each other book.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

2

Feature representation of data (7)

Example: images

I Can obviously represent images as vectors of greyscale values,
or RGB values or CYMK values ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

3

Feature representation of data (8)

General procedure that works very often:

I Given a set of “objects” (texts, graphs, images, emails, ...)

I Describe the objects by simple “features” that can be
expressed as numbers

I Together, these objects give a feature vector ∈ Rd.

I Note that often, the dimension d ends up very large! The
incentive is: give as much information as possible to the
learning algorithm, and hope that it is going to identify /
extract the information that is helpful for classification.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

4

Feature representation of data (9)

In machine learning, the mapping Φ : X → Rd that takes an
abstract object X to its feature representation is called the feature
map. It is usually denoted by Φ.

All in all, the assumption that “data is in Rd” does make
sense in very many applications.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

5

Feature normalization

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

6

In practice: normalization

In regularized regression, it makes a difference how we scale our
data. Example:

I Body height measured in mm or cm or even km

Different scales lead to different solutions, because they affect the
regularization in a different way (WHY???)

Moreover, we typically want all coordinates to have “the same
amount of influence” on the solution. This is not the case if our
measurements have completely different orders of magnitude (for
example, one coordinate is “body height in mm” and one is “shoe
size”).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

7

In practice: normalization (2)

In order to make sure that all basis functions “are treated the
same” it is thus recommended to standardize your data:

1. Centering:
Replace Φi by Φcentered

i := Φi − Φ̄i with Φ̄i := 1
n

∑n
j=1 Φi(Xj).

2. Normalizing the variance: rescale each basis function such that
it has unit L2-norm (variance) on the training data:

Φrescaled
i :=

Φcentered
i

(
∑n

j=1 Φcentered
i (Xj)2)1/2

In terms of the matrix Φ: you center and normalize the columns of
the matrix to have center 0 and unit norm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

8

Least squares with linear combination of basis

functions

Literature:

I Hastie/Tibshirani/Friedman Section 3

I Bishop Section 3

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
7

9

Using non-linear basis functions

Idea:

I Linear functions are often quite restrictive.

I Instead, want to learn a function of the form

f(x) =
D∑
i=1

wiΦi(x)

where the functions Φ1, ...,ΦD are arbitrary “basis functions”.

I Note: f is linear in the parameters w, but if the functions Φ
are non-linear in x, then so is f .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

0

Examples

Example 1:

I Your data lives in Rd, but it clearly cannot be described by a
linear function of the original coordinates. Alternatively, you
can fit a function of the form

f(x) =
D∑
i=1

wiΦi(x)

(where the number D of basis functions does not need to
coincide with the original dimension d)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

1

Examples (2)

I For example, if we want to learn a periodic function, the Φi

might be the first couple of Fourier functions to fit a function
of the form

g(x) =
D∑
k=1

wk sin(kx)

I In some other case, we might want to choose the basis
functions Φi as polynomials x, x2, ..., xD to fit a function of
the form

h(x) =
D∑
k=1

wix
k

In this way you can use a linear algorithm (find the linear
coefficients wi) to fit non-linear functions (such as g(x) or h(x)) to
your data.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

2

Examples (3)

Example 2: Feature spaces
the input X consists of a web page, the task is to predict how
many seconds users stay on the page before they leave it again.

We might consider basis functions as the following ones:

I Φ1 counts the number of occurrences of the word “soccer”

I Φ2 counts the number of occurrences of the word “team”

I Φ3 tells you how many words the text has in total

I Φ4 counts the number of images on the page

I ... etc ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

3

How to solve it

It is easy to rewrite the “standard” least squares problem in this
more general framework:

I Define the design matrix as follows:

I Then the least squares problem is to find w as to minimize
‖Y − Φw‖2.

I This has the solution w = (ΦtΦ)−1ΦtY (with exact inverse or
generalized inverse) as we have seen above.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

4

Advantages and disadvantages

I Note that in the given scenario, we chose the basis functions
before we got to see the data points.

I If we have prior domain knowledge about our data, we can
select a “good” set of basis functions.

I (Side remark: there also exist approaches where we select
particular basis functions AFTER we have seen out training
data. This field is called dictionary learning; we won’t cover it
in this lecture).

I To avoid overfitting, the dimension D of the feature space
should be small; To avoid underfitting, the dimension D should
be large. To tackle both, a good choice of D is necessary.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

5

Advantages and disadvantages (2)

I Note that achieving a small D can be quite restrictive. Just
consider the case where our data is d-dimensional and we
want to to have a function space with polynomials of degree
two. There are already of the order d2 many basis polynomials
of degree two (xixj for i, j = 1, ..., d), so D ≈ d2.

I There is one way out of this trap, namely to regularize, in
particular by enforcing sparsity. See Lasso below.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

6

Ridge regression: least squares with

L2-regularization

Literature: Hastie/Tibshirani/Friedman Section 3.4.3; Bishop
Section 3

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

7

Idea

Want to improve standard L2-regression. Two points of view:

1. Want to have a unique solution, no matter what the rank of
the design matrix is. This is going to improve numerical
stability.

2. In the standard problem, the coefficients wi can become very
large. This leads to a high variance of the results.

To avoid this effect, we want to introduce regularization to
force the coefficients to stay “small”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

8

Ridge regression problem

Consider the following regularization problem:

I Input space X arbitrary, output space Y = R.

I Fix a set of basis functions Φ1, ...,ΦD : X → R
I As function space choose all functions of the form
f(x) =

∑
iwiΦi(x).

I As regularizer use Ω(f) := ‖w‖2 =
∑D

i=1w
2
i . Choose a

regularization constant λ > 0.

I Then solve the problem

wn,λ := argmin
w∈RD

1

n
‖Y − Φw‖2 + λ‖w‖2.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
8

9

Solution

Theorem 8 (Solution of Ridge Regression)

The coefficients wn,λ that solve the ridge regression problem are
given as

wn,λ :=
(

ΦtΦ + nλID

)−1

ΦtY

where ID is the D ×D identity matrix.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

0

Solution (2)

Proof.

I Objective function is Obj(w) := 1
n
‖Y − Φw‖2 + λ‖w‖2.

I Note that this function is convex.

I Take the derivative with respect to w and set it to 0:

grad(Obj)(w) = − 2

n
Φt(Y − Φw) + 2λw

!
= 0

=⇒
(

ΦtΦ + nλID

)
wn,λ = ΦtY

I It is straight forward to see that the matrix (ΦtΦ + nλID) has
full rank whenever λ > 0 (see next slide). So we can take the
inverse, and the theorem follows as in the standard
L2-regression case.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

1

Solution (3)

Before we continue with the proof, recap:

I WHAT DO YOU KNOW ABOUT THE EIGENVALUES OF A
SYMMETRIC MATRIX?

I WHAT DO YOU KNOW ABOUT THE EIGENVALUES OF A
MATRIX OF THE FORM A = ZZ ′ WHERE Z IS ANY
REAL-VALUED MATRIX?

This will occur millions of times in this lecture, please remember it!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

2

Solution (4)

Proof that (ΦtΦ + nλID) is invertible:

I The matrix A := ΦtΦ is symmetric, hence we can decompose
it into eigenvalues: A = V tΛV where Λ is the diagonal matrix
with all eigenvalues of A

I Because of the special form A := ΦtΦ, all eigenvalues are ≥ 0
(the matrix is positive semi-definite).

I A has full rank (is invertible) iff all its eigenvalues are > 0.

I σ is an eigenvalue of A with eigenvector v ⇐⇒ σ + λ is an
eigenvalue of A+ λI. Reason:

(A+ λI)v = Av + λv = σv + λv = (σ + λ)v

I If λ > 0, then all eigenvalues of A+ λI are > 0:
σ ≥ 0 and λ > 0 implies σ + λ > 0

I So we know that A+ λI has full rank and is invertible.

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

3

Example (by Matthias Hein)

I True function: periodic function + noise

I Basis functions Φ: first 10 Fourier basis functions

x 7→ sin(kx), (k = 1, ..., 10)

So we want to determine the coefficients wi for a function of
the form

f(x) =
10∑
k=1

wk sin(kx)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

4

Example (by Matthias Hein) (2)

38 Chapter 4

Figure 4.1: Left: Comparison of linear least squares fit (red) and ridge regression blue for a linear
problem perturbed by noise. We observe that the solution of ridge regression is biased towards
zero as one penalizes kwk2. Right: Ridge regression versus Least squares using a set of 10 Fourier
basis functions for a periodic problem with a suitable scaling. The solution of ridge regression is
smoother than the one of LLS.

4.1.4 The Lasso - Least Squares with L1-Regularization

Name: Lasso
Type: Supervised learning
Input space: X = Rd

Output space: Y = R
Function class F : Linear combination of basis functions, F = {hw,�(x)i |w 2 Rd}
Loss: Least squares L(y, f(x)) = (y � f(x))2

Regularizer: L
1

-Regularizer ⌦(f) =
Pd

i=1

|wi| = kwk
1

The lasso (Least Absolute Shrinkage and Selection Operator), see Tibshirani (1996), is another
regression method using the squared loss. The di↵erence to ridge-regression is the use of a L

1

-
regularization functional for the weights.

Definition 12 Given a training sample Tn = (Xi, Yi)ni=1

with Xi 2 X and Yi 2 R and the function

space F = {PD
i=1

wi�i(x) |w 2 RD} we define the lasso as the mapping A : Tn ! F with,

Tn 7! wn,� = argmin
w2RD

1

n

n
X

i=1

(Yi � hw,�(Xi)i)2 + �
D
X

i=1

|wi|,

and the function fn : X ! R becomes fn(x) = hwn,�,�(x)i.
A closed form solution as for ridge regression is generally not available. In recent years a lot of
e↵ort has been invested to solve the corresponding convex optimization problem e�ciently.

The L
1

-norm as regularization functional for the weights is used in order to get a sparse
solution. Sparsity means that a large number of components of the weight vector wn,� are zero.
In the following we will give an informal justification why L

1

-regularization should lead to sparse
solutions. A regularizer which directly enforces sparse solutions is the so called zero norm

kwk
0

=
D
X

i=1

w
i

6=0

,

which simply counts the number of non-zero components of the weight vector. The term “norm”
is misleading since it is actually not a norm2. The reason for the term zero-norm is that it can be

2The zero-norm kwk
0

is not linear: k↵wk
0

6= |↵| kwk
0

for ↵ 2 R.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

5

Choice of the parameter λ

QUESTION: WHAT IS THE ROLE OF λ? WHAT HAPPENS TO
ESTIMATION AND APPROXIMATION ERROR IF IT IS HIGH /
LOW?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

6

Choice of the parameter λ (2)

Example (from Bishop’s book):
Left: results for decreasing amount of regularization
Right: True curve (green), average estimated curve (red)150 3. LINEAR MODELS FOR REGRESSION

x

t
ln λ = 2.6

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t
ln λ = −0.31

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t
ln λ = −2.4

0 1

−1

0

1

x

t

0 1

−1

0

1

Figure 3.5 Illustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter λ, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of ln λ (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

7

Choice of the parameter λ (3)

Same example, bias-variance decomposition:
Larger regularization constant λ leads to less complex functions:

3.2. The Bias-Variance Decomposition 151

Figure 3.6 Plot of squared bias and variance,
together with their sum, correspond-
ing to the results shown in Fig-
ure 3.5. Also shown is the average
test set error for a test data set size
of 1000 points. The minimum value
of (bias)2 + variance occurs around
ln λ = −0.31, which is close to the
value that gives the minimum error
on the test data.

ln λ

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15
(bias)2

variance

(bias)2 + variance
test error

fit a model with 24 Gaussian basis functions by minimizing the regularized error
function (3.27) to give a prediction function y(l)(x) as shown in Figure 3.5. The
top row corresponds to a large value of the regularization coefficient λ that gives low
variance (because the red curves in the left plot look similar) but high bias (because
the two curves in the right plot are very different). Conversely on the bottom row, for
which λ is small, there is large variance (shown by the high variability between the
red curves in the left plot) but low bias (shown by the good fit between the average
model fit and the original sinusoidal function). Note that the result of averaging many
solutions for the complex model with M = 25 is a very good fit to the regression
function, which suggests that averaging may be a beneficial procedure. Indeed, a
weighted averaging of multiple solutions lies at the heart of a Bayesian approach,
although the averaging is with respect to the posterior distribution of parameters, not
with respect to multiple data sets.

We can also examine the bias-variance trade-off quantitatively for this example.
The average prediction is estimated from

y(x) =
1
L

L∑

l=1

y(l)(x) (3.45)

and the integrated squared bias and integrated variance are then given by

(bias)2 =
1
N

N∑

n=1

{y(xn) − h(xn)}2 (3.46)

variance =
1
N

N∑

n=1

1
L

L∑

l=1

{
y(l)(xn) − y(xn)

}2
(3.47)

where the integral over x weighted by the distribution p(x) is approximated by a
finite sum over data points drawn from that distribution. These quantities, along
with their sum, are plotted as a function of lnλ in Figure 3.6. We see that small
values of λ allow the model to become finely tuned to the noise on each individual

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

8

(*) Ridge regression as shrinkage method

Geometric interpretation of regularization via SVD:

I Consider the Singular Value Decomposition of the matrix
Φ ∈ Rn×d:

Φ = UΣV t

I Plugging this into the formula for wn,λ leads to

wn,λ = ... = V diag
(σj
σ2
j + λ

)
U tY

I Standard least squares regression (without regularization)
corresponds to λ = 0, and the fraction satisfies

σj
σ2
j + λ

=
1

σj

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
9

9

(*) Ridge regression as shrinkage method (2)

I Regularized case:
I Case σi large: not much difference to non-regularized case:

σj
σ2
j + λ

≈ 1

σj

I Case σi small: here it makes a lot of difference whether we
have σ2

i or σ2
i + λ in the denominator. In particular,

σj
σ2
j + λ

� 1

σj

This means that the regularization “shrinks” the directions of
small variance. Intuitively, these are the directions that mainly
contain noise, no signal.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

0

(*) Ridge regression as shrinkage method (3)

In statistics, related methods are often called “shrinkage methods”
(because we try to “shrink” the weights wi).

From a statistics point of view, they can be justified by what is
called “Stein’s paradox” (discovered in the 1950ies). Essentially,
this paradox says that if we want to estimate at least three
parameters jointly, then it is better to “shrink them”. Here is a
simple example:

I Assume you want to estimate the mean of a normal
distribution N(Θ, I) in Rd, d ≥ 3.

I Assume we have just a single data point X ∈ Rd from this
distribution.

I Standard least squares estimator: Θ̂LS = X.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

1

(*) Ridge regression as shrinkage method (4)

I Now consider the following “shrinkage estimator” (it is called

the James-Stein estimator): Θ̂JS =
(

1− d−2
‖X‖2

)
X.

I One can prove that it outperforms the standard least squares
error in terms of expected least squares error:

E(‖Θ− Θ̂LS‖) ≥ E(‖Θ− Θ̂JS‖)

Read it on wikipedia if you are interested ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

2

History and Terminology

I Invented by Andrey Tikhonov, 1943, in the context of integral
equations.
Original publication: Tikhonov, Andrey Nikolayevich. On the
stability of inverse problems. Doklady Akademii Nauk SSSR,
1943
This type of regularization is often called Tikhonov
regularization after its inventor.

I Introduced in statistics literature in the following paper:
Hoerl and Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 1970.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

3

History and Terminology (2)

I Originally, the intention was to make the solution of the least
squares problem more stable and to achieve a unique solution.
I Replace the matrix ΦtΦ in the least squares solution by the

matrix ΦtΦ + λId.
I This is where the name “ridge” comes from (we add a little

“ridge” on the diagonal of the matrix).

0

10

20

0

10

20
0

0.5

1

1.5

2

Matrix Xt X

0
5

10
15

20

0

10

20
0

2

4

6

Matrix Xt X + λ Id

I The regularization interpretation we described above is more
recent.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

4

Summary: Ridge regression

I Regression problem, X = Rd, Y = R
I Loss function: L2-loss

I Function class: linear functions parameterized by w
F := {fw : Rd → R, fw(x) = 〈w, x〉; w ∈ Rd}

I Regularizer: Ω(fw) = ‖w‖2

I Finding the function that minimizes the regularized risk is a
convex optimization problem, and we can compute its solution
analytically.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

5

Lasso: least squares with L1-regularization

Books:
• Hastie/Tibshirani/Friedman, Section 3.4.3;
• Bishop Section 3
• Hastie/Tibshirani/Wainwright, Section 2

Original paper: Tibshirani: Regression shrinkage and selection via
the lasso. J. Royal. Statist. Soc. B, 1996

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

6

Sparsity

I Consider the setting of linear regression with basis functions
Φ1, ...,ΦD.

I It is very desirable to obtain a solution function fn :=
∑

iwiΦi

for which many of the coefficients wi are zero. Such a solution
is called “sparse”.

I Reasons:
I Computational reasons: even if we have many basis functions,

we just need to evaluate few of them.
I Interpretability of the solution

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

7

A naive regularizer for sparsity

QUESTION: WHAT WOULD BE A GOOD REGULARIZER TO
ENFORCE SPARSITY?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

8

A naive regularizer for sparsity (2)

Need to find a function that is small if w is sparse:

Use the regularizer

Ω0(f) :=
D∑
i=1

1wi 6=0.

It directly penalizes the number of non-zero entries wi.

HOWEVER, USING THIS REGULARIZER IS NOT A GOOD
IDEA. WHY?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
0

9

A naive regularizer for sparsity (3)

Ω0 is a discrete function, and optimizing discrete functions is
typically NP hard.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

0

Excursion: p-norms

I For p > 0, define for a vector w ∈ RD

‖w‖p :=
(D∑
i=1

|wi|p
)1/p

.

I For any p ≥ 1, this is a norm and as such a convex function. It
is called the p-norm.

I for 0 < p < 1, it is not a norm (exercise!) and also not convex
(exercise, and see figure on next slide)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

1

Excursion: p-norms (2)

Unit spheres of p-balls for different values of p (e.g., the red line is
the set of points w ∈ R2 for which ‖w‖2 = 1).

Linear Methods for Classification and Regression 39

understood as the limit of the p-norm, kwkp =
h

PD
i=1

|wi|p
i

1

p

, which is a norm for p � 1 and

kwk
0

= lim
p!0

kwkpp .

In Figure 4.2 the e↵ects of di↵erent p are illustrated using the level sets of kwkp. A direct min-

Figure 4.2: The level set kwkp = 1 of the p-norms. Note that k·kp is only a norm for p � 1, in
which case the unit-ball is a convex set. Clearly for p = 0.5 the “unit-ball” is not convex.

imization of the zero-norm leads to a combinatorial problem. Since every norm is convex, the
usage of a norm together with the squared loss leads to a convex problem which can be solved
e�ciently. The L

1

-norm is the norm which is closest to the zero-norm (in the sense of the above
limit) and is therefore said to enhance sparsity. In summary, we can see the lasso as the “best”
convex approximation of the problem with the zero-norm as regularizer.

Another way of seeing why the L
1

-norm should lead to sparsity is the following. We compare
ridge regression and the lasso in the equivalent formulation, see Proposition 3 and note that norms
are convex and the loss L(y, f(x)) = (y � hw, xi)2 is convex in w.

wn,r = argmin
w2RD, ⌦(w)r

1

n

n
X

i=1

(Yi � hw,Xii)2, (4.3)

where ⌦(w) = kwk2
2

for ridge regression and ⌦(w) = kwk
1

for the Lasso. Let wLS be the least
square solution, that is wLS = (XTX)�1XTY . If r � kwLSk, then the least squares solution will
also solve the modified ridge regression resp. the modified lasso since the least squares solution
minimizes the empirical loss. The di↵erences arise now when r < kwLSk. In this case the L

2

-norm
penalizes large components of the weight vector and therefore prefers a lot of small components in
the weight vector, whereas in the L

1

-norm large and small weights are equally penalized (we can
trade-o↵ large versus small components). This property often leads to sparse solutions. In practice,
depending on the solver of the optimization problem, it can happen that these components are not
zero but very small (depends on the accuracy of the solver). In this case one has to threshold the
solution wn,� returned by the solver in order to get a real . We will discuss in a later chapter basic
methods to solve convex optimization problems.

Due to the sparsity of the weight vector one can use the lasso also as a feature selection
method, in the sense that only the basis functions with non-zero weights are features which are
needed to model the output variable Y . This is also useful in order to give an interpretation of the
regression results.

(Image by Matthias Hein)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

2

Excursion: p-norms (3)

For p = 0, we can define the function

‖w‖0 := lim
p→0
‖w‖pp = lim

p→0

d∑
i=1

|wi|p =
d∑
i=1

|wi|0

(Note that we take the limit of ‖w‖pp, not of ‖w‖p).

This is not a norm (it does not even satisfy the homogeneity
condition ‖ax‖ = a‖x‖) , but it is still called zero-norm in the
literature.

It coincides with our regularizer: if we define 00 = 0 and recall that
a0 = 1 (for a 6= 0), we get

‖w‖0 =
d∑
i=1

|wi|0 =
d∑
i=1

1wi 6=0 = Ω0(f)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

3

Sparsity and the L1-norm

We now want to settle for ‖w‖1 as a regularizer: It is “as close” to
the non-convex regularizer ‖w‖0 as possible while still being convex.

Question: Does it still tend to give sparse solutions?

Answer is yes, see the illustration on the next silde:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

4

Sparsity and the L1-norm (2)

Illustration: Assume we restrict the search to functions with
‖w‖ ≤ const. The blue cross shows the best solution
w = (w1, w2)t. It is not sparse for L2, but sparse for L1-norm
regularization.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

5

Sparsity and the L1-norm (3)

Another intuitive argument why solutions with L1-regularization
might be sparser than L2-regularization:

I The L2-norm puts a particularly large penalty on large
coefficients wi. That is, to avoid a large L2-penalty, it is better
to have many small wi that are all non-zero than to have most
wi equal to 0 and a couple of large wi.

I The L1-norm at least does not have this “preference” for many
small weights. It punishes all weights linearly, not quadratic,
and thus can afford to have a large weight if at the same time
many small weights disappear.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

6

The Lasso

Consider the following regularization problem:

I Input space X arbitrary, output space Y = R.

I Fix a set of basis functions Φ1, ...,ΦD : X → R
I As function space choose all functions of the form
f(x) =

∑
iwiΦi(x).

I As regularizer use Ω(f) := ‖w‖1 =
∑D

i=1 |wi|. Choose a
regularization constant λ > 0.

I Then solve the problem

wn,λ := argmin
w∈RD

1

n
‖Y − Φw‖2

2 + λ‖w‖1.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

7

Solution of the Lasso problem

I The Lasso objective function is convex (it is a sum of two
convex functions).

I However, there does not exist a closed form solution.

I Hence it has to be solved by a standard algorithm for convex
optimization.
I In general, any convex solver can be used, but might be slow.
I Observing that the problem can be recast as a quadratic

problem might help already.
I But many faster approaches exist, for example coordinate

descent algorithms. We are not going to discuss them in the
lecture.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

8

Example

40 Chapter 4

Finally, we show in Figure 4.3 a comparison of Lasso and ridge regression in terms of training
error, test error and the portion of non-zero components (however we threshold components to zero
which are smaller than 10�7). Note that one can observe also the discussed behavior that Lasso
and ridge regression agree for small regularization parameters. At some point the solution of Lasso
shows some sparsity but is still competitive to ridge regression in terms of test error. However, as
the sparsity increases the test error also increases rapidly.

Figure 4.3: Left: Perturbed training data and regression function in black, we show the solution
of ridge regression in blue and of Lasso in red for � = 1, Right: Behavior of training and test error
and the number of (thresholded at 10�7) non-zero components. Lasso is quite competitive to ridge
regression even in the domain where the Lasso is actually sparse.

4.1.5 The general Bias-Variance tradeo↵

The solutions wn of the least squares problem or ridge regression are estimators for the optimal
parameter w⇤ which optimizes the expected risk over all linear functions,

w⇤ = argmin
w2Rd

E
⇥

(Y � hw,Xi)2⇤ = E
⇥

(Y �
d

X

i=1

wiXi)
2

⇤

,

where here, Xi, i = 1, . . . , d, are the components of the Rd-valued random variable X. In analogy
to the setting for training data, the vector-valued random variable X is a row vector. The optimal
weight vector w⇤ can be immediately derived as

rwE
⇥

(Y � hw,Xi)2⇤ = �2E
⇥

XT (Y � hw,Xi)⇤ =) E[XTX]w⇤ = E[XTY],

and

w⇤ =
⇣

E[XTX]
⌘�1

E[XTY]. (4.4)

Note that if X is centered, that is E[X] = 0, then E[XTX] is the covariance matrix of X.
The empirical solutions wn of the discussed methods least squares, ridge regression and lasso

can be seen as estimators of the optimal weight vector w⇤. The weights wn depend on the training
sample T = (Xi, Yi)ni=1

of size n and are therefore random, since the training sample is an i.i.d.
sample of the data-generating measure P on X ⇥ Y. There are two interesting questions one can
ask about an estimator.

• If one is averaging the estimate wn over all possible training samples T of size n, will the
solution be equal to the optimal one w⇤ ? (Is the expected value of wn equal to w⇤ ?)

• How much does the estimator wn fluctuate around its average value over all possible training
samples T of size n ? (What is the variance of wn ?)

(Figure by Matthias Hein)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
1

9

Example (2)

(Figure by Matthias Hein)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

0

History

I The name LASSO stands for “least absolute shrinkage and
selection operator”

I First invented by Tibshirani: Regression shrinkage and
selection via the lasso. J. Royal. Statist. Soc. B, 1996

I For a short retrospective and some important literature
pointers, see Tibshirani: Regression shrinkage and selection via
the lasso: a retrospective. J. R. Statist. Soc. B (2011)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

1

Summary: the Lasso

I Regression problem, X arbitrary space, Y = R
I Loss function: L2-loss

I Function class F : a linear combination of a fixed set of basis
functions.

I Regularizer: L1-norm ‖w‖1 to enforce sparsity.

I Convex optimization problem, no analytic solution, but
efficient solvers exist.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

2

(∗) Probabilistic interpretation of linear

regression

The following slides just provide a sketch. If you want to know
more or see exact formulas, please read this book chapter:

Kevin Murphy: Machine Learning, a probabilistic perspective,
Chapter 7

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

3

Linear regression: ERM = maximum likelihood

I Assume the following probabilistic setup: the data is generated
by the following linear model:

Y = Xw + noise

where w is unknown and the noise follows a (d-dim) normal
distribution N(0, σ2I) (σ unknown “meta-parameter”,
considered fixed):

Y |X,w ∼ N(Xw, σ2I)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

4

Linear regression: ERM = maximum likelihood

(2)

I Maximum likelihood framework: want to find the parameter w
such that the likelihood of the observations is maximized:

max
w

P (Y |X,w)

max
w

exp(−‖Y −Xw‖2/σ2)

min
w
‖Y −Xw‖2

That is: Maximum likelihood regression with a Gaussian noise
model corresponds to ERM with the L2 loss function.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

5

Linear regression: RRM = Bayesian MAP

I Assume that the observations are generated as above, but
additionally assume that we have a prior distribution over the
parameter w:

Y |X,w ∼ N(Xw, σ2I) and w ∼ N(0, τ 2I)

I Bayesian maximum a posteriori approach (MAP): choose w
that maximizes the posterior probability:

P (w|X, Y) =
P (Y |X,w)P (w)

P (Y |X)

I Writing down all formulas, can see: Leads to ridge regression
(with tradeoff constant λ = σ2/τ 2):

min
w
‖Xw − Y ‖2 + λ‖w‖2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

6

More generally: Bayesian interpretation of ERM

and RRM

I The noise model in the probabilistic setup corresponds to the
choice of a loss function in the ERM framework.

I The prior distribution of the parameter in the Bayesian model
corresponds to a particular choice of regularizer in RRM.

Examples:
I If the data contains many outliers, one chooses a Laplace noise

model (rather than a Gaussian one): P (w) ≈ exp(−‖w‖/τ).
This then leads to the L1-loss function

1

n

∑
i

|Yi − Ŷi|

I Similarly, if we use a Laplace prior instead of a normal prior for
the parameter, we end with Lasso regularization instead of
Tikhonov/Ridge regression.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

7

Selecting parameters by cross validation

Literature:

I General: Chapter 7.10 of Hastie/Tibshirani/Friedman

I Experimental analysis: A meta-analysis of overfitting in
machine learning. Roelofs et al, NeurIPS 2019.

I Y. Yang. Comparing learning methods for classification.
Statistica Sinica, 2006.

I Sylvain Arlot and Matthieu Lerasle: Choice of V for V-fold
cross-validation in least-square density estimation. Journal of
Machine Learning Research, 2016

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

8

Cross validation - purpose

In all machine learning algorithms, we have to set parameters or
make design decisions:

I Regularization parameter in ridge regression or Lasso

I Parameter C of the SVM

I Parameter σ in the Gaussian kernel

I Number of principle components in PCA

I But you also might want to figure out whether certain design
choices make sense, for example whether it is useful to remove
outliers in the beginning or not.

It is very important that all these choices are made appropriately.
Cross validation is the method of choice for doing that.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
2

9

K-fold cross validation

1 INPUT: Training points (Xi, Yi)i=1,...,n, a set S of different
parameter combinations.

2 Partition the training set into K parts that are equally large.
These parts are called “fold”

3 for all choices of parameters s ∈ S
4 for k = 1, ..., K
5 Build one training set out of folds 1, ..., k − 1, k + 1, ..., K

and train with parameters s.
6 Compute the validation error err(s, k) on fold k
7 Compute the average validation error over the folds:

err(s) =
∑K

k=1 err(s, k)/K.
8 Select the parameter combination s that leads to the best

validation error: s∗ = argmins∈S err(s).
9 OUTPUT: s∗

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

0

K-fold cross validation (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

1

K-fold cross validation (3)

I Once you selected the parameter combination s∗, you train
your classifier a final time on the whole training set. Then you
use a completely new test set to compute the test error.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

2

K-fold cross validation (4)

I Never, never use your test set in the validation phase. As soon
as the test points enter the learning algorithm in any way, they
can no longer be used to compute a test error. The test set
must not be used in training in any way!

I In particular: you are NOT ALLOWED to first train using
cross validation, then compute the test error, realize that it is
not good, then train again until the test error gets better. As
soon as you try to “improve the test error”, the test data
effectively gets part of the training procedure and is spoiled.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

3

K-fold cross validation (5)

What number of folds K?

Not so critical, often people use 5 or 10.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

4

K-fold cross validation (6)

How to choose the set S?

I If you just have to tune one parameter, say the regularization
constant λ. Then choose λ on a logspace, say
λ ∈ {10−3, 10−2, ...103}.

I If you have to choose two parameters, say C and the kernel
width σ, define, say, SC = {10−2, 10−1, ...105},
Sσ = {10−2, 10−1, ..., 103}, and then choose S = SC × Sσ.
That is, you have to try every parameter combination!

I You can already guess that if we have more parameters, then
this is going to become tricky. Here you might want run several
cross validations, say first choose C and σ (jointly) and fix
them. Then choose the number of principle components, etc.

I Note that overfitting can also happen for cross-validation!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

5

K-fold cross validation (7)

I There are also some advanced methods to “walk in the
parameter space” (the idea is to try something like a gradient
descent in the space of parameters).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

6

A recent meta-study on test set reuse

I As I said above, you are not allowed to test on your test-set
and then go back to improving parameters. In theory.

I In practice, this is what many people do.

I In the recent paper “ A meta-analysis of overfitting in machine
learning. Roelofs et al, NeurIPS 2019” the authors conducted
a large-scale meta-analysis of Kaggle competitions and
analyzed whether test set reuse is a big problem or not

The setup was as follows:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

7

A recent meta-study on test set reuse (2)

Setup:

I The authors considered many kaggle competitions

I There the standard procedure is: you can test your results on a
“public testset”, and the results are being announced on a
public leaderboard. In the very end, after the competition time
is over, the result is being evaluated on a “private testset”
once and the final results are being announced.

I The difference in the public and private test errors can serve as
an approximation to estimate the effect of overfitting.

I One might expect overfitting if people resubmit very often and
really try hard to win the competitions. So the authors
particularly considered the top 10% performers of each
competitions.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

8

A recent meta-study on test set reuse (3)

Results:

The authors found that overfitting not as big a problem as one
might think. In most (but not all) studies, there was a surprisingly
small difference between public and private testset.

Read the paper to find out more.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
3

9

Advantages and disadvantages

Disadvantages of cross validation:

I Computationally expensive!!! In particular, if you have many
parameters to tune, not just one or two.

I Note that the training size of the problems used in the
individual cross validation training runs is n(·K − 1)/K. If the
sample size is small, then the parameters tuned on the smaller
folds might not be the best ones on the whole data set
(because the latter is larger).

I It is very difficult to prove theoretical statements that relate
the cross-validation error to the test error (due to the high
dependency between the training runs). In particular, the CV
error is not unbiased, it tends to underestimate the test error.

Further reading: Y. Yang. Comparing learning methods for
classification. Statistica Sinica, 2006. and references therein.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

0

Advantages and disadvantages (2)

Advantages:

There is no other, systematic method to choose parameters in a
useful way.

Always, always, always do cross validation!!! Make sure the final
test set is never touched while training (retraining for improving the
test error is not allowed, then the data is spoiled).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

1

Linear methods for classification

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

2

Intuition

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

3

Intuition

Given:

I We assume that our data lives in Rd (perhaps, through a
feature space representation).

I Want to solve a classification problem with input space
X = Rd and output space Y = {±1} (for simplicity we focus
on the two-class case for now).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

4

Intuition (2)

I Idea is to separate the two classes by a linear function:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

5

Hyperplanes in Rd

Now let’s consider linear classification with hyperplanes.

I A hyperplane in Rd has the form

H = {x ∈ Rd
∣∣ 〈w, x〉+ b = 0}

where w ∈ Rd is the normal vector of the hyperplane and b the
offset.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

6

Classification using hyperplanes

To decide whether a point lies on the right or left side of a
hyperplane, we use the decision function

sign(〈w, x〉+ b) ∈ {±1}

Note that it is a convenient convention to use the class labels +1
and −1 (because we can then simply use the sign function).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

7

Projection interpretation

Here is another way to interpret classification by hyperplanes:

I The function 〈w, x〉 projects the points x on a real line in the
direction of the normal vector of the hyperplane.

I The term b shifts them along this line.

I Then we look at the sign of the result and classify by the sign

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

8

Loss functions for classification

There exist quite a number of loss functions that are used in
classification:

We are now going to see a number of basic approaches for linear
classification based on various loss functions:

I Linear discriminant analysis (least squares loss)

I Logistic regression (logistic loss)

I Linear support vector machines (hinge loss)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
4

9

Linear discriminant analysis

Literature:

I Hastie/Tibshirani/Friedman Sec. 4.3

I Duda / Hart

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

0

LDA: Geometric motivation

Different projections: which one is better for classification?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

1

LDA: Geometric motivation (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

2

LDA: Geometric motivation (3)

I Linear classification amounts to a one-dimensional projection.

I LDA: Chooses the projection direction w such that ...
I The class centers are as far away from each other as possible
I The variance within each class is as small as possible.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

3

LDA: Geometric motivation (4)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

4

LDA: Geometric motivation (5)

Observe the different roles of w and b:

Step 1: finding a good separating direction ; w

I All the intuition above is about how to find a good direction w
(neither the separation of the two classes nor their variances
are affected by b).

I So the first step of LDA will be to find a good direction w.

Step 2: given w, decide where to cut ; b

I The parameter b only influences where we “cut” the two
classes, after we projected them on w.

I The best parameter b is thus selected only once we know w.

Note: the label information is used in both steps!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

5

Formally: the Fisher criterion

Define the following quantities for class +1:

I Let n+ be the number of points in class 1

I Define the center of class 1 as

m+ :=
1

n+

∑
{i | Yi=+1}Xi ∈ Rd

Note that after projecting on w, the mean is given as 〈w,m+〉.
I Define the within-class variance after projecting on w as

σ2
w,+ :=

1

n+

∑
{i | Yi=+1}

(
〈w,Xi〉 − 〈w,m+〉

)2

Make the analogue definitions for class −1: ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

6

Formally: the Fisher criterion (2)

Now define the Fisher criterion as

J(w) =
〈w,m+ −m−〉2
σ2
w,+ + σ2

w,−
.

The idea of linear discriminant analysis is now to select
w ∈ Rd such that the Fisher criterion is maximized.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

7

Fisher criterion in matrix form

We can write the Fisher criterion in matrix form as follows:

I Define the between-class scatter matrix as

CB := (m+ −m−)(m+ −m−)t ∈ Rd×d

I Define the total within-class scatter matrix as

CW :=
1

n+

∑
{i | Yi=+1}

(Xi −m+)(Xi −m+)t

+
1

n−

∑
{i | Yi=−1}

(Xi −m−)(Xi −m−)t

I The Fisher criterion can now be rewritten as

J(w) =
〈w,CBw〉
〈w,CWw〉

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

8

Solution vector w

Proposition 9 (Solution vector w∗ of LDA)

If the matrix CW is invertible, then the optimal solution of the
problem w∗ := argmaxw∈Rd J(w) is given by

w∗ = (CW)−1(m+ −m−).

Remark: it can happen that CW is not invertible (in particular, if
d > n. WHY?).
In this case, one can resort to the pseudo-inverse.
Proof (sketch).

I Take the derivative:

∂J

∂w
(w) = 2

CBw〈w,CWw〉 − CWw〈w,CBw〉
〈w,CWw〉2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
5

9

Solution vector w (2)

I Set it to 0:

〈w,CWw〉
〈w,CBw〉

CBw = CWw

I Rewrite (plug in the definition of CB):

〈w,CWw〉
〈w,CBw〉︸ ︷︷ ︸

∈R

(m+ −m−) (m+ −m−)tw︸ ︷︷ ︸
∈R

= CWw

I Additionally, observe that J(w) is invariant under rescaling of
w, that is J(w) = J(αw) for α 6= 0.

I So the solution is

w∗ ∝ (CW)−1(m+ −m−)

I We can check that the Hessian of J(w) at w∗ is negative
definite, so w∗ is indeed a maximum. ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

0

Determining b

So far, we only discussed how to find the normal vector w. How do
we set the offset b? (Recall that the hyperplane is 〈w, x〉+ b).

The standard is to choose b, once w is known, as to minimize the
training error.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

1

LDA, alternative motivation by ERM

We can also start with the ERM framework and make the following
assumptions:

I As function class we use the affine linear functions as above:

F = {f(x) = 〈w, x〉+ b;w ∈ Rd, b ∈ R}

I As loss function we use the squared loss between the
real-valued output (!) of the function f(x) and the actual
class labels:

`(X, Y, f(X)) = (Y − f(X))2

I No assumption on the underlying distributions.

Then we can prove the following nice theorem:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

2

LDA, alternative motivation by ERM (2)

Theorem 10 (LDA as ERM)

Consider the following two optimization problems:
(1) Minimizing the least squares loss of affine linear functions:

(w′, b′) := argmin
w∈Rd,b∈R

n∑
i=1

(Yi − 〈w,Xi〉 − b)2

(2) The LDA problem:

w∗ = argmax
w∈Rd

J(w)

Then the solutions w′ and w∗ coincide up to a constant, in
particular they correspond to the same hyperplane.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

3

LDA, alternative motivation by ERM (3)

Proof: skipped.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

4

LDA, alternative motivation by ERM (4)

Comments:

I Note: The least squares loss in problem (1) of the theorem is
with respect to 〈w,Xi〉+ b, not with respect to the sign of this
expression (which is what we are ultimately interested in):

(Yi − (〈w,Xi〉+ b)︸ ︷︷ ︸
∈R

)2 versus (Yi − sign(〈w,Xi〉+ b)︸ ︷︷ ︸
∈{±1}

)2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

5

LDA, motivation by Bayesian approach

Let us make the following assumptions:

I The two class conditional distributions P (X|Y = 1) and
P (X|Y = −1) follow a multivariate normal distribution with
the same covariance matrix, but different means

I Classes have equal prior weights, that is
P (Y = 1) = P (Y = −1) = 0.5.

Then we can argue as follows:

I Bayesian approach: under these assumptions the optimal
classifier selects according to whether

P (Y = 1
∣∣ X = x)

?
> P (Y = −1

∣∣ X = x).

I Equivalently:

log
(
P (Y = 1

∣∣ X = x)/P (Y = −1
∣∣ X = x)

)
?
> 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

6

LDA, motivation by Bayesian approach (2)

I If we compute this term for the normal distributions, one can
see that the decision boundary between the two classes (i.e.,
the set where both classes have equal posteriors) is a
hyperplane, and coincides with the LDA solution.

I Details skipped, see Hastie/Tibshirani/Friedman for details.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

7

LDA, motivation by Bayesian approach (3)

Insights:

I Under the given assumptions (normal distributions, same
weights, same covariance, etc), LDA should work nicely!

I We can also suspect that it does not such a good job if the
assumptions are not satisfied.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

8

Limitations and generalizations

I LDA does not work well if the classes are not “blobs”

I LDA does not work well if the variance of the two classes is
very different from each other (remember, in the derivation of
LDA based on Gaussian distributions we assumed equal
variance for both classes).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
6

9

Limitations and generalizations (2)

Generalizations:

I LDA tends to overfit (so far, we do not regularize). There also
exist regularized versions, we’ll skip it.

I LDA can be generalized to multiclass problems as well. We’ll
skip it.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

0

History

I A variant of this was first published by R. Fisher in 1936:
Fisher, R. A. (1936). The Use of Multiple Measurements in
Taxonomic Problems. Annals of Eugenics 7 (2): 179–188.

I LDA goes under various names: Linear discriminant analysis,
Fisher’s linear disciminant.

I R. Fisher is THE founder of modern statistics (design of
experiments, analysis of variance, maximum likelihood,
sufficient statistics, randomized tests, ...)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

1

Summary: Linear discriminant analysis (LDA)

Three different motivations:

I Geometric motivation: project in a direction that separates the
classes well

I ERM motivation: minimize the least squares loss on space of
linear functions

I Model-based (probabilistic) motivation: Bayes classifier under
assumption of normal distributions with equal variances

All the motivations lead to the same algorithm:

I Minimize the Fisher criterion

I Can compute solution vector w analytically

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

2

Logistic regression

Literature: Hastie/Tibshirani/Friedman Section 4.4
For the probabilistic point of view, see Chapter 8 in Murphy

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

3

Logistic regression pro blem as ERM

I Want to solve classification on Rd with linear functions:
I Given Xi ∈ Rd, Yi ∈ {±1}.
I F = {f(x) = 〈w, x〉+ b;w ∈ Rd, b ∈ R}
I Use ERM

I Using L2-loss corresponds to Linear Discriminant Analysis
(LDA)

I Now: use the logistic loss function:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

4

Logistic regression pro blem as ERM (2)

`(X, f(X), Y) = log2(1 + exp(−Y f(X)))

I It already starts to “punish” if points are still on the correct
side of the hyperplane, but get close to it.

I Once on the wrong side, it punishes “moderately” (close to
linear)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

5

Logistic regression pro blem as ERM (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

6

Computing the ERM solution

Consider the problem of finding the best linear function under the
logistic loss in the ERM setting.

I There is no closed form solution for this problem.

I Good news: the logistic loss function is convex.
This can be proved by showing that the Hessian matrix is
positive definite.

I So we can use our favorite convex solver to obtain the logistic
regression solution.

I The standard technique in this case is the Newton-Raphson
algorithm, but we won’t discuss the details.

But why would someone come up with the logistic loss function???

The answer comes from the following Bayesian approach to
classification.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

7

The logistic model

I We do NOT make a full model of the joint probability
distribution P (x, y) or the class conditional distributions
P (y|x) (generative approach).

I We just specify a model for the conditional posterior
distributions (discriminative approach):

P (Y = y
∣∣ X = x) =

1

1 + exp(−yf(x))

with f(x) = 〈w, x〉+ b. Here w and b are the parameters. The
function 1/(1 + exp(−t)) is called the logistic function and
looks as follows:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

8

The logistic model (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
7

9

The logistic model (3)

I Intuition:
Consider the projection scenario. Instead of a hard threshold
(left = one class, right = other class) we have a smooth
transition of the probability.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

0

The logistic model (4)

The value of P (Y = y|X = x) tells “how far” we are from the
decision surface, that is “how sure” the classifier is about this
class. It it is ≈ 0.5 this means that the classifier does not
really know by itself, f(x) close to 0 or 1 means that the
classifier is “pretty sure”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

1

The logistic model (5)

I Maximizing P (Y = y
∣∣ X = x) = 1/(1 + exp(−yf(x)))

corresponds to minimizing the following loss function:

`(X, Y, f(X)) = log(1 + exp(−Y f(X)))

This is the logistic loss function.

Note that the logistic loss also punishes points that are correctly
classified but are “too close” to the hyperplane.

For such points, the classifier “is not sure”, but ideally we would
like to find a classifier that is “pretty sure” on which sides all points
belong.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

2

The logistic model (6)

Decision function:
P (Y = circle|X = x, b) = 1/(1 + exp(−yf(x)))
Loss incurred for the respective decisions: logistic

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

3

Adding regularization

I As in linear regression, we can now use regularization to avoid
overfitting.

I For example, we could use Ω(f) = ‖w‖2
2 (as in ridge

regression) or Ω(f) = ‖w‖1 (as in Lasso).

I Then regularized logistic regession minimizes minimize

1

n

n∑
i=1

log
(

1 + exp(−Yi〈w,X〉)
)

+ λΩ(f).

I If the regularizer is convex in w, then so is the regularzied
logistic regression problem. It can be solved by standard
convex solvers.

I More specialized (more efficient) solvers exist.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

4

History of logistic regression

Very nice historic account: Cramer: The origins of logistic
regression. Tinbergen Institute Working Paper, 2002

I Dates back to the 19th century to the work of Pierre-Francois
Verhulst (published in several papers around 1845)

I Rediscovered in the 1920 by Pearl and Reed

I Many variants and adaptations (“probit” or “logit”)

I In 1973, Daniel McFaden draws the connections to decision
theory; in 2000, he earns the nobel prize in economic sciences
for his development of theory and methods for analyzing
discrete choice!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

5

Summary: logistic regression

I Loss function: logistic loss (a “smoothed” version of a step
function)

I Function class: linear

I Either pure empirical risk minimization, or regularized risk
minimization, for example with L1- or L2-regularizer

I Convex optimization problem, no closed form solution.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

6

(∗) Probabilistic interpretation of linear

classification

Literature: Kevin Murphy: Machine Learning, a probabilistic
perspective, Chapter 8

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

7

General idea

I In linear discriminant analysis (LDA): Minimizing the L2 loss
over the class of linear function is “the same” as finding the
Bayesian decision theory solution for the probabilistic model
with Gaussian class conditional priors, and Gaussian noise, and
uniform class prior.

I In logistic regression: Minimizing the logistic loss function over
linear functions can be interpreted as a probabilistic approach
as well.

Let’s briefly look at the general concept.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

8

Excursion: Probabilistic interpretation of ERM

I Bayesian approach: choose f(x) according to whether
P (Y = +1

∣∣ X = x) is larger or smaller than
P (Y = −1

∣∣ X = x).

I Assume that the conditional probability P (Y = +1
∣∣ X = x)

has a certain functional form, that is it can be described by
some function f ∈ F (for some appropriate F).

I The goal is to find the function f ∈ F that “best explains our
training data”. That is, for each training point we would like
to have P (f(Xi) = Yi) as large as possible.

I This amounts to selecting f ∈ F by

argmax
f∈F

Πn
i=1P (f(Xi) = Yi)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
8

9

Excursion: Probabilistic interpretation of ERM

(2)

I This is equivalent to the following problem (simply take − log):

argmin
f∈F

n∑
i=1

− logP (f(Xi) = Yi)︸ ︷︷ ︸
=:`(Xi,f(Xi),Yi)

I This approach can be interpreted as empirical risk
minimization with respect to this newly defined loss function `:

argmin
f∈F

n∑
i=1

`(Xi, f(Xi), Yi)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

0

Excursion: Probabilistic interpretation of ERM

(3)

What does this tell us?

Assume we start with an assumption how the probability
distributions P (Y

∣∣ X = x) look like, and we follow the Bayesian
approach of selecting according to P (Y

∣∣ X = x).

Then there always exists a particular loss function ` such that this
approach corresponds to ERM with this particular loss function.

Note that it does not always work the other way round (if we start
with a given loss function `, it is not always possible to construct a
corresponding model probability distribution)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

1

Excursion: Probabilistic interpretation of ERM

(4)

Why is this insight useful?

It helps to get more intuition:

I For some loss functions, we can “understand” what the
corresponding probabilistic model is. This gives insight into
when a particular approach might or might not work.

Linear discriminant analysis is an example for this: you would
not guess that the quadratic loss for a linear function class
means that we assume that classes are round blobs with the
same shape (normal distributions with the same covariance
structure).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

2

Excursion: Probabilistic interpretation of ERM

(5)

I Given a particular model, writing down the loss function helps
to understand the behavior of the classifier: What are the
errors that are punished most? So what does the classifier try
to avoid at all costs?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

3

Evaluation of classification results

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

4

Counting performance measures

There are many different ways to measure the error of a classifier,
we are going to summarize many of them now.

The main difference between these performance measures is if the
classes are very unbalanced.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

5

Counting performance measures (2)

Confusion table:

For example, fp denotes the number of points that have wrongly
been predicted to belong to the positive class.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

6

Counting performance measures (3)

I Error rate: fraction of points that are wrongly classified:
(fn+ fp)/(P +N)

I Accuracy: fraction of examples that are correctly classified:
1− errorrate

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

7

Counting performance measures (4)

I True positive rate (sensitivity): tp / P
(“How many of the true positives did we find?”)

I False positive rate: fp / N
(“How many of the negative points have been wrongly
classified positive”)?

I True negative rate (specifity): tn / N

I False negative rate: fn / P

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

8

Counting performance measures (5)

If the classes are highly unbalanced, one sometimes uses:

I Positive predictive value: tp/(tp+ fp)

I Negative predictive value: tn/(tn+ fn)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

2
9

9

Counting performance measures (6)

In information retrieval the following measures are common (here
we are mainly interested in the positive class, we want to retrieve
documents from a collection that fit the search query):

I Recall: tp/P (how many positive examples can we find)

I Precision: tp/(tp+ fp) how many of all positively classified
examples are indeed correct

These are in particularly used in applications where discovering true
negatives does not add much value to a classifier.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

0

ROC and AUC

In many applications, in particular in information retrieval, there are
many more negative examples than positive examples:

I Most webpages are irrelevant to a certain search query.

I Most possible links do not exist in a social network.

I etc

In such cases, classification accuracy is a very bad performance
measure (WHY?).

Instead, one is interested in true positives and false positives. To be
able judge classifiers based on both criteria simultaneously, we can
now use ROC curves.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

1

ROC and AUC (2)

ROC (=Receiver-operator characteristic) curve:

I Consider a family of classifiers class = sign(g(x) + Θ)

I Plots the false positive rate versus the true positive rate for
varying decision threshold Θ:
I Vary Θ from −∞ to ∞
I Evaluate tp(Θ) and fp(Θ)
I Then plot the points (fp(Θ)/N, tp(Θ)/P).
I Leads to a curve in [0, 1]2:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

2

ROC and AUC (3)

Note: indeed,

I tp/P ∈ [0, 1]

I fp/N ∈ [0, 1]

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

3

ROC and AUC (4)

Intuition with normal distributions:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

4

ROC and AUC (5)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

5

ROC and AUC (6)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

6

ROC and AUC (7)

ROC for comparing classifiers:

I Assume you have two classifiers that depend on a certain
parameter σ

I Plot the ROC curve of both classifiers

I If the curve of classifier 1 is always above the one of classifier
2, then classifier 1 is considered superior.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

7

ROC and AUC (8)

I Often, such a clear picture is not true, the curves are going to
intersect.

I In this case, you might still be able to say in what parameter
range one classifier is better than the other.

I Or you might want to use AUC.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

8

ROC and AUC (9)

AUC (Area under the ROC curve):

I To translate the ROC to a “number”, sometimes the area
under the ROC curve is used as a performance measure.

I The larger the area, the “better” the classifier.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
0

9

ROC and AUC (10)

ROC and AUC are used a lot in machine learning. However, there is
also a lot of criticism related to these measures, see references in
the end.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

0

Multi-class performance measures

I Accuracy and error rate still can be defined, but the more
classes the less informative are these numbers. WHY?

I In general, the more classes the harder it is to summarize the
classification performance in one number.

I The best way to access the quality of multi-class classifiers is
to discuss the confusion matrix directly ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

1

Comparing many classifiers

I Below is a table I took from a random publication on
classification (µ denotes the mean, σ the standard deviation of
the result on several independent tests).

I You will find similar tables in very many publications.

I What can you read from this table???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

2

Comparing many classifiers (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

3

Comparing many classifiers (3)

... hard to see anything. By all means, avoid tables!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

4

Comparing many classifiers (4)

Often it is not so easy to decide which classifier is “better”:

I “Better in general” will be hard anyway (no free lunch
theorem!)

I Depending on the choice of data sets! (here lots of cheating is
possible)

I When would you say is a classifier “really better” than another
one???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

5

Statistical tests for comparing classifiers

You can try to do this in a more sound way using statistical tests:

I The null hypothesis is that both classifiers perform the same

I As test statistic use the difference in error rates: erri− ẽrri on
many different data sets i (here erri and ẽrri are the errors of
the two classifiers on data set i)

I Assumption: These values are independent across data sets.

I Then you can use a t-test to test whether the performance of
the classifiers is significantly different.

Permutation test:

I You can also use a permutation test.

I Here you compare the statistic erri − ẽrri against the statistic
where you randomly exchange erri and ẽrri.

I Read on permutation tests how this works ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

6

Statistical tests for comparing classifiers (2)

Comment:

I It is not extremely popular to use statistical tests, and it is also
somewhat questionable whether it is really useful.

I A test has to make assumptions on the underlying distribution.

I For example, the t-test assumes the “data” (in this case, the
values erri and ẽrri) to be normally distributed, independent,
and from the same population.

I This cannot really be true, it would not even hold for the
Bayes errors (if we plotted a histogram of the Bayes errors in
the data sets we use, it would not look like a normal
distribution).

I But if the assumptions are not satisfied, the test is
meaningless.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

7

Some critical remarks

A quote from Duin (1996), see also Hand (2008), (full references
below):

We are interested in the real performance for practical applications.
Therefore, an application domain has to be defined. The traditional
way to do this is by a diverse collection of datasets. In studying the
results, however, one should keep in mind that such a collection
does not represent any reality. It is an arbitrary collection, at most
showing partially the diversity, but certainly not with any
representative weight. It appears still possible that for classifiers
showing a consistently bad behavior in the problem collection,
somewhere an application exists for which they are perfectly suited.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

8

Some critical remarks (2)

And one more (same source):

In comparing classifiers one should realize that some classifiers are
valuable because they are heavily parameterized and thereby offer a
trained analyst a large flexibility in integrating his problem
knowledge in the classification procedure. Other classifiers, on the
contrary, are very valuable because they are entirely automatic and
do not demand any user parameter adjustment. As a consequence
they can be used by anybody. It is therefore difficult to compare
these types of classifiers in a fair and objective way.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
1

9

Some critical remarks (3)

If you want to compare classifiers:

I Always try to compare them for a particular task (the “best
classifier” does not exist).

I Always test on a variety of data sets, under many different
conditions, on many different data sets.

I Be fair: try to implement all classifiers in the best way you
can. If available, use implementations by the people who
invented the algorithms (often a considerable amount of works
goes into fine-tuning a classifier).

I Most people won’t believe you if you say that your classifier
“consistently outperforms” the other classifiers.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

0

Some critical remarks (4)

I Try to assess the strengths / weaknesses of your classifier (and
be open about it): the most helpful insight is to say that “in
this situation, prefer classifier A, in that situation classifier B”.
This also means to identify the situations where your approach
does NOT work.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

1

Some critical remarks (5)

If you read that “one classifier is better than the other one” always
be a bit suspicious:

I Has the experiment been designed in a fair way? For example,
have all parameters been chosen by cross validation?

I How were the data sets selected?

I Are there different data sets of different types (many/few
sample points, high/low dimension, balanced/unbalanced
classes, toy/real world data, ...)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

2

Some references

There is lots of research on how to compare classifiers.

David Hand (London) did a lot of (critical) research on the topic of
comparing classifiers, see for example:

I Hand D.J. Assessing the performance of classification
methods. International Statistical Review, 2012

I Hand D.J. Measuring classifier performance: a coherent
alternative to the area under the ROC curve. Machine
Learning 77, 2009.

I Jamain, A., Hand, D. J. Mining supervised classification
performance studies: a meta-analytic investigation. Journal of
Classification, 25, 87-112. 2008.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

3

Some references (2)

A couple of other references:

I Duin, R. A Note on Comparing Classifiers, Pattern Recognition
Letters, 17:529-536.1996.

I Demsar: Statistical comparisons of classifiers over multiple
data sets. JMLR, 2006.

I Yang: Comparing learning methods for classification. Statistica
Sinica, 2006.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

4

Linear support vector machines

Literature:

I Schölkopf / Smola Section 7

I Shawe-Taylor / Cristianini

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

5

Intuition and primal

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

6

Prelude

The support vector machine (SVM) is the algorithm that made
machine learning its own sub-discipline of computer science, it is
one of the most important machine learning algorithms. It has been
published in the late 1990ies (see later for more on history).

We are going to study the linear case first. The main power of the
method comes from the “kernel trick” which is going to make them
non-linear.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

7

Geometric motivation

Given a set of linearly separable data points in Rd. Which
hyperplane to take???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

8

Geometric motivation (2)

Idea:take the hyperplane with the largest distance to both classes
(“large margin”):

Why might this make sense?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
2

9

Geometric motivation (3)

Why might this make sense:

I Robustness: assume our data points are noisy. If we “wiggle”
some of the points, then they are still on the same side of the
hyperplane, so the classification result is robust on the training
points.

I Later we will see: the size of the margin can be interpreted as
a regularization term. The larger the margin, the “less
complex” the corresponding function class.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

0

Canonical hyperplane

I We are interested in a linear classifier of the form

f(x) = sign(〈w, x〉+ b)

I Note that if we multiply w and b by the same constant a > 0,
this does not change the classifier:

sign(〈aw, x〉+ ab) = sign(a(〈w, x〉+ b)) = sign(〈w, x〉+ b)

I Want to remove this degree of freedom.
I For now, assume data can be perfectly separated by

hyperplane.

We say that the pair (w, b) is in canonical form with respect to the
points x1, ..., xn if they are scaled such that

min
i=1,...,n

|〈w, xi〉+ b| = 1

We also say that the hyperplane is in canonical representation.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

1

The Margin

I Let H := {x ∈ Rd
∣∣ 〈w, x〉+ b = 0} be a hyperplane.

I Assume that a hyperplane correctly separates the training data.

I The margin of the hyperplane H with respect to the training
points (Xi, Yi)i=1,..,n is defined as the minimal distance of a
training point to the hyperplane:

ρ(H,X1, ..., Xn) := min
i=1,...n

d(Xi, H) := min
i=1...n

min
h∈H
‖Xi − h‖

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

2

The Margin (2)

Proposition 11 (Margin)

For a hyperplane in canonical representation, the margin ρ can be
computed by ρ = 1/‖w‖.

First proof.
Observe:

I Points on the hyperplane itself satisfy 〈w, x〉+ b = 0.
(Reason: definition of the hyperplane)

I Points that sit on the margin satisfy 〈w, x〉+ b = ±1.
(Reason: canonical representation)

I Let x be the training point that is closest to the hyperplane
(that is, the one that defines the margin). W.l.o.g. assume
〈w, x〉+ b = +1 (the case with −1 works similarly). Let h ∈ H
the closest point to x on the hyperplane. Then ‖x− h‖ = ρ.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

3

The Margin (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

4

The Margin (4)

We also know that

x = h+ ρ
w

‖w‖

because the line connecting x and h is in the normal direction w
and has length ρ.

Now we build the scalar product with w and add b on both sides:

=⇒ 〈w, x〉 = 〈w, h+ ρ
w

‖w‖〉 = 〈w, h〉+ ρ
‖w‖2

‖w‖
=⇒ 〈w, x〉+ b︸ ︷︷ ︸

=1

= 〈w, h〉+ b︸ ︷︷ ︸
=0

+ρ‖w‖

=⇒ ρ = 1/‖w‖

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

5

The Margin (5)

Alternative proof:
By definition, the margin is ρ = ‖X − h‖. In order to compute it,
observe that

〈w, x〉+ b = 1

〈w, h〉+ b = 0

Subtracting these two equations and rescaling with ‖w‖ gives

〈w, x− h〉 = 1

〈w/‖w‖, x− h〉 = 1/‖w‖

Now the proposition follows from the fact that w and x− h point
in the same direction and w/‖w‖ has norm 1. ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

6

Hard margin SVM

So here is our first formulation of the SVM optimization problem:
• Maximize the margin
• Subject to:

I all points are on the correct side of the hyperplane
I and outside the margin.

In formulas:

maximizew∈Rd,b∈R
1

‖w‖
subject to Yi = sign(〈w,Xi〉+ b) ∀i = 1, ..., n

|〈w,Xi〉+ b)| ≥ 1 ∀i = 1, ..., n

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

7

Hard margin SVM (2)

Usually, we consider the following equivalent optimization problem:

minimizew∈Rd,b∈R
1

2
‖w‖2

subject to Yi(〈w,Xi〉+ b) ≥ 1 ∀i = 1, ..., n

This problem is called the (primal) hard margin SVM problem.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

8

Hard margin SVM (3)

First remarks:

I This optimization problem is convex.

I In fact, it is a quadratic optimization problem (objective
function is quadratic, constraints are linear).

I Observe that the solution will always be a hyperplane in
canoncial form. EXERCISE.

I The only reason to add constant 1/2 in front of ‖w‖2 is for
mathematical convenience (the derivative is then w and not
2w). Sometimes we also drop it later.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
3

9

Hard margin SVM (4)

However, big disadvantage:

This problem only has a solution if the data set is linearly separable,
that is there exists a hyperplane H that separates all training points
without error. This might be too strict ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

0

Soft margin SVM

I We want to allow for the case that the separating hyperplane
makes some errors (that is, it does not perfectly separate the
training data).

I To this end, we introduce “slack variables” ξi and consider the
following new optimization problem:

minimizew∈Rd,b∈R,ξ∈Rn
1

2
‖w‖2 +

C

n

n∑
i=1

ξi

subject to Yi(〈w,Xi〉+ b) ≥ 1− ξi ∀i = 1, ..., n

ξi ≥ 0 ∀i = 1, ..., n

Here C is a constant that controls the tradeoff between the
two terms, see below.
This problem is called the (primal) soft margin SVM problem.

I Note that this is a convex (quadratic) problem as well.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

1

Soft margin SVM (2)

Interpretation:

I If ξi = 0, then the point Xi is on the correct side of the
hyperplane, outside the margin.

I If ξi ∈]0, 1[, then Xi is still on the correct side of the
hyperplane, but inside the margin.

I If ξi > 1, then Xi is on the wrong side of the hyperplane.

Note that for soft SVMs, the margin is defined implicitly (the
points on the margin are the ones that satisfy 〈w, x〉+ b = ±1).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

2

Soft margin SVM (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

3

SVM as regularized risk minimization

We want to interpret the SVM in the regularization framework:

minimize
1

2
‖w‖2︸ ︷︷ ︸

; Regularization term

+
C

n

n∑
i=1

ξi︸ ︷︷ ︸
; Risk term

To this end, we want to incorporate the constraints into the
objective to form a new loss function:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

4

SVM as regularized risk minimization (2)

Consider the constraint Yi(〈w,Xi〉+ b) ≥ 1− ξi. Exploiting ξi ≥ 0
we can rewrite it as follows:

ξi ≥ max{0, 1− Yi(〈w,Xi〉+ b)}

This is a loss function, the so called Hinge loss:

`(x, y, f(x)) = max{0, 1− yf(x)}

It looks as follows:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

5

SVM as regularized risk minimization (3)

Comparison to other loss functions:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

6

SVM as regularized risk minimization (4)

This loss function has a couple of interesting properties:

I It even punishes points if they have the correct label but are
too close to the decision surface (the margin).

I For points on the wrong side it increases linearly, like an
L1-norm, not quadratic.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

7

SVM as regularized risk minimization (5)

With this loss function, we can now interpret the soft margin SVM
as regularized risk minimization:

minimize
w,b

C

n

n∑
i=1

max{0, 1− Yi(〈w,Xi〉+ b)}︸ ︷︷ ︸
Empirical risk wrt Hinge loss

+ ‖w‖2︸ ︷︷ ︸
L2−regularizer

The constant C plays the “inverse role” of the regularization
constant λ we used in the previous problems (just multiply the
objective with 1/C and replace 1/C by λ).

It is a convention that we use C in SVMs, not λ ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

8

SVM as regularized risk minimization (6)

EXERCISE: what happens if C is chosen very small, what if C is
chosen very large?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
4

9

Summary so far: Linear SVM (primal)

What we have seen so far:

I The linear SVM tries to maximize the margin between the two
classes.

I The hard margin SVM only considers solutions without
training errors. The soft margin SVM can trade-off margin
errors or misclassification errors with a large margin.

I Both hard and soft SVM are quadratic optimization problems
(in particular, convex).

I The soft margin SVM can be interpreted as regularized risk
minimization with the Hinge loss function and
L2-regularization.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

0

Excursion: convex optimization, primal,

Lagrangian, dual

see slides 1321ff. in the appendix

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

1

Deriving the dual problem

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

2

Dual of hard margin SVM

It turns out that all the important properties of SVM can only be
seen from the dual optimization problem.

So let us derive the dual problem:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

3

Dual of hard margin SVM (2)

Primal problem (the one we start with):

minimizew∈Rd,b∈R
1

2
‖w‖2

subject to Yi(〈w,Xi〉+ b) ≥ 1 ∀i = 1, ..., n

Lagrangian: we introduce one Lagrange multiplier αi ≥ 0 for
each constraint and write down the Lagrangian:

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi(Yi(〈w,Xi〉+ b)− 1)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

4

Dual of hard margin SVM (3)

Formally, the dual problem is the following:
Dual function:

g(α) = min
w,b

L(w, b, α)

Dual Problem:

maximize
α

g(α)

subject to αi ≥ 0, i = 1, ..., n

But this is pretty abstract, we would need to first compute the dual
function, but this seems non-trivial. We now show how to compute
g(α) explicitly. Let’s try to simplify the Lagrangian first.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

5

Dual of hard margin SVM (4)

Saddle point condition: We know that at the solution of the
primal, the saddle point condition has to hold:

In particular,

∂

∂b
L(w, b, α) = −

n∑
i=1

αiYi
!

= 0 (∗)

∂

∂w
L(w, b, α) = w −

∑
i

αiYiXi
!

= 0 (∗∗)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

6

Dual of hard margin SVM (5)

Rewrite the Lagrangian: We plug (∗) and (∗∗) in the
Lagrangian at the saddle point (w∗, b∗, α∗):
I First exploit (∗):

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi(Yi(〈w,Xi〉+ b)− 1)

=
1

2
‖w‖2 +

∑
i

αi −
∑
i

αiYi〈w,Xi〉 − b
∑
i

αiYi︸ ︷︷ ︸
=0 by (∗)

I Now we replace w by formula (∗∗) and get after simplification:

L(w∗, b∗, α∗) =
∑
i

αi −
1

2

∑
i,j

αiαjYiYj〈Xi, Xj〉

I Observe: L(w, b, α) does not depend on ω and b any more!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

7

Dual of hard margin SVM (6)

Dual function:
So at the saddle point (w∗, b∗, α∗), the dual function is very simple:

g(α) := min
w,b

L(w, b, α)

=
∑
i

αi −
1

2

∑
i,j

αiαjYiYj〈Xi, Xj〉

(we can drop the “minw,b” because w, b have disappeared).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

8

Dual of hard margin SVM (7)

To finally write down the dual optimization problem, we have to
keep enforcing (∗) and (∗∗) (otherwise the transformation of the
Lagrangian to its simpler form is no longer valid).

I By now, (∗∗) is meaningless, because w disappeared already.
So we drop it.

I But we need to carry the condition (∗) to the dual.

So finally we end up with the dual problem of the linear hard
margin SVN:

maximize
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjYiYj〈Xi, Xj〉

subject to αi ≥ 0 ∀i = 1, ..., n
n∑
i=1

αiYi = 0

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
5

9

Dual of the soft margin SVM

Analogously, one can derive the dual problem of the soft margin
SVM, it looks nearly the same:

maximize
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjYiYj〈Xi, Xj〉

subject to 0 ≤ αi ≤ C/n ∀i = 1, ..., n
n∑
i=1

αiYi = 0

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

0

Dual SVM in practice

I Given the input data, compute all the scalar products 〈Xi, Xj〉
I Solve the dual optimization problem (it is convex), this gives

you the αi.

I To compute the class label of a test point X, we need to
understand how we can recover the primal variables w and b
from the dual variables α. This works as follows.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

1

Dual SVM in practice (2)

Recover the primal optimal variables w, b from the dual
solution α:

I To compute w: directly use (∗∗): w =
∑

i αiYiXi

I To compute b, we need to exploit the KKT conditions of the
soft margin SVM. As we did not put all details of the soft
margin deriviation on the slides, here is the summary:

(i) αi = 0 implies that the slack variable ξi = 0 and that the
point Xi is outside of the margin and correctly classified.

(ii) 0 < αi < C/n implies that the corresponding point sits
exactly on the margin. In particular, we then have
Yi(〈w,Xi〉+ b) = 1.

(iii) αi = C/n implies that the slack variable ξi > 0. The
corresponding points sit either inside the margin (still on the
correct side) or on the wrong side of the hyperplane.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

2

Dual SVM in practice (3)

To compute b, we thus select a point Xj on the margin as in
case (ii) above, that is an index j with 0 < αj < C/n, and
then solve Yj(〈w,Xj〉+ b) = 1) for b.

To increase numerical stability, we might use all such points
Xj and average the resulting values of b.

EXERCISE: USE THE LAGRANGE APPROACH TO DERIVE
THE DUAL OF THE SOFT MARGIN SVM, AND USE THE
KKT CONDITIONS TO VERIFY THE THREE CASES (i)-(iii)
ABOVE.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

3

Dual SVM in practice (4)

Now we can evaluate the label of a test point X:

Yi = sign(〈w,X〉+ b)

with w and b as on the previous slide:

〈w,X〉+b = 〈
∑
i

αiYiXi, X〉+ b

=
∑
i

αiYi〈Xi, X〉+

+
1

|J |
∑
j∈J

(
Yj −

∑
i

Yiαi〈Xi, Xj〉
)

where J = {j|0 < αj < C/n}. Note that this formula just depends
on the αi.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

4

In practice: solve the primal or the dual?

In practice: Solve the primal or dual problem?

I Because we know that for quadratic problems we have strong
duality, we could either solve the primal or the dual problem.

I The primal problem has d+ 1 variables (where d is the
dimension of the space), and n constraints (where n is the
number of training points). If d is small compared to n, then it
makes sense to solve the primal problem.

I The dual problem has n variables and n+ 1 constraints. If d is
large compared to n, then it is better to solve the dual
problem. In most SVM libraries, this is the default.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

5

Important properties of SVMs

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

6

Solution as linear combination

Representation of the solution: From (∗∗) we see immediately
that the solution vector w can always be expressed as a linear
combination of the input points: w =

∑
i αiYiXi. This is very

important for the kernel version of the algorithm (; representer
theorem, see later).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

7

Support vectors

Support vector property:

I KKT conditions in the hard margin case tell us: Only Lagrange
multipliers αi that are non-zero correspond to active
constraints (the ones that are precisely met). Formally,

αi

(
Yif(Xi)− 1

)
= 0

A similar statement holds for the soft margin case, there the αi
are only non-zero for points on the margin, in the margin, or
on the wrong side of the margin.

I In our context: Only those αi are non-zero that correspond to
points that lie exactly on the margin, inside the margin or on
the wrong side of the hyperplane. The corresponding points
are called support vectors.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

8

Support vectors (2)

I So the solution can be expressed just by the coefficients of the
support vectors.

I In low-dimensional spaces this property means that we have a
sparse solution vector w. But note that sparsity is not
necessarily true in very high-dimensional spaces (then
essentially all points sit on the margin).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
6

9

Scalar products

We can see that all the information about the input points Xi that
enters the optimization problem is expressed in terms of scalar
products:

I 〈Xi, Xj〉 in the dual objective function

I 〈x,Xi〉 and 〈Xi, Xj〉 in the evaluation of the target function
on new points

This is going to be the key point to be able to apply the kernel trick.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

0

Exercise

It might be instructive to solve the following exercise:
Input data: x1 = (1, 0); y1 = +1;x2 = (−1, 0); y2 = −1.
Primal problem:

I Write down the hard margin primal optimization problem and
solve it using the Lagrange approach.

I Write down the soft margin primal optimization problem and
solve it using the Lagrange approach.

Dual problem:

I Write down the dual hard margin optimization problem and
solve it.

I Write down the dual soft margin primal optimization problem
and solve it.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

1

Exercise (2)

I Use the dual solution to recover the solution of the primal
problem. Compare the values of the objective functions at the
dual and primal solution.

I Determine the support vectors.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

2

History

I Vladimir Vapnik is the “inventor” of the SVM (and, in fact, he
laid the foundations of statistical learning theory in general).

I The hard margin SVM and the kernel trick was introduced by
Boser, Bernhard; Guyon, Isabelle; and Vapnik, Vladimir. A
training algorithm for optimal margin classifiers. Conference on
Learning Theory (COLT), 1992

I This was generalized to the soft margin SVM by Cortes,
Corinna and Vapnik, Vladimir. ”Support-Vector Networks”,
Machine Learning, 20, 1995.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

3

Summary: linear SVM

I Input data: X = Rd, Y = {±1}
I Function class: linear functions of the form f(x) = 〈w, x〉+ b

I Want to select hyperplane as to maximize the margin

I Soft margin SVM has interpretation as regularized risk
minimization with respect to the Hinge loss and with
L2-regularization

I Is a quadratic optimization problem

I Convex duality leads to the following key properties of the
solution:
I Solution w∗ can always be expressed as linear combination of

input points
I Sparsity: only points that are on, in or on the wrong side of

the margin contribute to this linear combination
I To compute and evaluate the solution, all we need are scalar

products of input points.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

4

Kernel methods for
supervised learning

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

5

Positive definite kernels

Introductory literature:

I Schölkopf / Smola Section 2

I Shawe-Taylor / Cristianini Section 2 and 3

For a deeper mathematical treatment of kernels see the following
book:

I Steinwart, Christmann: Support Vector Machines. Springer,
2008.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

6

Intuition

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

7

Linear methods — disadvantages

We have seen several linear methods for regression and
classification. Even though these methods are conceptually
appealing, they have a number of disadvantages.

I Linear functions are restrictive. This can be of advantage to
avoid overfitting, but often it leads to underfitting. For
example, in classification we could not find any hyperplane to
separate the following example:

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

8

Linear methods — disadvantages (2)

I Alternatively, we could use a feature map with basis functions
Φi to represent more complex functions, say polynomials. But:

I It is not so obvious which are ”good” basis functions.
I We need to fix the basis before we see the data. This means

that we need to have very many basis functions to be flexible.
This leads to a very high dimensional representations of our
data.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
7

9

Linear methods — disadvantages (3)

The goal of kernel methods is to introduce a non-linear
component to linear methods:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

0

Starting point: Key observation for SVMs

To run the linear support vector machine algorithm, we do not need
to compute Φ(X) explicitly — all we need to know are scalar
products of the form 〈Φ(Xi),Φ(Xj)〉:
I The dual objective function only contains terms of the form
〈Xi, Xj〉, the Xi never occur “alone”.

I To evaluate the solution at the test point, again we only need
to be able to compute scalar products of the input, we never
need to know coordinates of the input points.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

1

Starting point: Key observation for SVMs (2)

Let us be more explicit:

I Assume the data lives in Rd.

I Introduce the shorthand notation k(x, y) := 〈x, y〉.
Then we can write the SVM optimization problem purely in terms
of the function k (the Xi never occur outside the function k):

maximize
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjYiYjk(Xi, Xj)

subject to 0 ≤ αi≤ C/n ∀i = 1, ..., n
n∑
i=1

αiYi = 0

(and the same goes for the function that evaluates the results on
test points).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

2

Idea: Kernels replacing feature maps

Assume we are in a feature mapping scenario, but we know how to
compute scalar products explicitly, that is we know a function
k : X × X → R with

k(xi, xj) = 〈Φ(xi),Φ(xj)〉.

The idea is that it might even be possible to avoid computing the
embeddings Φ(Xi) and compute the scalar products directly via the
function k.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

3

Idea: Kernels replacing feature maps (2)

This is what we want to achieve:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

4

Kernel methods — the overall picture

What we want to do:

I Given points in some abstract space X
I Would like to (implicitly) embed the points into some space Rd

via a (non-linear) feature map Φ

I In that space, we use a linear method like an SVM

I Ideally, we never compute the embedding directly.

I Instead we want to use a “kernel function ” to compute

k(x, y) = 〈Φ(x),Φ(y)〉.

This approach is called the “kernel trick” and the
corresponding algorithms are called “kernel methods”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

5

Kernel methods — the overall picture (2)

In the following we try to make this idea formal.

I How do the functions k need to look like? (; kernels)

I Once we have an appropriate k, what is the corresponding
feature map? (; RKHS)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

6

Definition and properties of kernels

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

7

Kernel function — definition

Let X be any space. A symmetric function k : X × X → R is
called a kernel function if for all n ≥ 1, x1, x2, ..., xn ∈ X and
c1, ..., cn ∈ R we have

n∑
i,j=1

cicjk(xi, xj) ≥ 0.

Given a set of points x1, ..., xn ∈ X , we define the corresponding
kernel matrix as the matrix K with entries kij = k(xi, xj).

The condition above is equivalent to saying that c′Kc ≥ 0 for all
c ∈ Rn.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

8

Kernel function — definition (2)

Remarks:

I It is NOT true that a function that satisfies k(x, y) ≥ 0 for all
x, y ∈ X is positive definite!!!

EXERCISE: FIND A COUNTEREXAMPLE (try to construct a
matrix with positive entries that is not pd).

I In the maths literature, the above condition would be called
“positive semi-definite” (and it would be called “positive
definite” only if the inequality is strict).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
8

9

Scalar products lead to kernels

Observe:
For any mapping Φ : X → Rd the function defined (!) by

k : X × X → R, k(x, y) = 〈Φ(x),Φ(y)〉

is a valid kernel!

Proof sketch:

I Symmetry: clear

I Positive definiteness: follows from the positive definiteness of
the scalar product, EXERCISE!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

0

Scalar products lead to kernels (2)

In this case, the kernel matrix is given as follows:

I Let X1, ..., Xn ∈ X be data points, Φ : X → Rd a feature map.

I Denote by Φ the n× d-matrix that contains the data points
Φ(Xi) as rows.

I Then the matrix Φ ·Φt ∈ Rn×n coincides with the
corresponding kernel matrix K with entries
kij = 〈Φ(Xi),Φ(Xj)〉 = Φ(Xi)Φ(Xj)

t.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

1

Intuition: kernels as similarity functions

I The scalar product can be interpreted as a measure of how
similar two points are.

I We now use the same intuition for a kernel. The kernel is a
measure of how “similar” two points in the feature
space are.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

2

Example: linear kernel

The linear kernel. The trivial kernel on Rd defined by the
standard scalar product:

k : Rd × Rd → R, k(x, y) = 〈x, y〉

Is obviously a kernel.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

3

Example: cosine similarity

I Assume your data lives in Rd and is normalized such that all
data points have (roughly) norm 1. Then they sit on the
hypersphere (surface of the ball of radius 1).

I Points are similar if the corresponding vectors “point to the
same direction”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

4

Example: cosine similarity (2)

I As a measure how similar the points are, we use the cosine of
the angle between the two points.
I cosine = 1 ⇐⇒ points agree
I cosine = 0 ⇐⇒ points are orthogonal

I If the data points are normalized, then the cosine of the angle
spanned by two points x and y is given by the scalar product
〈x, y〉.

Is obviously a kernel.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

5

Example: the Gaussian kernel

On Rd, define the following kernel:

k : Rd × Rd → R, k(x, y) = exp

(−‖x− y‖2

2σ2

)
where σ > 0 is a parameter.

One can prove that this is indeed a kernel, this is not obvious at
all!!! (WHAT DO WE NEED TO PROVE?).

See the text books if you are interested.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

6

Example: the Gaussian kernel (2)

Induced notion of similarity:

Two points are considered “very similar” if they are of distance at
most σ, “somewhat similar” if they are at distance (roughly) at
most 3σ, and “pretty dissimilar” if they are further away than that.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

7

Example: the Gaussian kernel (3)

Note: the Gaussian kernel is also called rbf-kernel for “radial basis
function”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

8

Example: polynomial kernel

X = Rd.

k(x, y) = (x′y + c)k

where c > 0 and k ∈ N.

Not very useful for practice, but often mentioned, hence I put it on
the slides.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

3
9

9

Example: kernels based on explicit feature maps

I Assume we explicitly constructed a feature space embedding
such as a bag-of-words representation for texts or a
bag-of-motifs representation of graphs.

I Then simply use the linear kernel in the feature space Rd.

Induced similarity functions:

I books are considered “similar” if they get bought by the same
users.

I Graphs are considered “similar” if they contain the same
motifs.

I etc ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

0

Example: kernel between vertices in a graph

Application scenario:

I Say we want to classify persons in a social network, whether
they prefer samsung or apple phones. All we know about the
persons are their friendships.

I We consider people as “similar” if they have similar sets of
friends. We want to encode this notion of similarity by kernel
function.

I Then we classify with an SVM.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

1

Example: kernel between vertices in a graph (2)

There exists a large number of graph kernels. One big family is
based on paths between vertices:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

2

Example: kernel between vertices in a graph (3)

To define a kernel between vertices on a graph:

I Consider a directed graph with edge weights in [0, 1], where
this value encodes a similarity (high means very similar). For a
directed path π = v1, ..., vk define the weight of the path as
w(π) = Πk−1

j=1w(vj, vj+1)

I For each pair of vertices v, ṽ consider the set Πk(v, ṽ) which
consists of all paths from v to ṽ of lengths at most k

I Now define

s(v, ṽ) =

{∑
π∈Πk

w(π) if Πk(v, ṽ) 6= ∅
0 otherwise

and the symmetric kernel function

k(v, ṽ) = s(v, ṽ) + s(ṽ, v)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

3

Example: kernel between vertices in a graph (4)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

4

Example: kernel between vertices in a graph (5)

I Note that in general this kernel cannot be interpreted in terms
of a simple feature vector! (WHY EXACTLY?)

I This principle leads to the family of diffusion kernels, we
won’t discuss details.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

5

Simple rules for dealing with kernels

I In general, it is really difficult to prove that a certain function
k is indeed a kernel (WHAT DO WE HAVE TO PROVE?)

I In practice, it usually does not work to come up with a nice
similarity function and “hope” that it is a kernel.

I But at least, there are some simple rules that can help to
transform and combine elementary kernels:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

6

Simple rules for dealing with kernels (2)

Assume that k1, k2 : X × X → R are kernel functions. Then:

I k̃ = α · k1 for some constant α > 0 is a kernel.

I k̃ = k1 + k2 is a kernel

I k̃ = k1 · k2 is a kernel

I The pointwise limit of a sequence of kernels is a kernel.

I For any function f : X → R, the expression
k̃(x, y) := f(x)k(x, y)f(y) defines a kernel.

In particular, k̃(x, y) = f(x)f(y) is a kernel.

Proof. EXERCISE.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

7

(∗) Kernel matrix: pd or psd?

Due to a common confusion, let me stress again:

I A scalar product is positive definite. This means that the
property 〈v, v〉 > 0 holds (with strict inequality!) for all v 6= 0

I The kernel matrix is positive semi-definite in the sense that
c′Kc ≥ 0 (greater or equal!).

WHY IS THIS NOT A CONTRADICTION?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

8

(∗) Kernel matrix: pd or psd? (2)

I Consider data X1, ..., Xn ∈ Rd.

I Then the kernel matrix coincides with K = XX t.

I Let v be an eigenvector of K. We have

v′XX ′v = v′Kv = λv′v = λ

I For eigenvectors with λ > 0: fine.

I For eigenvectors with λ = 0: Then X ′v = 0, and the scalar
product of the 0-vector with itself is 0. Fine as well.

In particular: The rank of the kernel matrix is at most the
dimension of the underlying vector space. So if n > d, the kernel
matrix must have eigenvalues 0. EXERCISE!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
0

9

Reproducing kernel Hilbert space and feature

maps

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

0

Kernels do what they are supposed to do

Here is the justification for why we defined kernels the way we did:

Theorem 12 (Kernel implies embedding)

A function k : X × X → R is a kernel if and only if there exists a
Hilbert space H and a map Φ : X → H such that
k(x, y) = 〈Φ(x),Φ(y)〉.

If you have never heard of Hilbert spaces, just think of the space
Rd. The crucial properties are:

I H is a vector space with a scalar product 〈·, ·〉H
I Space is complete (all Cauchy sequences converge)

I Scalar product gives rise to a norm: ‖x‖H := 〈x, x〉H

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

1

Kernels do what they are supposed to do (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

2

Kernels do what they are supposed to do (3)

WHICH DIRECTION OF THE THEOREM IS EASY, WHICH ONE
IS DIFFICULT?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

3

Kernels do what they are supposed to do (4)

Proof of “⇐”
Clear by definition of the kernel (we defined the kernel exactly such
that this direction holds).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

4

Kernels do what they are supposed to do (5)

Proof of “⇒”
We have to prove the following:

Given X and k, there exists]a vector space H with a scalar product
〈·, ·〉H, and a mapping Φ : X → H such that

k(x, y) = 〈Φ(x),Φ(y)〉H

for all x, y ∈ X .

We now introduce the Reproducing Kernel Hilbert Space (RKHS),
a scalar product on this space and a corresponding feature
mapping Φ. ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

5

Reproducing kernel Hilbert space (RKHS)

As vector space we are going to use a space of functions:

I Consider a mapping Φ : X → RX (where RX denotes the
space of all real-valued functions from X to R), defined as

x 7→ Φ(x) := kx := k(x, ·)

That is, the point x ∈ X is mapped to the function
kx : X → R, kx(y) = k(x, y).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

6

Reproducing kernel Hilbert space (RKHS) (2)

I Now consider the images {kx|x ∈ X} as a spanning set of a
vector space. That is, we define the space G that contains all
finite linear combinations of such functions:

G := {
r∑
i=1

αik(xi, ·)
∣∣ αi ∈ R, r ∈ N, xi ∈ X}

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

7

Reproducing kernel Hilbert space (RKHS) (3)

I Define a scalar product on G as follows:
I For the spanning functions we define

〈kx, ky〉 = 〈k(x, ·), k(y, ·)〉 := k(x, y)

I For general functions in G the scalar product is then given as
follows: If g =

∑
i αik(xi, ·) and f =

∑
j βjk(yi, ·) then

〈f, g〉G :=
∑
i,j

αiβjk(xi, yj)

To make sure that this is really a scalar product, we need to
prove two things (EXERCISE!):
I Check that this is well-defined (not obvious because there

might be several different linear combinations for the same
function).

I Check that it satisfies all properties of a scalar product
(crucial ingredient is the fact that k is positive definite.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

8

Reproducing kernel Hilbert space (RKHS) (4)

I Finally, to make G a proper Hilbert space we need to take its
topological completion G, that is we add all limits of Cauchy
sequences.

I The resulting space H := G is called the reproducing kernel
Hilbert space.

I By construction, it has the property that

k(x, y) = 〈Φ(x),Φ(y)〉.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
1

9

(∗) RKHS, further properties

The reproducing property:

Let f =
∑

i αik(xi, ·). Then 〈f, k(x, ·)〉 = f(x).

Proof.

〈k(x, ·), f〉 = 〈k(x, ·),
∑
i

αik(xi, ·)〉

=
∑
i

αi〈k(xi, ·), k(x, ·)〉

=
∑
i

αik(xi, x)

= f(x)

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

0

(∗) RKHS, further properties (2)

For those who know a bit of functional analysis:

I Let H be a Hilbert space of functions from X to R. Then H is
a reproducing kernel Hilbert space if and only if all evaluation
functionals δx : H → R, f 7→ f(x) are continuous.

I In particular, functions in an RKHS are pointwise well defined
(as opposed to, say, function in an L2-space which are only
defined almost everywhere).

I Given a kernel, the RKHS is unique (up to isometric
isomorphisms). Given an RKHS, the kernel is unique.

I There is a close connection to the Riesz representation
theorem.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

1

The representer theorem

I In general, the RKHS is an infinite-dimensional vector space (a
basis has to contain infinitely many vectors).

I The next theorem shows that in practice, we only have to deal
with a finite-dimensional subspace.

I This subspace is still pretty large, later we discuss how to avoid
overfitting!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

2

The representer theorem (2)

Setup:

I Assume we are given a kernel k. Denote the corresponding
RKHS with H, and the norm and scalar product in the space
by ‖ · ‖H and 〈·, ·〉H.

I Assume that we want to learn a linear function f : H → R
that acts on the RKHS H of a kernel k.

I All such functions have the form f(x) = 〈w, x〉H for some
w ∈ H, that is we can identify the function f with the
corresponding vector w ∈ H.
(for maths people: reason is that the dual of a real Hilbert
space is isomorphic to this Hilbert space)

In this setup, we can prove the following theorem:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

3

The representer theorem (3)

Theorem 13 (Representer theorem)

Consider a regularized risk minimization problem of the form

minimize
w∈H

Rn(w) + λΩ(‖w‖H) (∗)

where X arbitrary input space, Y output space, k : X × X → R a
kernel, H the corresponding RKHS. For a given training set
(Xi, Yi)i=1,...,n ⊂ X × Y and classifier fw(x),= 〈w, x〉H, let Rn be the
empirical risk of the classifier with respect to a loss function `, and
Ω : [0,∞[→ R a strictly monotonically increasing function. Then
problem (∗) always has an optimal solution of the form

w∗ =

n∑
i=1

αik(Xi, ·).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

4

The representer theorem (4)

Proof intuition.

I Split a the space H into the subspace
Hdata := span{kX1, ..., kXn} (induced by the data) and its
orthogonal complement Hcomp. Then H = Hdata +Hcomp.

I Now express each vector w ∈ H as w = wdata + wcomp.

I It is not difficult to see that the predictions of all functions
with the same wdata agree on all training points, they do not
depend on wcomp.

I So in particular, the loss w is not affected by wcomp.

I For fixed wdata, the norm of w is smallest if wcomp is 0.

I So if we had a solution w∗ where wcomp would be non-zero, we
could get a better solution by setting wcomp to zero.

I Thus we can always find an optimal solution with wcomp = 0.

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

5

The representer theorem (5)

Intuitively, this theorem implies the following:

I We have seen that for any given kernel k there exists a feature
space H.

I However, this space was a function space that usually is an
infinite-dimensional Hilbert space.

I The representer theorem now says that for any finite data set
with n points, we don’t need to deal with all the infinitely
many dimensions, but we are only confronted with a space of
at most n dimensions.

I As any n-dimensional subspace of a Hilbert space is isomorphic
to Rn, we can simply assume that our feature map goes to Rn.

I This makes our lives much easier.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

6

(∗) Injective feature map

Note that without any further assumptions, the feature map
Φ : X → H of a kernel k does not need to be injective!

(Simple counterexample: k(x, y) = 〈x, y〉2).

However, a kernel for which the feature map is not injective might
not be too useful (WHY?)

A particular class of “nice” kernels are univesal kernels:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

7

(∗) Universal kernels

A continuous kernel k on a compact metric space X is called
universal if the RKHS H of k is dense in C(X), that is for every
function g ∈ C(X) and all ε > 0 there exists a function f ∈ H
such that ‖f − g‖∞ ≤ ε.

Intuition: with a universal kernel, we can approximate pretty much
any function we like: all continuous functions, and all functions that
can be approximated by continuous functions (such as step
functions). In particular, we can separate any pair of disjoint
compact subsets from each other.

Example:

I The Gaussian kernel with fixed kernel width σ on a compact
subset X of Rd is universal.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

8

(∗) Universal kernels (2)

I Related statements can also be proved if we let σ → 0 slowly
as n→∞.

I Polynomial kernels are not universal.

The kernel being universal is a necessary requirement if we want to
construct learning algorithms that are uniformly Bayes consistent.

Universal kernels have many nice properties. For example, their
feature maps are injective.

For details and proofs see the book by Steinwart / Christmann:
Support Vector Machines. Springer 2008.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
2

9

Kernels — history

I Reproducing kernel Hilbert spaces play a big role in
mathematics, they have been invented by Aronszajn in 1950.
He already proved all of the key properties.
Aronszajn. Theory of Reproducing Kernels. Transactions of
the American Mathematical Society, 1950

I The feature space interpretation has first been published by
Aizerman 1964, but in a different context. At that time the
potential of the method had not been realized.
Aizerman, Braverman, Rozonoer: Theoretical foundations of
the potential function method in pattern recognition learning.
Automation and Remote Control, 1964.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

0

Kernels — history (2)

I Then it was rediscovered in the context of the SVM in 1992:
Boser, Bernhard E.; Guyon, Isabelle M.; and Vapnik, Vladimir
N.; A training algorithm for optimal margin classifiers.
Conference on Learning Theory (COLT), 1992

I Since then, kernels and the kernel trick became extremely
popular, the first text books already appeared pretty soon, e.g.
Schölkopf / Smola 2002 and Shawe-Taylor / Cristianini 2004.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

1

Kernel algorithms

In the following, we are going to see a couple of algorithms that all
use the kernel trick. The roadmap is always the same:

I Start with a linear algorithm

I Try to write this algorithm (both training and testing parts) in
such a way that the only access to training and testing points
is in terms of scalar products (this is often possible but not
always; sometimes it is simple, sometimes it is difficult).

I Then replace the scalar product by the kernel function.

In the machine learning lingo: we kernelize the algorithm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

2

Support vector machines with kernels

Literature:

I Schölkopf / Smola

I Shawe-Taylor / Cristianini

I A very theoretical / mathematically deep treatment of the
theory of kernels and support vector machines is the following
book:
Steinwart / Christmann: Support Vector Machines. Springer,
2008.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

3

SVMs with kernels

I Consider the dual (!) SVM problem

I Have seen: the only way it accesses the training points in
terms of scalar products

I So replace 〈Xi, Xj〉 by k(Xi, Xj) everywhere

I The result is the dual of the “kernelized” SVM.

Formally, this looks as follows:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

4

SVMs with kernels (2)

Given input training points (Xi, Yi)i=1,...,n and a kernel function
k : X × X → R.

Kernelized dual SVM problem:

maximize
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjYiYjk(Xi, Xj)

subject to 0 ≤ αi≤ C/n ∀i = 1, ..., n
n∑
i=1

αiYi = 0

Solving this problem gives the dual variables α.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

5

SVMs with kernels (3)

Computing labels at new points: Have already seen how to
compute the label of a test points for known α:

• w =
∑

i αiYiXi

• b = Yj −
∑

i Yiαi〈Xi, Xj〉 for some j such that C/n > αj > 0.

• Label of test point X given by 〈w,X〉+ b

In kernel language:

〈w,X〉+ b = 〈
∑
i

αiYiXi, X〉+ b

=
∑
i

αiYik(Xi, X) +
(
Yj −

∑
i

Yiαik(Xi, Xj)
)

This is the approach that is typically used in practice.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

6

The power of kernels

Why is the kernel framework so powerful? Let’s look at one
particular example, the Gaussian kernel.

I Have seen that the decision function of a kernelized SVM has
the form

f(x) =
∑
i

βik(x,Xi) + b

If k is a Gaussian kernel:

f(x) =
∑
i

βi exp(−‖x−Xi‖2/(2σ2))

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

7

The power of kernels (2)

I Important property: we can approximate any arbitrary
continuous function g : Rd → R by a sum of Gaussian kernels.

In particular, we can approximate any reasonable “decision
surface” in Rd by an SVM with Gaussian kernel:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

8

The power of kernels (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
3

9

The power of kernels (4)

I Kernels with this property are called “universal” kernels. One
can prove that SVMs with universal kernels are universally
consistent in the sense we defined in the very beginning of the
lecture, that is they approximate the Bayes risk.

I Note: if the kernel is universal, the underlying function class is
huge (all continuous functions can be approximated). All the
more important is that we regularize!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

0

Regularization interpretation

Recall that we interpreted the linear primal SVM problem in terms
of regularized risk minimization where the risk was the Hinge loss
and we regularized by L2- regularizer ‖w‖2.

How does it look for the kernelized SVM?

I The loss function is still the Hinge loss because the part with
the variables ξi does not change.

I But the regularizer is now ‖w‖2 where w is a vector in the
feature space, and the norm is taken in the feature space.

I By the representer theorem,

‖w‖2 = 〈
∑
i

βiΦ(Xi),
∑
j

βjΦ(Xj)〉 = βtKβ

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

1

Regularization interpretation (2)

I It is not so easy to gain intuition about this norm (obviously it
depends on the kernel). But at least we can say that the
regularization “restricts the size of the function space” (in the
sense that there are fewer functions that can be expressed with
w with low norm than with high norm).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

2

Regularization interpretation (3)

This regularization interpretation is really important, otherwise the
SVM “could not work”:

I We implicitly embed our data in a very high-dimensional space.

I In high-dimensional spaces, it happens very easily that we
overfit.

I The only way we can circumvent this is to regularize.

I This is what the kernelized SVM does.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

3

Kernel SVMs in practice

If you want to use SVMs in practice, here is the vanilla approach:

I Come up with a good kernel that encodes a “natural notion”
of similarity (sometimes easy, sometimes not).

I Train an SVM by some standard package (there are lots of
SVM packages out there; for matlab, my favorite one is
libSVM)

I MAKE SURE YOU SET ALL PARAMETERS BY CROSS
VALIDATION!
The results are very sensitive to the choice of the
regularization parameter C and the kernel parameters (such as
σ for the Gaussian kernel).

Later in the lecture we will look at more preprocessing steps that
you should use (; non-vanilla-version).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

4

(∗) Kernelizing the SVM primal

AS AN EXERCISE: IT IS POSSIBLE TO EXPRESS THE PRIMAL
OPTIMIZATION PROBLEM IN TERMS OF KERNELS?

minimizew∈H‖w‖2
H +

C

n

n∑
i=1

ξi

subject to Yi
(
〈w,Φ(Xi)〉H

)
≥ 1− ξi (i = 1, ..., n)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

5

(∗) Kernelizing the SVM primal (2)

I A priori, we cannot write the primal function just in terms of
scalar products because it contains a scalar product between
the variable we are looking for (w) and the input points (Xi).

I But according to the representer theorem, the solution vector
w can always be written as a linear combination of input
feature vectors, that is w =

∑
i βiΦ(Xi).

I Consequently,

‖w‖2 = 〈w,w〉 =
∑
i,j

βiβjk(Xi, Xj)

and

〈w,Φ(Xj)〉 =
∑
i

βi〈Φ(Xi),Φ(Xj)〉 =
∑
i

βik(Xi, Xj)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

6

(∗) Kernelizing the SVM primal (3)

I With this knowledge we can also kernelize the primal problem:

minimize
β∈Rd,b∈R,ξ∈Rd

1

2

∑
i,j

βiβjk(Xi, Xj) +
C

n

n∑
i=1

ξi

subject to Yi
(n∑
j=1

βjk(Xj, Xi) + b
)
≥ 1− ξi (i = 1, ..., n)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

7

Why are SVMs so successful?

Before SVMs, there were “old-day” neural networks. They had a
couple of drawbacks:

I Lots of parameters to tune (design choices to make: how many
neurons, how many layers, etc)

I Training a neural network is a non-convex problem

I To be able to successfully work with neural networks one needs
a large amount of experience.

Then came SVMs, they revolutionized the field. Why?

I Convex optimization problem, easy to implement

I Very few variables to tune (C, and maybe a kernel parameter
such as σ in the Gaussian kernel), this can be done by cross
validation

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

8

Why are SVMs so successful? (2)

I Appealing from a conceptual side (large margin principle) and
also from the mathematical point of view (support vector
property, representer theorem, etc).

I The kernel framework boosts the potential of the SVM to the
non-linear regime, but does not lead to excessive overfitting.

I Statistical learning theory shows many nice guarantees about
the SVM (consistency, etc).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
4

9

Why are SVMs so successful? (3)

By now, neural networks are back in the form of deep networks:

I Deep networks are very successfull in cases where there exists
lots of highly structured data (speech, text, images).

I Main difference to 30 years ago: computational power
increased a lot, some good heuristics have been worked out.

I From theory point of view, not understood very well why they
actually work.

Comparing SVMs and Deep networks, both tend to be successful in
very different types of applications.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

0

Summary: SVM with kernels

I Given data points in some space X and a kernel function k on
this space

I Want to solve classification.

I By the kernel trick, we embed our data points into some
abstract feature space and use a linear classifier in this space.

I The inductive principle is that the margin in this feature space
should be large.

I All this leads to a convex optimization problem that can be
solved efficiently.

I There are lots of important properties (support vector
property, representer theorem, etc).

I The kernel SVM is equivalent to regularized risk minimization
with the Hinge loss and regularization by the squared norm in
the feature space.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

1

Summary: SVM with kernels (2)

The kernel SVM is one of the most important classification
algorithms that is out there. If you just remember one thing
from this whole course, try to remember SVMs ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

2

Regression methods with kernels

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

3

Kernelized least squares

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

4

Least squares revisited

We had already seen in the beginning how to solve least squares
regression when we have an explicit feature mapping Φ:

Given data in some space X , a mapping Φ : X → Rd, we
considered the least squares problem in the feature space

minimize
w∈Rd

1

n

n∑
i=1

(Yi − 〈Φ(Xi), w〉)2

and found its analytic solution w∗ = (ΦtΦ)−1ΦtY .

We are now going to rewrite everything using kernels.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

5

Kernelizing least squares (first method via

representer theorem)

I The representer theorem tells us that the least squares problem
always has a solution of the form

w∗ =
n∑
j=1

αjΦ(Xj).

I Plugging this in the objective gives

minimize
w∈Rd

1

n

n∑
i=1

(Yi − 〈Φ(Xi), w〉)2

⇐⇒ minimize
α∈Rn

1

n

n∑
i=1

(Yi −
n∑
j=1

αj 〈Φ(Xi),Φ(Xj)〉︸ ︷︷ ︸
kij

)2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

6

Kernelizing least squares (first method via

representer theorem) (2)

I In matrix notation:

minimize
α∈Rn

1

n
‖Y −Kα‖2

I By taking the derivative with respect to α and exploiting that
K is pd it is easy to see that the solution is given as
α∗ = K−1Y (EXERCISE!).

I To evaluate the solution on a new data point x , we need to
compute

f(x) = 〈Φ(x), w∗〉 =
∑
j

α∗j〈Φ(x),Φ(Xj)〉 =
∑
j

α∗jk(x,Xj)

I So we can express the optimization problem, its
solution and the evaluation function purely in terms of
kernel functions. We have kernelized least squares.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

7

(∗) Kernelizing least squares (second method via

SVD)

Recap: the kernel matrix is ΦΦt

I Let X1, ..., Xn ∈ X be data points, Φ : X → Rd a feature map.

I Denote by Φ the n× d-matrix that contains the data points
Φ(Xi) as rows.

I Then the matrix Φ ·Φt ∈ Rn×n coincides with the
corresponding kernel matrix K with entries
kij = 〈Φ(Xi),Φ(Xj)〉 = Φ(Xi)Φ(Xj)

t.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

8

(∗) Kernelizing least squares (second method via

SVD) (2)

Proposition 14 (Matrix Identities)

For any n× d-matrix Φ we have

(ΦtΦ)−1Φt = Φt(ΦΦt)−1

Proof of the proposition.

I Let Φ = UΣV t the singular value decomposition of Φ.

I It is straightforward to prove that (ΦtΦ)−1Φt = V Σ+U t (have
seen this already when we derived least squares).

I It is even more straightforward to see that
Φt(ΦΦt)−1 = V Σ+U t. ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
5

9

(∗) Kernelizing least squares (second method via

SVD) (3)

Using this proposition and the fact that the kernel matrix K is
given as ΦΦt we can rewrite the least squares solution as

w∗ = (ΦtΦ)−1ΦtY = Φt(ΦΦt)Y −1= ΦtK−1Y

Denote α := K−1Y . With this notation, the evaluation function is

f(x) = 〈w∗,Φ(x)〉 = (w∗)tΦ(x)

= (ΦtK−1Y)tΦ(x) = Y tK−1Φ Φ(x)

= αtΦΦ(x)

=
n∑
j=1

αjΦ(Xj)
tΦ(x)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

0

(∗) Kernelizing least squares (second method via

SVD) (4)

=
n∑
j=1

αjk(Xj, x)

So we can express the optimization problem, its solution
and the evaluation function purely in terms of kernel
functions. We have kernelized least squares.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

1

Kernel ridge regression

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

2

Ridge regression

Recall ridge regression in feature space:

minimize
w∈Rd

1

n

n∑
i=1

(Yi − 〈w,Φ(Xi)〉)2 + λ‖w‖2

Again use the representer theorem to express w as a linear
combination of input points:

w =
n∑
j=1

αjΦ(Xj)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

3

Ridge regression (2)

This leads to the following kernelized ridge regression problem:

minimize
α∈Rn

1

n
‖Y −Kα‖2 + λαtKα

The solution is given by

α = (nλI +K)−1Y

As before, we can compute the prediction for a new test point just
using kernels.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

4

A subtle difference: Ridge regression vs. kernel

ridge regression

I Given points in space X . Want to compare:
I Ridge regression using basis functions Φi(x) = k(Xi, x)
I Kernel ridge regression using kernel k and feature map Φ

I In both cases, we work in the same function space, namely the
one spanned by the functions Φi.

I So no matter which function we use, the least squares error is
the same in both approaches.

I However, the regularizers are different:
I In the standard case we regularize by ‖α‖2.
I In the kernel case we regularize by αtKα.

I This is as for linear and kernel SVMs ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

5

Kernel version of LASSO

Note: the trick that we used to derive the kernel version of ridge
regression does NOT work for Lasso (WHY????)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

6

How to center and normalize in the feature space

Literature:

I Shawe-Taylor / Cristianini Section 5.1

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

7

What we want to do

I Have seen: many algorithms require that the data points are
centered (have mean = 0) and are normalized.

I However, now we want to work in feature space, but without
explicitly working with the coordinates in feature space.

I So how can we do this ???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

8

Centering in the feature space

To center points in the feature space, we would need to perform
the following calculations:

I Compute center: Φ̄ := 1/n
∑

i Φ(xi)

I Replace Φ(xi) by Φ(xi)− Φ̄

Not obvious that we can express this in terms of scalar products...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
6

9

Centering in the feature space (2)

To proceed, assume that we can compute Φ̄ and let’s compute the
kernel values between the centered points:

K̃ij := 〈Φ(xi)− Φ̄,Φ(xj)− Φ̄〉

= 〈Φ(xi)− 1/n
n∑
s=1

Φ(xs),Φ(xj)− 1/n
n∑
t=1

Φ(xt)〉

= k(xi, xj)−
1

n

n∑
s=1

k(xi, xs)−
1

n

n∑
t=1

k(xj, xt)

+
1

n2

n∑
s,t=1

k(xs, xt)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

0

Centering in the feature space (3)

In matrix notation, this means that we can compute the centered
kernel matrix as follows:

K̃ = (K − 1nK −K1n + 1′nK1n)

where 1n is the n× n matrix containing 1/n as each entry.

Good news:

I We do not have to do the centering operation explicitly.

I We can implicitly center the data by replacing the “old” kernel
matrix K by the new matrix K̃.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

1

Centering in the feature space (4)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

2

Normalizing in feature space

Assume our n data points are in Rd and we stack them in a data
matrix X as usual:

I Each row of X corresponds to one data point.

I The data matrix has dimensions n× d

Two different ways to normalize data:

I Normalize the data points, that is recale each data point such
that it has norm 1. This is equivalent to normalizing the rows
of the centered matrix to have unit norm.

I Normalize the individual features, that is rescale all columns of
the centered matrix to have norm 1. This is just a rescaling of
the coordinate axes such that the variance in each coordinate
direction is 1.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

3

Normalizing in feature space (2)

−2 0 2 4 6

0

2

4

orig data

−5 0 5

−2

0

2

points centered

−1 0 1

−0.5

0

0.5

points centered, points normalized

−0.3 −0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

points centered, features normalized

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

4

Normalizing in feature space (3)

Note:

I Normalize the points
I We will see below that there is a way to normalize points in

the feature space.
I Sometimes it helps, sometimes it hurts.
I If in doubt, use cross-validation to see whether your results

improve if you normalize or not.

I Normalize features:
I Typically this never hurts, and often helps.
I For kernel methods it is impossible to normalize the features

(we don’t know the embedding Φ explicitly, in particular we
don’t know what the features are).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

5

Normalizing in feature space (4)

To normalize the points such that they have unit norm in the
feature space:

I Assume the data points are already centered in feature space.

I Then define the normalized data point
Φ̂(X) := Φ(X)/‖Φ(X)‖.

I Observe:

〈Φ̂(X), Φ̂(Y)〉 =

〈
Φ(X)

‖Φ(X)‖ ,
Φ(Y)

‖Φ(Y)‖

〉
=
〈Φ(X),Φ(Y)〉
‖Φ(X)‖‖Φ(Y)‖

=
k(x, y)√

k(x, x)k(y, y)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

6

Normalizing in feature space (5)

So instead of first normalizing the points and then computing their
kernels we can directly compute the kernels for the normalized data
points.

So to normalize the points in feature space, we simply replace the
kernel function k by the normalized kernel function

k̂(x, y) =
k(x, y)√

k(x, x)k(y, y)
.

(VERIFY THAT THIS IS INDEED A KERNEL)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

7

When it can go wrong

Standardizing the data is a preprocessing step. As any such step, it
often helps, but sometimes can go wrong:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

8

Randomized methods:
bagging, boosting and

friends

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
7

9

(*) Random Forests
Literature:
I Original paper: Breiman: Random forests. Machine Learning

2001.
I Nice recent overview paper: G. Biau and E. Scornet. A

random forest guided tour. Test, 25(2):197-227, 2016.
I Text book: Chapters 8, 9 and 15 in

Hastie/Tibshirani/Friedman (Elements of statistical learning)
I Textbook: Chapter 18 of Shalev-Shwartz/Ben-David

(Understanding machine learning)
I Some of our own work:

I Cheng Tang, Damien Garreau, Ulrike von Luxburg: When do
random forests fail? NeurIPS 2018

I Siavash Haghiri, Damien Garreau, Ulrike von Luxburg:
Comparison-Based random forests. ICML 2018

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

0

Background: Ensemble methods

I Each individual classifier that we train might have some
particular errors.

I If we train many different classifiers (an “ensemble” of
classifiers), each of them might be “better” in some aspects.

I We now train many classifiers in parallel and in the end build a
committee in which they jointly decide. In the simplest case,
by majority vote, in other cases by more complicated weighted
approaches.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

1

Background: Bootstrap and bagging

Consider the method of cross valiadation:

I Want to estimate the test error of a classifier

I Take random subsets of training set for training, and
another random set for testing.

I To get a more reliable result, we repeat this procedure a
number of times and average the result.

In statistics, there exists a huge family of methods that follow a
similar principle: bootstrap and bagging methods.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

2

Background: Bootstrap and bagging (2)

The Bootstrap method:

I Assume you have a sample X1, ..., Xn of points and, say, an
estimate Θ̂ of a true parameter Θ of this population. You
would like to know the distribution of the estimate Θ̂ (for
example, because you want to construct confidence sets).

I You now draw a subsample of m points of the original sample
(with our without replacement), and on this subsample you
compute an estimate of the parameter you are interested in.

I You repeat this procedure B times, resulting in B bootstrap
estimates Θ̂1, ..., Θ̂B.

I This set now gives an “indication” about how your estimate is
distributed, and you can compute its mean, its variance,
confidence sets, etc.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

3

Background: Bootstrap and bagging (3)

I There exists a lot of theory, proving under which conditions
this “indication” is statistically sound (consistent).

Be aware, the estimates Θ̂b are not independent, hence
nothing here is trivial

There are many textbooks on the bootstrap, for example:

I An Introduction to the Bootstrap, by Efron and Tibshirani.

I The Jackknife and Bootstrap, by Shao and Tu

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

4

Background: Bootstrap and bagging (4)

Bagging: (short for Bootstrap aggregation)

I As in bootstrap, you generate B bootstrap samples of your
original sample, and on each of them compute the estimate
you are interested in: Θ̂1, ..., Θ̂B

I As your final estimate, you then take the average:
Θ̂bag = mean(Θ̂1, ..., Θ̂B).

I The advantage of this procedure is that the estimate Θbag can
have a much smaller variance than each of the individual
estimates Θ̂b:
I If the estimates Θ̂b were i.i.d. with variance σ2, then the

variance of Θ̂bag would be σ2/B .
I If the estimates are identically distributed but have a

(hopefully small) positive pairwise correlation ρ, then the

variance of Θ̂bag is ρσ2 + (1− ρ)σ
2

B . If ρ is small and B is
large, this is good.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

5

Background: Bootstrap and bagging (5)

We would now like to apply this principle to regression or
classification:

I Given a sample of training points

I Repeatedly take a subsample, train some baseline algorithm on
the subsample obtaining B classifiers/regressors f1, ..., fB.

I For a test point x, compute the results of all baseline
classifiers: yb = fb(x), and then take the average:
ybag = mean(y1, ..., yB).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

6

Background: Bootstrap and bagging (6)

First considerations for choosing the baseline classifier:

I As this mechanism is expensive from a computational point of
view, it makes sense to use a reasonably simple baseline
algorithm for training.

I Bagging reduces the variance most if there is only little
correlation between the individual classifiers. This is what we
need to achieve.

I If the classifiers have a strong bias, bagging cannot do
anything about that.

A standard choice is to use decision trees, and then aggregate them
to a “forest”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

7

Decision trees: intuition

There exists a large variety of algorithms to build decision trees.
Below we just consider the simplest of all setups, spatial decision
trees, because this is what is typically used in random forests.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

8

Spatial decision trees on Rd: intuition

Assume our data lives in Rd (typically, with a large dimension d). A
spatial partition tree looks as follows:

Left side: the partition of the space; right side: the tree.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
8

9

Spatial decision trees on Rd: intuition (2)

To construct the tree, we proceed recursively. In each step, we
select one dimension along which we are going to split the current
cell. We keep on splitting cells until they contain only few data
points.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

0

Spatial decision trees on Rd: intuition (3)

To predict the regression/classfication output for a test point, we
determine in which cell the test point is, consider the labels of all
training points in this cell and then predict the average value (in
case of regression) or the majority vote (in case of classification) for
the test point.

Illustration (the red cross is the test point):

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

1

Spatial decision trees on Rd: intuition (4)

Illustration in case of classification:318 20. Tree Classifiers

FIGURE 20.8. A natural classifier based
on an ordinary binary tree. The deci-
sion is 1 in regions where points with
label 1 form a majority. These areas
are shaded.

Regular histograms can also be thought of as natural binary tree classifiers-the
construction and relationship is obvious. However, as n ---+ 00, histograms change
size, and usually, histogram partitions are not nested as n grows. Trees offer the
exciting perspective of fully dynamic classification-as data are added, we may
update the tree slightly, say, by splitting a leaf or so, to obtain an updated classifier.

The most compelling reason for using binary tree classifiers is to explain com-
plicated data and to have a classifier that is easy to analyze and understand. In
fact, expert system design is based nearly exclusively upon decisions obtained by
going down a binary classification tree. Some argue that binary classification trees
are preferable over BSP trees for this simple reason. As argued in Breiman, Fried-
man, Olshen, and Stone (1984), trees allow mixing component variables that are
heterogeneous-some components may be of a nonnumerical nature, others may
represent integers, and still others may be real numbers.

20.1 Invariance

Nearly all rules in this chapter and in Chapters 21 and 30 show some sort of
invariance with respect to certain transformations of the input. This is often a
major asset in pattern recognition methods. We say a rule gn is invariant under
transformation T if

for all values of the arguments. In this sense, we may require translation invariance,
rotation invariance, linear translation invariance, and monotone transformation
invariance (T(·) maps each coordinate separately by a strictly increasing but pos-
sibly nonlinear function).

Monotone transformation invariance frees us from worries about the kind of
measuring unit. For example, it would not matter whether earthquakes were mea-
sured on a logarithmic (Richter) scale or a linear scale. Rotation invariance matters
of course in situations in which input data have no natural coordinate axis system.
In many cases, data are of the ordinal form-colors and names spring to mind-and

Figure taken from “A Probabilistic Theory of Pattern Recognition”

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

2

Spatial decision trees: Quality of a split

To build the tree, we need a criterion to evaluate the quality of a
proposed data split. There are many such criteria. As an example,
consider the resulting training error on both sides:

Consider a split of the data into two sets, called A and Ac.

I For all training points in A, we would predict the outcome
ŶA = mean({Yi

∣∣ Xi ∈ A}).

I Similarly, for points in Ac we would predict the mean ŶAc .

I We can now compute the sum of the least squares error we
would achieve on both sides:

errorsplit =
∑

i∈A(YA − Yi)2 +
∑

i∈Ac(YAc − Yi)2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

3

Spatial decision trees: Quality of a split (2)

Illustration: cell with 6 data points that have y-values as indicated.

After the proposed split, the tree would predict the value 5/3 on the left

side and 7/3 on the right side (the average y-values on the respective

sides). The average training error with these predictions (the average

erorr on the 6 data points) would be 6.66.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

4

Spatial decision trees: Quality of a split (3)

If we have to decide which of two splits to implement next, we do
so according the the splitting error:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

5

Spatial decision trees: Selecting the splitting

dimension

Typically, spatial decision trees use axis-parallel splits. Given the
current cell, they select one dimension along which to split next
according to splitting error:

I For all dimensions k = 1, ..., d :
I Find the best splitting point sk along this dimension k by

optimizing the splitting error (typically, by a greedy
procedure) and store the resulting splitting point sk and
splitting error errorsplit,k

I Select dimension with the smallest splitting error and use the
corresponding split.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

6

Spatial decision trees: Depth of the tree

Depth of the tree and size of the leafs:

Typically, we keep on splitting cells until they contain less than a
pre-defined number nleaf of points. Different rules of thumb exist:

I To achieve statistical consistency of the decistion tree, the
number of points per leaf needs to increase (slowly) with the
number n of training points. For example, nleaf = log n leads
to consistency (see also later in the learning theory section).
The resulting trees are sometimes called “shallow trees”.

I In practice, in random forests one often uses “deep trees”
that always contains only a constant number of points in the
leaf (independent of n; in the extreme case, nleaf = 1). If we
just used a single decision tree, this procedure would be a
disaster (overfitting!), but in a random forests it can lead to a
consistent forest in the end. See later.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

7

Spatial decision trees: final remarks

I One advantage of spatial decision trees is their interpretability:
because splits are axis-parallel, there is a simple interpretation
(“blood pressure is below 120”) for each split, and ultimately
also for a decision at a particular leaf.

I There are also many ways by which one can compute an
“importance” score for each of the features for a random
forest. See textbooks.

I There exist a more general class of decision trees. The main
difference is that the choice of the dimensions along which we
split and the choice of the splits themselves can be made by
many different criteria. For example, the popular C4.5
algorithm uses criteria based on information theory. See the
literature if you are interested.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

8

Random forest

I A random forest uses bagging to combine many spatial
decision trees to one big estimate.

I Each individual tree is constructed randomly: on a random
sample of the input points, and by selecting the next splitting
dimension from a random subset of all dimensions.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

4
9

9

Random forest (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

0

Random forest (3)

Figure from “Elements of statistical learning”

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

1

Random forest (4)

Parameters:

I The size of the subsample: reasonably large; can be with or
without replacement (in the latter case, one often chooses the
subsample size equal to the size of the original sample)

I The number m of dimension of which we pick the best one:
typically, people choose something around d/3 where d is the
original dim of the data

I The number B of trees, should be large

I The numbernmin of points in the leafs: depending on whether
you consider deep or shallow trees. In the extreme case of deep
tree, nmin = 1. Then you definitely need many trees B large.
In the case of shallow trees, n ≈ log n.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

2

Random forest (5)

In principle, many people report that the algorithm is not extremely
sensitive to many of the parameters. However, if you are in a
completely bad regime, the tree can under- or overfit. See
discussion in Biau (Random forest guided tour) or our paper (When
ranom forests fail).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

3

Consistency of random forests

On a high level, here are the main results:

I A single spatial decision tree is consistent if the diameter of all
cells converges to 0 and at the same time, the number of
points in each of the cells tends to infintiy, as the number n of
data points goes to infinity (see chapter 20 of “Probabilistic
theory of pattern recognition”)

I If all indiviudal trees are consistent, so is the random forest
(see G. Biau. Analysis of a random forests model. JMLR 2012)

I Curiously, a random forest can be consistent even if all its
individual trees are not consistent. This is particularly the case
for deep trees (see E. Scornet. On the asymptotics of random
forests. Journal of Multivariate Analysis 2016).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

4

Consistency of random forests (2)

For more dicsussion about the consistency of tree classifiers and
random forests see our paper “When do random forests fail”(Tang,
Garreau, Luxburg 2018) and references therein, and Chapter 15 of
Elements of Statistical learning.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

5

Outlook: Comparison-based random forests

Random forests as described above require a Euclidean
representation of data points. Alternative: comparison-tree:

I Given a current cell, we randomly select two of its data points
x1, x2.

I For every point x in the cell, we evaluate whether it is closer to
x1 or x2.

I Then we split accordingly:

I We could prove that this tree can also lead to consistent
classification/regression (“Comparison-based random forests”,
Haghiri, Garreau, Luxburg 2018)

I Empirically, it works really well.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

6

Discussion and History

I Random forests have been invented in Breiman: Random
forests. Machine Learning 2001.

I Random forests are a very simple, yet very successful class of
algorithms.

I They are used very widely in practice, not least due to their
interpretability.

I Always consider Random Forests as a baseline when you work
on a new machine learning problem.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

7

(*) Boosting

Literature:

I Shalev-Shwartz/Ben-David: Understanding Machine Learning,
Section 10

I Hastie/Tibshirani/Friedman: Elements of Statistical Learning,
Section 16

I A whole book: Boosting - Foundations and algorithms by
Schapire and Freund

I Original paper: Robert Schapire, Yoav Freund, 1995.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

8

Strong and weak learners

Intuitively, a “strong learner” is a classification algorithm that can
approximate the true solution up to a small error ε. The goal of
machine learning is to construct strong learners.

However, they are often hard to construct and computationally
expensive.

A “weak learner” is an algorithm that is just slightly better than
random guessing: for a classification problem with balanced classes,
its 0-1-loss is just a tiny bit better than random guessing: 0.5 + ε.

The idea of boosting is to combine many weak learners to
obtain a strong learner.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
0

9

Boosting, the outline

I Given a training set of n points (xi, yi)i=1,...,n, the boosting
algorithm proceeds in T rounds.

I Training points have weights that change from round to round.
The weights always add up to 1.

I In each round, we train the weak classifier on the training
points with the current weights. We then update the weights:
I For point xi that was mis-classified, we increase its weight wi.
I For point xi that got correctly classified, we decrease its

weight wi.

I At the very end, the final classifier is a weighted sum, some
kind of weighted majority vote, of the weak classifiers of each
round.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

0

Boosting: toy example

(all figures from Schapire/Freund book)

Left: data set, initialized with uniform weights

Right: a weak classifier. Its accuracy is larger than 0.5, but it gets a
significant amount of points wrong (the ones indicated by a circle).

“48740_7P_8291_001.tex” — 10/1/2012 — 17:41 — page 8

8 1 Introduction and Overview

1
3

5 7

8 10

6

2

9

4

D1 h1

h2

h3

D2

D3

Figure 1.1
An illustration of how AdaBoost behaves on a tiny toy problem with m = 10 examples. Each row depicts one
round, for t = 1, 2, 3. The left box in each row represents the distribution Dt , with the size of each example scaled
in proportion to its weight under that distribution. Each box on the right shows the weak hypothesis ht , where
darker shading indicates the region of the domain predicted to be positive. Examples that are misclassified by ht

have been circled.

We now adapt the weights:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

1

Boosting: toy example (2)

Left: data set with new weights (size of weight indicated by size of
the plus/minus sign).

Right: a new weak classifier, trained on the weighted examples. It
gets the points with the high weights right, but makes other
mistakes.

“48740_7P_8291_001.tex” — 10/1/2012 — 17:41 — page 8

8 1 Introduction and Overview

1
3

5 7

8 10

6

2

9

4

D1 h1

h2

h3

D2

D3

Figure 1.1
An illustration of how AdaBoost behaves on a tiny toy problem with m = 10 examples. Each row depicts one
round, for t = 1, 2, 3. The left box in each row represents the distribution Dt , with the size of each example scaled
in proportion to its weight under that distribution. Each box on the right shows the weak hypothesis ht , where
darker shading indicates the region of the domain predicted to be positive. Examples that are misclassified by ht

have been circled.

Again we reweight:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

2

Boosting: toy example (3)

Left: data set with new weights.

Right: a new weak classifier, trained on the weighted examples.

“48740_7P_8291_001.tex” — 10/1/2012 — 17:41 — page 8

8 1 Introduction and Overview

1
3

5 7

8 10

6

2

9

4

D1 h1

h2

h3

D2

D3

Figure 1.1
An illustration of how AdaBoost behaves on a tiny toy problem with m = 10 examples. Each row depicts one
round, for t = 1, 2, 3. The left box in each row represents the distribution Dt , with the size of each example scaled
in proportion to its weight under that distribution. Each box on the right shows the weak hypothesis ht , where
darker shading indicates the region of the domain predicted to be positive. Examples that are misclassified by ht

have been circled.

Now we have three weak classifiers. We combine them to a final
(strong) classifier:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

3

Boosting: toy example (4)

We combine them by a linear combination (weighted majority vote):

“48740_7P_8291_001.tex” — 10/1/2012 — 17:41 — page 10

10 1 Introduction and Overview

H = sign

=

0.42 + 0.65 + 0.92

Figure 1.2
The combined classifier for the toy example of figure 1.1 is computed as the sign of the weighted sum of the
three weak hypotheses, α1h1 +α2h2 +α3h3, as shown at the top. This is equivalent to the classifier shown at
the bottom. (As in figure 1.1, the regions that a classifier predicts positive are indicated using darker shading.)

as shown in the figure, correctly classifies all of the training examples. For instance, the
classification of the negative example in the upper right corner (instance #4), which is
classified negative by h1 and h2 but positive by h3, is

sign(−α1−α2 +α3) = sign(−0.15) = −1.

One might reasonably ask if such a rapid reduction in training error is typical for Ada-
Boost. The answer turns out to be yes in the following sense: Given the weak learning
assumption (that is, that the error of each weak classifier εt is at most 1

2 − γ for some
γ > 0), we can prove that the training error of the combined classifier drops exponentially
fast as a function of the number of weak classifiers combined. Although this fact, which is
proved in chapter 3, says nothing directly about generalization error, it does suggest that
boosting, which is so effective at driving down the training error, may also be effective
at producing a combined classifier with low generalization error. And indeed, in chapter 4
and 5, we prove various theorems about the generalization error of AdaBoost’s combined
classifier.

Note also that although we depend on the weak learning assumption to prove these results,
AdaBoost does not need to know the “edge”γ referred to above, but rather adjusts and adapts
to errors εt which may vary considerably, reflecting the varying levels of performance among

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

4

Boosting: toy example (5)

Some remarks:

I As opposed to random forests, which generate randomness
through subsampling points and dimensions, the training set in
boosting is always the same. We just change its weights.

I By re-weighting, the algorithm can focus on those examples
that it finds difficult, or on aspects that have been overlooked
so far.

I By the definition of a weak classifier, once a data point has
accumulated weight (probability mass) larger than 0.5, the
weak algorithm will get it right. But it is not obvious that this
helps for the final classifier, because there are many points that
we need to get right... So the question is how to combine all
the evidence of the weak classifiers in such a way that we
obtain a strong classifier in the end.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

5

AdaBoost algorithm

Figure here and next page taken from “Understanding Machine Learning”

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

6

AdaBoost algorithm (2)

Intuition: why is it plausible that it works?

I Assume the final classifier hs makes an error on some training
point x.

I Because hs is a (weighted) majority vote over all the weak
classifiers, hs can only get x wrong if most of the weak
classifiers have classified x wrongly themselves.

I This means that the weight of x has been increased very often,
so it must be still large after the final round.

I But there can only be few points with large weights, because
all weights add up to 1.

I So there can only be few points that get classified wrong by
the final classifier.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

7

Theoretical results on the training error

There are many theoretical results for boosting. For example, the
following theorem shows how the trainging error improves by
boosting:

10.2 AdaBoost 135

a distribution over the examples in S, denoted D(t). That is, D(t)
2 Rm

+ and
Pm

i=1 D
(t)
i = 1. Then, the booster passes the distribution D(t) and the sample S

to the weak learner. (That way, the weak learner can construct i.i.d. examples
according to D(t) and f .) The weak learner is assumed to return a “weak”
hypothesis, ht, whose error,

✏t
def
= LD(t)(ht)

def
=

mX

i=1

D(t)
i 1[ht(xi) 6=yi],

is at most 1
2�� (of course, there is a probability of at most � that the weak learner

fails). Then, AdaBoost assigns a weight for ht as follows: wt = 1
2 log

⇣
1
✏t

� 1
⌘
.

That is, the weight of ht is inversely proportional to the error of ht. At the end
of the round, AdaBoost updates the distribution so that examples on which ht

errs will get a higher probability mass while examples on which ht is correct will
get a lower probability mass. Intuitively, this will force the weak learner to focus
on the problematic examples in the next round. The output of the AdaBoost
algorithm is a “strong” classifier that is based on a weighted sum of all the weak
hypotheses. The pseudocode of AdaBoost is presented in the following.

AdaBoost

input:
training set S = (x1, y1), . . . , (xm, ym)
weak learner WL
number of rounds T

initialize D(1) = (1
m , . . . , 1

m).
for t = 1, . . . , T :
invoke weak learner ht = WL(D(t), S)

compute ✏t =
Pm

i=1 D
(t)
i 1[yi 6=ht(xi)]

let wt =
1
2 log

⇣
1
✏t

� 1
⌘

update D(t+1)
i =

D(t)
i exp(�wtyiht(xi))Pm

j=1
D(t)

j exp(�wtyjht(xj))
for all i = 1, . . . ,m

output the hypothesis hs(x) = sign
⇣PT

t=1 wtht(x)
⌘
.

The following theorem shows that the training error of the output hypothesis
decreases exponentially fast with the number of boosting rounds.

theorem 10.2 Let S be a training set and assume that at each iteration of
AdaBoost, the weak learner returns a hypothesis for which ✏t  1/2 � �. Then,
the training error of the output hypothesis of AdaBoost is at most

LS(hs) =
1

m

mX

i=1

1[hs(xi) 6=yi]  exp(�2 �2 T) .

Proof For each t, denote ft =
P

pt wphp. Therefore, the output of AdaBoost

The proof is surprisingly simple, let’s look at it:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

8

Theoretical results on the training error (2)

Step 1: We look at the global function ft that has been learned
after step t and define a convenient random variable Zt:

So if we can bound ZT by the term in the theorem, we are done.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
1

9

Theoretical results on the training error (3)

Step 2: Telescope sum to bound ZT :

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

0

Theoretical results on the training error (4)

Step 3: Show the bound on the factors (exploits the exact form of
weights and update factors):

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

1

Theoretical results on the training error (5)

(For the omitted proof details, see the Shalev-Schwartz/Ben-David book and the Schapire/Freund book)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

2

Theoretical results on the training error (6)

Step 4: Combining everything:

hOi/i o/Lol«nf». fiQi\Ahr Itvijouf :
Part^iU'cK/r: P|

I W

w l/Vll«/vx I

Algorithm 15.1 Random Forest for Regression or Classification.

1 . Fo r b

(a) Draw abootstrap sample Z* of sizê f̂rom the training data,
(b) Grow arandom-forest tree Ti, to the bootstrapped data, by re¬

cursively repeating the following steps for each terminal node of

the tree, until the minimum node size(n̂ ^
i. Select([m)variables at random from the pvariables,
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {dblf ●

i s r e a c h e d .

To make aprediction at anew point x\

Regression: f^(x) =^Y.b=i'^b{x).
Classification: Let Cb{x) be the class prediction of the &th random-forest

tree. Then C^{x) =majority vote {Cb{x))f.

:Uvu ̂ 5\ vU 0*T\\Aa.(l. ●(1Y
T - / 1

(C) ^ ^

^(^p(-vi)

IF- u r o f rl!) i = o

- I .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

3

Theoretical results on the test error

The key result that we are interested in: does the test error also
improve during the boosting procedure?

To prove such results, one can use some of the standard techniques
from statistical learning theory (see later in the lecture).

Check out the book by Schapire/Freund if you are interested, it is
really well-written!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

4

Final remarks

I As weak classifiers, one often uses decision stumps: decision
trees of size 1. They induce axis-parallel splits as indicated in
the toy example.

I There are many variants of boosting out there, we just
scratched the surface.

I Boosting is well-understood from many different points of
view, and it works well in practice.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

5

Other important approches
you should learn about

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

6

Neural networks and deep learning: SKIPPED,

see other lectures in the department

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

7

Probabilistic / Bayesian methods: SKIPPED, see

other lectures in the department

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

8

Unsupervised learning

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
2

9

Dimensionality reduction and embedding

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

0

Classical PCA

Classical PCA is covered in many statistics books:

I A complete book on PCA is Jolliffe: Principal Component
Analysis. Springer, 2002.

I Chapter 8 in Mardia, Kent, Bibby: Multivariate Analysis.
Academic Press, 1979. A classic.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

1

Principal component analysis (PCA)

... is a “traditional” method for unsupervised dimensionality
reduction. Is based on linear principles.

Goal:

I Given data points x1, ..., xn ∈ Rd

I want to reduce the dimensionality of the data by throwing
away “dimensions which are not important”.

I Result is set of new data points y1, ..., yn ∈ R` with ` < d.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

2

Principal component analysis (PCA) (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

3

Principal component analysis (PCA) (3)

Two approaches in this lecture:

I Traditional approach: Maximize the variance of the reduced
data ; Covariance matrix approach

I Traditional approach: Minimize the quadratic error ; SVD
approach

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

4

Recap: Projections

... see slides in the appendix (slides 1311 ff.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

5

Recap: Variance and Covariance

... see slides in the appendix (slides 1257 ff.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

6

PCA by max variance approach: Idea

Want to find a linear projection on a low-dim space such that the
overall variance of the resulting points is as large as possible.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

7

PCA by max variance approach: Idea (2)

Given: data points x1, ..., xn ∈ Rd, parameter ` < d (the dimension
of the space we want to project to).

Goal: find a projection πS on an affine subspace S such that the
variance of the projected points is maximized: maxS Var`(πS(X)).

For simplicity, let us assume that the data points are centered:

x̄ =
1

n

n∑
i=1

xi = 0

(If this is not the case, we can center the data points by setting
x̃i = xi − x̄.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

8

PCA by max variance approach: Case ` = 1

One-dimensional case:
We first of all assume that ` = 1, that is we want to project the
data points on a 1-dim space.

Have to solve the following optimization problem:

max
a∈Rd,‖a‖=1

Var(πa(X))

⇐⇒ max
a∈Rd

n∑
i=1

(πa(xi))
2 subject to ata = 1

⇐⇒ max
a∈Rd

n∑
i=1

(atxi)
2 subject to ata = 1

⇐⇒ max
a∈Rd
‖Xa‖2 subject to ata = 1

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
3

9

PCA by max variance approach: Case ` = 1 (2)

To solve this:

I Write the Lagrangian:

L(a, λ) = ‖Xa‖2 − λ(ata− 1) = atX tXa− λ(ata− 1)

I Compute the partial derivatives wrt a:

∂L/∂a = 2X tXa− 2λa
!

= 0

Thus necessary condition: a is an eigenvector of X tX.

I Substitute X tXa = λa in the original objective function:

atX tXa = λata = λ

I This is maximal for a being the largest eigenvector of X tX.

Solution: If the data points are centered, then projecting on the
largest eigenvector of C = X tX solves the problem for ` = 1.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

0

PCA by max variance approach: Case ` > 1

Case ` > 1:
By similar arguments we can prove that we need to project the data
on the space spanned by the ` largest eigenvectors of X tX.

(and by “largest eigenvector” I mean the eigenvector corresponding
to the largest eigenvalue).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

1

PCA: algorithm using covariance matrix C

Input: Data points x1, ..., xn ∈ Rd, parameter ` ≤ d.

I Center the data points, that is compute x̃i = xi − x̄ for all i.

I Compute the n× d data matrix X with the centered data
points x̃i as rows, and the d× d sample covariance matrix
C = X tX.

I Compute the eigendecomposition C = V DV t.

I Define V` as the matrix containing the ` largest eigenvectors
(i.e., the first ` columns of V if the eigs in D are ordered
decreasingly).

I Compute the new data points:
I View 2: yi = V t

` x̃i ∈ R`

I View 1: zi = Px̃i + x̄ ∈ Rd with P = V`V
t
`

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

2

PCA: algorithm using covariance matrix C (2)

Notation:

I The eigenvectors are called principal axes or principal
directions.

I In View 1: the distance between a point and its projection is
called the reconstruction error or projection error.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

3

Example: simple Gaussian toy data

demo_pca.m

demo_pca.m

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

4

USPS example

USPS handwritten digits, 16 x 16 greyscale images.
; demo_pca_usps.m

demo_pca_usps.m

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

5

USPS example (2)

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

Some digits from the data set

5 10 15

5

10

15

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

6

USPS example (3)

The first principal components (computed based on 500 digits):

PrincComp 1

5 10 15

5

10

15

PrincComp 2

5 10 15

5

10

15

PrincComp 3

5 10 15

5

10

15

PrincComp 4

5 10 15

5

10

15

PrincComp 5

5 10 15

5

10

15

PrincComp 6

5 10 15

5

10

15

PrincComp 7

5 10 15

5

10

15

PrincComp 8

5 10 15

5

10

15

First principal components

PrincComp 9

5 10 15

5

10

15

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

7

USPS example (4)

Reconstructing digits:

reconstruction with 1 eigs

5 10 15

5

10

15

reconstruction with 2 eigs

5 10 15

5

10

15

reconstruction with 3 eigs

5 10 15

5

10

15

reconstruction with 4 eigs

5 10 15

5

10

15

reconstruction with 5 eigs

5 10 15

5

10

15

reconstruction with 10 eigs

5 10 15

5

10

15

reconstruction with 50 eigs

5 10 15

5

10

15

reconstruction with 100 eigs

5 10 15

5

10

15

Reconstructed first digit

reconstruction with 256 eigs

5 10 15

5

10

15

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

8

USPS example (5)

All eigenvalues:

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100
Singular Values of the data matrix:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
4

9

Eigenfaces

Principal components for a data set of faces:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

0

PCA – min squared error approach

Second approach to PCA:

Find a projection πS on an affine subspace S such that the squared
distance between the points and their projections is minimized:

min
S

n∑
i=1

‖xi − πS(xi)‖2.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

1

PCA – min squared error approach (2)

One can prove that this approach leads to exactly the same solution
as the one induced by the max-variance criterion (we skip this
derivation).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

2

Choosing the parameter `

I Heuristic: look at largest eigenvalues, and take the most
“informative” ones. It also can be seen: the reconstruction
error is bounded as∑

i

‖xi − π`xi‖2 ≤
n∑

k=`+1

λk

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100
Singular Values of the data matrix:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

3

Choosing the parameter ` (2)

I If PCA is used a a preprocessing step for supervised learning,
then use cross validation to set the parameter `!

Note: It is not a priori clear whether it is better to choose `
large or small ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

4

Global!

Keep in mind that PCA optimizes global criteria.

I No guarantees what happens to individual data points. This is
different for some other dimensionality reduction methods
(such as random projections and Johnson-Lindenstrauss).

I If the sample size is small, then outliers can have a large effect
on PCA.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

5

When does it (not) make sense?

I The PCA works best if the data comes from a Gaussian.

Principal Component Analysis (PCA)

Given a set of m centered vectors

xi � Rn,

PCA diagonalizes the covariance

matrix

C =
1

m

m�

i=1

xix
�
i

,

requires the solution of the

eigenvalue equation �vi = Cvi.

PCs vi define a new basis in Rn

along directions of maximal

variance.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

6

When does it (not) make sense? (2)

I But it can have very bad effects if the data is far from
Gaussian:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

7

Kernel PCA

Literature on kernel PCA:

I Chapter 14.2 of Schölkopf and Smola

I Chapter 6.2. of Shawe-Taylor and Cristianini

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

8

Towards kernel PCA

Now we want to kernelize the PCA algorithm to be able to have
non-linear principal components.

Observe:

I PCA uses the covariance matrix — and this matrix inherently
uses the actual coordinates of the data points.

I So how should we be able to kernelize PCA???

I The solution will be: there is a tight relationship between the
covariance matrix and the kernel matrix.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
5

9

Recap: Covariance matrix vs. kernel matrix

Consider centered data points x1, ..., xn, stacked in a data matrix
X as rows. Denote the k-th colum of the matrix by X(k) (contains
the k-th coordinate of all data points). Then:

I Covariance matrix is C = X tX because

Ckl = Cov1dim(X(k), X(l)) =
∑n

i=1 X
(k)
i X

(l)
i = (X tX)kl

Also note that because X
(k)
i X

(l)
i = (xix

t
i)kl this implies

(X tX) =
∑n

i=1(xix
t
i︸︷︷︸

d×d

)

I Kernel matrix is K = XX t

(because (XX t)ij =
∑d

k=1 xikxjk = xtixj = 〈xi, xj〉).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

0

Recap: Covariance matrix vs. kernel matrix (2)

What we now try to do is to express the eigenvalues/eigenvectors
of C by those of K and vice versa.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

1

Eig of K implies eig of C

Proposition 15 (Eig of K implies eig of C)

Consider a set of points x1, ..., xn ∈ Rd. Consider λ ∈ R and
a ∈ Rn with Ka = λa. Define v := X ta =

∑n
j=1 ajxj ∈ Rd. Then:

1. If v 6= 0, then v is an eigenvector of C with eigenvalue λ, that
is Cv = λv.

2. If ‖a‖ = 1, then ‖v‖ =
√
λ.

Proof of (1).

Ka = λa

⇐⇒ XX ta = λa

=⇒ X tXX ta = λX ta

⇐⇒ Cv = λv

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

2

Eig of K implies eig of C (2)

,
Proof of (2).

‖v‖2 = ‖
∑
j

ajxj‖2 = 〈
∑
j

ajxj,
∑
i

aixi〉 =
∑
i,j

aiaj〈xi, xj〉

=
∑
i,j

aiajk(xi, xj) = atKa = atλa = λ

,

Bottom line: an eigenvector a of K gives rise of an eigenvector v of
C, and to obtain a unit vector we have to normalize it by 1/

√
λ.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

3

Eig of C implies eig of K

Proposition 16 (Eig of C implies eig of K)

Assume that the points xi are centered. Let v and λ be eigenvector
and eigenvalue of C, that is Cv = λv. Then the vector
a := 1

λ
Xv ∈ Rn is an eigenvector of K with eigenvalue λ, that is

Ka = λa.

Proof in several steps:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

4

Eig of C implies eig of K (2)

Step 1: non-zero eigenvectors of C are linear combinations
of input points:
By assumption, λv = Cv, and because the data is centered we
have C =

∑n
j=1 xjx

t
j. Hence:

v =
1

λ
Cv =

1

λ

n∑
j=1

xjx
t
jv =

1

λ

n∑
j=1

xj〈xj, v〉 =:
∑
j

ajxj

with aj = 1
λ
〈xj, v〉 ∈ R

(or more compactly, a = 1
λ
Xv ∈ Rn).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

5

Eig of C implies eig of K (3)

Step 2: express eig of C as eig of K:

Cv = λv ⇐⇒ (
n∑
j=1

xjx
t
j)(

n∑
i=1

aixi) = λ
n∑
i=1

aixi

⇐⇒
n∑

i,j=1

xjx
t
jaixi = λ

n∑
i=1

aixi

(now multiply with xts for some s)

=⇒ xts(
∑
ij

aixj〈xj, xi〉) = λ
∑
i

aix
t
sxi

⇐⇒
∑
ij

ai〈xs, xj〉〈xj, xi〉 = λ
∑
i

ai〈xi, xs〉

⇐⇒ (K2a)s = λ(Ka)s

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

6

Eig of C implies eig of K (4)

Thus we obtain:

v =
∑
i

aixi eig of C

=⇒ ∀s = 1, ..., n : (K2a)s = λ(Ka)s

⇐⇒ K2a = λKa

⇐⇒ Ka = λa (as K is positive definite)

⇐⇒ a is eigenvector of K with eigenvalue λ.

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

7

(∗) Sanity checks

Let’s apply the two propositions one after the other:

I Assume Cv = λv, set a := 1
λ
Xv. Then by Prop. 16,

Ka = λa. Now set ṽ = X ta. Then by Prop 15, Cṽ = λṽ.
Note that this makes sense because

ṽ = X ta = X t 1

λ
Xv =

1

λ
X tXv =

1

λ
Cv = v

I Dimensions:
I C is a d× d-matrix, so its eigendecomposition has d

eigenvalues.
I K is a n× n matrix with n eigenvalues.
I But intuitively spoken, we just showed that we can convert

the eigenvalues of K to those of C and vice versa.

HOW CAN THIS BE, IF d AND n ARE DIFFERENT???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

8

First algorithm: eigs of C by eigs of K

Assume that the data points are centered in Rd. Then to compute
the `-th eigenvector of C, we can proceed as follows:

I Compute the kernel matrix K and its `-the eigenvector a

I Make sure a is normalized to ‖a‖ = 1.

I Then compute v := 1√
λ

∑
i aixi

Note: this “algorithm” still requires to know the original vectors xi.
However, in practice we don’t want to compute the eigenvectors
themselves but just the projections on these eigenvectors. Let’s
look at it.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
6

9

Expressing the projection on eigs of C using K

I Assume we want to project on eigenvector v of C. Have
already seen that we can write v =

∑
i aixi. Thus:

πv(xi) = v′xi = 〈
∑
j

ajxj, xi〉 =
∑
j

aj〈xj, xi〉

I If we want to project on a subspace spanned by ` vectors
v1, ...v` ∈ Rd, compute each of the ` coordinates by this
formula as well.

I To compute the projections, we only need scalar products ,.
So we can write PCA as a kernel algorithm:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

0

Finally: kernel PCA

Input: Kernel matrix K (computed from abstract data points
X1, ..., Xn), parameter `

I Center the data in feature space by computing the centered
kernel matrix K̃ = K − 1nK −K1n + 1nK1n

I Compute the eigendecomposition K̃ = ADAt. Let Ak denote
the k-th column of A and λk the corresponding eigenvalue.

I Define the matrix V` which has the columns Ak/
√
λk,

k = 1, ..., `

I Compute the low dim representation points yi = (y1
i , ..., y

`
i)
t

with the formula ysi =
∑n

j=1 v
s
jK̃ji (for all s = 1, ..., `).

Output: y1, ..., yn ∈ R`

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

1

kPCA toy example: three Gaussians

demo_kpca_bernhard.m

I Data drawn from 2-dim Gaussians (red crosses)

I kernel used is Gaussian kernel

I Now can compute the first eigenvectors in kernel feature space

I For test points, plot the coordinate which results when
projecting on this eigenvector in the feature space (grey scale)

demo_kpca_bernhard.m

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

2

kPCA toy example: three Gaussians (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

3

kPCA toy example: rings

demo_kpca_toy.m:
Consider the following three-dimensional data set:

−6 −4 −2 0 2 4 6
−5

0

5
Original data

demo_kpca_toy.m

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

4

kPCA toy example: rings (2)

Now apply kPCA:

I Choose the Gaussian kernel with σ = 2.

I Note: we implicitly work in the RKHS, which has n dimensions

I So it makes sense to choose ` = 3 (even though the original
data set just had d = 2).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

5

kPCA toy example: rings (3)

Here is the result:

−5
0

5
−10

0

10
−5

0

5

3 dim kpca

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

6

kPCA toy example: rings (4)

Surprising, isn’t it???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

7

More toy examples

:

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

−4 −2 0 2 4 6
−4

−2

0

2

4

6

−6

−4

−2

0

2

4

3 dim kpca

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

8

More toy examples (2)

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5−6

−4

−2

0

2

4

6

−5

0

5
3 dim kpca

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
7

9

More toy examples (3)

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

−1

0

1

2

3

4

−1.5−1−0.500.511.522.5

−1.5

−1

−0.5

0

0.5

1

1.5

2
3 dim kpca

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

0

History

I Classical PCA was invented by Pearson:
On Lines and Planes of Closest Fit to Systems of Points in
Space. Philosophical Magazine, 1901.

I It is one of the most popular “classical” techniques for data
analysis.

I Kernel PCA was invented pretty much 100 years later ,
B. Schölkopf, A. Smola, and K.-R. Müller. Kernel Principal
component Analysis. In B. Schölkopf, C. J. C. Burges, and A.
J. Smola, editors, Advances in Kernel Methods–Support Vector
Learning, pages 327-352. MIT Press, Cambridge, MA, 1999.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

1

Summary: PCA and kernel PCA

Standard PCA:

I Technique to reduce the dimension of a data set in Rd by linear
projections.

I First explanation: throw away dimensions with “low variance”

I Second explanation: minimize the squared error.

I Can be computed by an eigendecomposition of the empirical
covariance matrix.

Kernel PCA:

I Use the kernel trick to make PCA non-linear.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

2

Multi-dimensional scaling

Literature:
Multi-dimensional scaling:

I Is a classic that is covered in many books on data analysis.

I A whole book on the subject: Borg, Groenen: Modern
multidimensional scaling. Springer, 2005.

Isomap:

I The original paper is: J. Tenenbaum, V. De Silva, J. Langford.
A global geometric framework for nonlinear dimensionality
reduction. Science, 2000.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

3

Embedding problem

I Assume we are given a distance matrix D ∈ Rn×n that
contains distances dij = ‖xi − xj‖ between data points.

I Can we “recover” the points (xi)i=1,...,n ∈ Rd?

This problem is called (metric) multi-dimensional scaling.

A more general way of asking: Given abstract “objects”
x1, ..., xn ∈ X , can we find an embedding Φ : X → Rd (for some d)
such that ‖Φ(xi)− Φ(xj)‖ = dij?

DO YOU BELIEVE IT ALWAYS WORKS?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

4

Embedding problem (2)

Answer will be:

I We can find a correct point configuration if the distances really
come from points ∈ Rd. In this case we say that D is a
Euclidean distance matrix. See next slide for how this works.

I For general distance matrices D, we cannot achieve such an
embedding without distorting the data. There is a huge bulk
of literature on approximate embeddings, but we won’t cover it
in this lecture.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

5

Embedding problem (3)

WHY DO YOU THINK SUCH AN EMBEDDING MIGHT BE
USEFUL?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

6

Embedding problem (4)

Why might we be interested in such an embedding?

I Visualization!

I Many algorithms are just defined for Euclidean data. If we
want to apply them, we need to find a Euclidean
representation of our data.

I Identify low-dimensional structure, see Isomap below.

What might be problematic about it?

I We might introduce distortion to the data ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

7

MDS in various flavors

I Classic MDS: we assume that the given distance matrix is
Euclidean.
I If the matrix is Euclidean, embedding will be exact.
I If the matrix is not Euclidean, embedding will make some

errors.

I Metric MDS: we are given any distance matrix (might be
non-Euclidean). We try to find an embedding that
approximately preserves all distances.
I In case the original matrix is non-Euclidean, perfect

reconstruction is impossible, so we definitely will make
approximation errors.

I In case the original matrix is Euclidean, we might still make
errors due to the formulation of the problem, see below.

I Non-metric MDS: we are not given distances, but ordinal
information, see below.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

8

Classic MDS

Assume we are given a Euclidean distance matrix D. Will now see
how to express the entries of the Gram matrix S = (〈xi, xj〉)ij=1,...,n

in terms of entries of D:

I By definition:

d2
ij = ‖xi − xj‖2 = 〈xi − xj, xi − xj〉

= 〈xi, xi〉+ 〈xj, xj〉 − 2〈xi, xj〉

I Rearranging gives

〈xi, xj〉 =
1

2

(
〈xi, xi〉︸ ︷︷ ︸
=d(0,xi)2

+ 〈xj, xj〉︸ ︷︷ ︸
=d(0,xj)2

−d2
ij

)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
8

9

Classic MDS (2)

I We are free to choose the origin 0 as we want. For simplicity,
we choose the first data point x1 as the origin. This gives:

〈xi, xj〉 =
1

2

(
d2

1i + d2
1j − d2

ij

)
I So we can express the entries of the Gram matrix S with
sij = 〈xi, xj〉 in terms of the given distance values.

I Because S it is positive definite, we can decompose S in the
form S = XX t where X ∈ Rn×d.
EXERCISE: HOW EXACTLY DO YOU DO THIS? WHAT IS
THE DIMENSION d GOING TO BE?

I The rows of X are what we are looking for, that is we set the
embedding of point xi as the i-th row of the matrix X.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

0

Classic MDS implementation

This is how it finally works:

I Compute the matrix S with sij = 1
2

(
d2

1i + d2
1j − d2

ij

)
.

I Compute the eigenvalue decomposition S = V ΛV t.

I Define X = V
√

Λ.
Alternatively, if you want to fix some dimension d ≤ n, set Vd
to be the first d columns of V and Λd the d× d diagonal
matrix with the first d eigenvalues on the diagonal, and then
set X = Vd

√
Λd.

I Row i of X then gives the coordinates of the embedded point
xi.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

1

Classic MDS implementation (2)

How to choose d?

I If the data points come from Rd, then the matrix S is going to
have rank d, that is there are d eigenvalues > 0 and n− d
eigenvalues equal to 0.

I Hence, looking at the spectrum of S gives you an idea to
choose d. In case of classic MDS, you can just read off d from
the matrix, in the more general case of metric MDS you simply
“choose it reasonable” (as in PCA).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

2

Demos

demo_mds.m

demo_mds.m

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

3

Metric MDS

Metric MDS refers to the problem where the distance matrix D is
no longer Euclidean, but we still believe (hope) that a good
embedding exists.

I If the distance matrix D is not Euclidean, we will not be able
to recover an exact embedding.

I Instead, one defines a “stress function”. Below is an examle
for such a stress function:

stress(embedding) =

∑
ij(‖xi − xj‖ − dij)2∑

ij ‖xi − xj‖

Many more stress functions are considered in the literature.

I Then we try to find an embedding x1, ..., xn with small stress
by a standard non-convex optimization algorithm, say gradient
descent.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

4

Metric MDS (2)

When using metric MDS, there are two sources of error:

I The distance matrix is not Euclidean, so we will not be able to
recover a perfect embedding.

I The optimization problems are highly non-convex and suffer all
kinds of problems of local optima.

Using metric MDS only makes sense if the data is “nearly
Euclidean”, and results should always be treated with care.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

5

Non-metric MDS

I Instead of distance values, we are just given distance
comparisons, that is we know whether dij < dik or vice versa.

I The task is then to find an embedding such that these ordinal
relationships are preserved.

I Our group is working on this problem ,

Which of the bottom images is most similar to the top image?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

6

History of MDS

I Metric MDS: Torgerson (1952) - The first well-known MDS
proposal. Fits the Euclidean model.

I Non-metric MDS: Shepard (1962) and Kruskal (1964)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

7

Outlook: general embedding problems

There exists a huge literature on embedding metric spaces in
Euclidean spaces:

I Given certain assumptions on the metric ...
I In what space can I embed (dimension???)
I What are the guarantees on the distortion?

Some literature pointers:

I Theorem of Bourgain: Any n-point metric space can be
embedded in Euclidean space with distortion O(log n). By the
theorem of Johnson-Lindenstrauss, we can achieve
dimensionality of O(log n) as well.

I An overview paper on the area is: Piotr Indyk and Jiri
Matousek. Low-distortion embeddings of finite metric spaces.
In: Handbook of Discrete and Computational Geometry, 2004.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

8

Summary MDS

I Given a distance matrix D, MDS tries to construct an
embedding of the data points in Rd such that the distances are
preserved as well as possible.

I If D is Euclidean, a perfect embedding can easily be
constructed.

I If D is not Euclidean, MDS tries to find an embedding that
minimizes the “stess”. The resulting problem is highly
non-convex. Solutions should be treated with care.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

5
9

9

Random projections and the Theorem of

Johnson-Lindenstrauss

Literature:

I We take the proof from the following paper:
S. Dasgupta, A. Gupta. An elementary proof of a theorem of
Johnson and Lindenstrauss. Random Structures & Algorithms
22, 2003.

I The following paper has the “simpler” random projections: D.
Achlioptas. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. Journal of Computer
and System Sciences 66, 2003.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

0

Random projections — the general idea

Given: points X1, ..., Xn ∈ Rd, d large
We are going to construct a mapping π : Rd → Rk, k � d such
that all distances are “nearly preserved”:

‖xi − xj‖Rd ≈ ‖π(xi)− π(xj)‖Rk

The mapping π will be a random projection.

This is cool because it means that we can work in much
lower-dimensional spaces and don’t loose much information by
doing so.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

1

Theorem of Johnson-Lindenstrauss

More precisely, we are going to prove the following theorem:

Theorem 17 (Johnson-Lindenstrauss, 1984)

Let 0 < ε < 1, n ∈ N. Assume that

k >
4 log(n)

ε2/2− ε3/3
.

Then, for any set of n points x1, ..., xn ∈ Rd (and any dimension d)
there exists a map π : Rd → Rk such that for all i 6= j:

(1− ε)‖xi− xj‖2
Rd ≤ ‖π(xi)− π(xj)‖2

Rk ≤ (1 + ε)‖xi− xj‖2
Rd

(∗)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

2

Theorem of Johnson-Lindenstrauss (2)

Intuition:

I Given a set of n points in Rd, d arbitrarily large

I d arbitrarily large means: in the worst case, d = n− 1.
Reason: if d > n− 1, then the n points always sit in a
subspace of dimension at most n− 1

I fix a deviation ε that you are going to tolerate

I Then you can always embed these points into a space of
dimension k ≈ log(n)/ε2 and keep distances close to the
original ones

I That is, you can reduce the dimension from Ω(n) (general
case) to Ω(log(n))!

I In particular, all algorithms that have running time exponential
in d have running time polynomial in d after applying a
random projection (at the cost of slight perturbations)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

3

Random projections — definition

I We want to project onto a vector z ∈ Rd where z is random.

I We want that all directions z are equally likely, that is z has to
be drawn from the uniform distribution on the sphere in Rd.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

4

Random projections — definition (2)

Definition:

1. Let z be a vector drawn from the uniform distribution on the
unit sphere in Rd. Then

πz : Rd → R, πz(v) = 〈z, v〉Rd

is called a random projection on the 1-dimensional space R.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

5

Random projections — definition (3)

2. Let z1, ..., zk be random vectors drawn as above. Denote the
subspace spanned by these vectors by S. Then the projection
πS on S is called a random projection on Rk.

(To compute this projection, build the k × d-matrix Z that
contains the vectors zi as rows, and then compute
π(v) := Z · v.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

6

Random projections on R — expectations

Proposition 18 (Expected length after random projection
on R)

Let x ∈ Rd a fixed vector with ‖x‖ = 1. Consider its random
projection πv on the random vector v = (v1, ..., vd)

′. Then:

E
(
|πv(x)|2

)
= 1/d.

Intuitive meaning: Projection on a random space decreases all
lengths by a factor of

√
1/d, on average.

Proof. W.l.o.g. assume that x = (1, 0, ..., 0) =: e1 ∈ Rd (can do
so because of rotational symmetry of the distribution of random
vectors). Then:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

7

Random projections on R — expectations (2)

E(|πv(x)|2) = E(|πv(e1)|2) = E(|〈v, e1〉|2) = E(|v1|2)
!

=
1

d

To see the last equality: By assumption, v is a random vector with
length 1. Thus:

1 = ‖v‖2 = E‖v‖2 = E

(
d∑
j=1

v2
j

)
=
∑
j

E(v2
j).

By rotational symmetry of the distribution of v, all components vi
have the same expectation, thus E(v2

i) = 1/d for all i = 1, ..., d.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

8

Random projections on Rk — expectations

Theorem 19 (Expected length after random projection
on Rk)

Let x ∈ Rd a fixed vector with ‖x‖ = 1. Consider its random
projection πS on a k-dim random space S. Then E‖πS(x)‖2 = k/d.

Intuitive meaning: Projection on a random space decreases all
lengths by a factor of

√
k/d, on average.

Proof. Let R be the rotation that maps S on the subspace Ek
spanned by e1, ..., ek. Because rotations do not change norms we
have

E(‖πS(x)‖2) = E‖πRS(Rx)‖2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
0

9

Random projections on Rk — expectations (2)

We now define v := Rx. The trick is now:

I The length of a unit vector when projected on a random k-dim
subspace has same distribution as length of a random unit
vector when projected on a fixed k-dim subspace.

I So we consider v as a random vector (the image of a vector
under a random rotation), whereas we consider RS = Ek is
fixed.

This leads to:

ES(‖πS(x)‖2) = ES(‖πRS(Rx)‖2) = Ev(‖πEk(v)‖2)

= Ev

(
‖

k∑
i=1

viei‖2
)

= Ev

(k∑
i=1

|vi|2
)

=
k∑
i=1

Ev|vi|2 =
k∑
i=1

1

d
=
k

d

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

0

Concentration around the mean

So far we know that the expected squared length of πS(x) is k/d.
The question is now how much variance this length has (how much
does it fluctuate around its mean?).

; concentration statement:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

1

Concentration around the mean (2)

Intuitively:
A random variable U is concentrated if its deviation from the
expectation E(U) is very small with high probability.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

2

Concentration around the mean (3)

Typical concentration statements look as follows:

I Additive deviations decrease exponentially:

P (|U − E(U)| ≥ ε) ≤ exp(−const · ε)

I or multiplicative deviations decrease exponentially:

P (U ≤ t · E(U)) ≤ exp(−const1 · t) for t < 1

P (U ≥ t · E(U)) ≤ exp(−const2 · t) for t > 1

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

3

Random projections: concentration

Proposition 20 (Concentration properties of random
projections)

For any 0 < β < 1,

P
(
‖πS(x)‖2 ≤ β

k

d

)
≤ exp

(k
2

(1− β + ln β)
)

For any β > 1,

P
(
‖πS(x)‖2 ≥ β

k

d

)
≤ exp

(k
2

(1− β + ln β)
)

Intuitively: The probability that ‖πS(x)‖2 deviates by more than a
factor β from its expectation is exponentially small.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

4

Random projections: concentration (2)

We skip the proof of this statement (it uses “concentration
inequalities”).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

5

Proof of Johnson-Lindenstrauss

Proof idea:

I Use a random projection to Rk (where k is chosen as in the
theorem) and rescale it:

√
d/k · πS

I By Proposition 19 (expectation): a vector of length 1 still has
expected length 1 after the projection.

I By Proposition 20 (concentration): the actual length will be
very close to 1, with high probability.

The details:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

6

Proof of Johnson-Lindenstrauss (2)

Consider the two points xi, xj ∈ Rd, and let π : Rd → Rk a random
projection (where k is chosen as in the theorem). π will play the
role of the mapping f in the theorem, that is we want to prove that
(∗) from the theorem holds for π(xi)− π(xj).
Observe that by linearity, ‖π(xi)− π(xj)‖ = ‖π(xi − xj)‖.
We call z := xi − xj.

Step 1: we prove that

P
(
‖π(z)‖2 ≥ (1 + ε)

k

d
‖z‖2

)
≤ 1/n2

To see this, apply the concentration proposition:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

7

Proof of Johnson-Lindenstrauss (3)

P (‖π(z)‖2 ≥ (1 + ε)
k

d
‖z‖2) ≤ exp

(
k

2
(1− (1 + ε) + ln(1 + ε))

)
Use ln(1 + ε) ≤ ε− ε2/2 + ε3/3 and plug in the formula for k from
the theorem. Then we obtain

exp

(
k

2
(1− (1 + ε) + ln(1 + ε))

)
≤ exp

(
2 log(n)

ε2/2− ε3/3
(−ε+ ε− ε2/2 + ε3/3

)
= exp(−2 log n) = 1/n2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

8

Proof of Johnson-Lindenstrauss (4)

Consequence of Step 1:

P ((∗) does NOT hold for xi and xj) = 2/n2

(factor 2 because of upper and lower deviations).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
1

9

Proof of Johnson-Lindenstrauss (5)

Second step: Now want this to hold for all pairs xi, xj:

P ((∗) does NOT hold for at least one pair xi, xj)

= P ((∗) does NOT hold for x1, x2)OR(... NOT for x1, x3)OR...)

≤
∑
i 6=j

P ((∗) does NOT hold for xi, xj)

=
∑
i 6=j

2

n2
=
n(n− 1)

2

2

n2
= 1− 1

n

Consequence:

P ((∗) holds for all pairs of points) =
1

n
.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

0

Proof of Johnson-Lindenstrauss (6)

Final step: existence
The probability that a single random projection does what we want
is positive. Thus there exists a mapping with the desired properties.
This proves the theorem.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

1

Proof of Johnson-Lindenstrauss (7)

Comments:

I To actually find a suitable projection, we try random
projections until we found one that does the job.

I Usually, we have to try O(n) random projection until we find
one that satisfies (∗) for all pairs of points.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

2

Implementing random projections — wrong way

How can we implement drawing a vector uniformly from the sphere?

Note: the following method is WRONG:

I Consider points in polar coordinates

I Pick the two angles ϕ and ψ uniform from [0, 2π[.

WHY?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

3

Implementing random projections — wrong way

(2)

Reason:

I depending on where you are, the area that covers the same
angle is small (close to the poles) or large (close to the
equator)

I Thus, you would end up with more points close to the poles
than close to the equator.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

4

Implementing random projections — wrong way

(3)

Here are some points from the sphere, sampled according to the
wrong paradigm:

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

Samples accumulate at the poles!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

5

Implementing random projections — correct

ways

A simple method that is correct:

To project on a one-dimensional space:

I Draw a d-dim vector according to the d-dim Normal
distribution: z1=randn[1,d]

I normalize it to have length 1: z=z1/norm(z1);

Draw k linearly independent vectors to implement a k-dim random
projection:

I Draw k vectors z1, ..., zk as described above and normalize
them

I If d is large, these vectors are usually linearly independent (that
is, they form a basis). If not, repeat the process. Very few
repetitions should be enough.

I Then orthonormalize the basis for easier implementation.

z1 = randn[1,d]
z = z1 / norm(z1);

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

6

Implementing random projections — correct

ways (2)

A very elegant, simple method, discovered in Achlioptas (2003):

Construct a matrix R of size d× k with independent entries ±1
with probability 1/2 each (e.g., we throw a coin for each entry).

If d is large, the matrix has the following properties:

I All column vectors have nearly the same length
√
d

I All column vectors of R are nearly orthogonal to each other

We can use this matrix as a projection matrix in the
Johnson-Lindenstrauss theorem. This leads to the following
theorem:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

7

Implementing random projections — correct

ways (3)

Theorem 21 (Johnson-Lindenstrauss, Version by
Achlioptas)

I Given x1, ..., xn ∈ Rd, let X be the d× n matrix with the
vectors xi as columns.

I Let ε, β > 0 and k = log(n) · (4 + 2β)/(ε2/2− ε3/3).

I Let R be a k × d matrix with independent entries ±1 as
described above.

I Construct the projected data points Y := R ·X · 1/
√
k.

I Then, with probability at least 1− n−β, property (∗) from the
Johnson-Lindenstrauss theorem holds for all pairs of points
(xi, xj).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

8

Final comments

Why is Johnson-Lindenstrauss so cool?

I The running time of many computer science algorithms
depends exponentially on the dimension d of the space.

I We can use JL to reduce the dimension to log d. Afterwards,
the algorithm runs in time polynomial in d.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
2

9

Final comments (2)

Many generalizations of this theorem exist, let’s just mention two of
them:

I Instead of using the Euclidean distance on Rd, we can also use
an Lp distance. A very similar mechanism then works using
p-stable distributions (the Gaussian distribution is just the
special case p = 2).

I Bourgain’s theorem: Any metric space of n points can be
embedded into a Euclidean space of dimension O(log(n)) with
distortion at most O(log(n)).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

0

Graph-based machine learning algorithms:

introduction

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

1

Neighborhood graphs

Given the similarity or distance scores between our objects, we want
to build a graph based on it.

I Vertices = objects

I Edges between objects in the same “neighborhood”

Different variants:

I directed k-nearest neighbor graph: connect xi by a directed
edge to its k nearest neighbors (or to the k points with the
largest similarity) .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

2

Neighborhood graphs (2)

Note that this graph is not symmetric. Many algorithms need
undirected graphs (in particular, spectral methods). To make
it undirected:

I Standard k-nearest neighbor graph: put an edge between xi
and xj if xi is among the k nearest neighbors of xj OR vice
versa.

I Mutual k-nearest neighbor graph: put an edge between xi and
xj if xi is among the k nearest neighbors of xj AND vice versa.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

3

Neighborhood graphs (3)

Alternatively, we can use the ε-graph:

I Connect each point to all other points that have distance
smaller than ε (or similarity larger than some threshold e)

Note: all these neighborhood graphs can be built based on
similarities or based on distances.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

4

Neighborhood graphs (4)

−2 0 2

−2

−1

0

1

2
kNN graph (k=5)

−2 0 2

−2

−1

0

1

2

mutual kNN graph (k=5)

−2 −1 0 1 2 3

−2

−1

0

1

2

mutual kNN graph (k=10)

−2 0 2
−2

−1

0

1

2

eps graph (eps =0.4)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

5

Neighborhood graphs (5)

Edge weights:

I A priori, all the graphs above are unweighted.

I On kNN graphs, it often makes sense to use similarities as
edge weights.
(Reason: edges have very diverse “lengths”, and we want to
tell this to the algorithm; e.g., spectral clustering is allowed to
cut long edges more easily than short edges)

I Never use distances as weights! (this destroys the “logic”
behind a neighborhood graph: no edge means “far away”, and
no edge is the same as edge weight 0 ...)

I For ε-graphs, edge weights do not make so much sense
because all edges are more or less “equally long”. The edge
weights then do not carry much extra information.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

6

Neighborhood graphs (6)

Matlab demo on similarity graphs:
/Users/ule/matlab_ule/not_in_path/demos_for_teaching/practical_session_summerschool_tuebingen07/

GraphDemos

/Users/ule/matlab_ule/not_in_path/demos_for_teaching/practical_session_summerschool_tuebingen07/GraphDemos
/Users/ule/matlab_ule/not_in_path/demos_for_teaching/practical_session_summerschool_tuebingen07/GraphDemos

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

7

Neighborhood graphs (7)

Why are we interested in similarity graphs?

I Sparse representation of the similarity structure

I Graphs are well-known objects, lots of algorithms to deal with
them.

I Similarity graph encodes local structure, goal of machine
learning (unsupervised learning) is to make statements about
its global structure.

I There exist many algorithms for machine learning on graphs:
I Clustering: Spectral clustering (see later)
I Dimensionality reduction: Isomap, Laplacian eigenmaps,

Maximum Variance Unfolding
I Semi-supervised learning: label propagation (not treated in

the lecture)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

8

Isomap

Literature:

I Original paper:
J. Tenenbaum, V. De Silva, J. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science,
2000.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
3

9

Isomap

We often think that data is “inherently low-dimensional”:

I Images of a tea pot, taken from all angles. Even though the
images live in R256, say, we believe they sit on a manifold
corresponding to a circle:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

0

Isomap (2)

I A phenomenon generates very high-dimensional data, but the
“effective number of parameters” is very low

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

1

Isomap (3)

W
�

rist rotation

F
in

ge
rs

 e
xt

en
si

on

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

2

Isomap (4)

More abstractly:

I We assume that the data lives in a high-dimensional space, but
effectively just sits on a low-dimensional manifold

I We would like to find a mapping that recovers this manifold.

I If we could do this, then we could reduce the dimensionality in
a very meaningful way.

UNSUPERVISED LEARNING OF LOW DIMENSIONAL MANIFOLDS

(A) (B) (C)

Figure 1: The problem of nonlinear dimensionality reduction, as illustrated for three dimensional
data (B) sampled from two dimensional manifolds (A). An unsupervised learning al-
gorithm must discover the global internal coordinates of the manifold without external
signals that suggest how the data should be embedded in two dimensions. The LLE algo-
rithm described in this paper discovers the neighborhood-preserving mappings shown in
(C); the color coding reveals how the data is embedded in two dimensions.

121

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

3

Isomap (5)

UNSUPERVISED LEARNING OF LOW DIMENSIONAL MANIFOLDS

(A) (B) (C)

Figure 1: The problem of nonlinear dimensionality reduction, as illustrated for three dimensional
data (B) sampled from two dimensional manifolds (A). An unsupervised learning al-
gorithm must discover the global internal coordinates of the manifold without external
signals that suggest how the data should be embedded in two dimensions. The LLE algo-
rithm described in this paper discovers the neighborhood-preserving mappings shown in
(C); the color coding reveals how the data is embedded in two dimensions.

121

UNSUPERVISED LEARNING OF LOW DIMENSIONAL MANIFOLDS

(A) (B) (C)

Figure 1: The problem of nonlinear dimensionality reduction, as illustrated for three dimensional
data (B) sampled from two dimensional manifolds (A). An unsupervised learning al-
gorithm must discover the global internal coordinates of the manifold without external
signals that suggest how the data should be embedded in two dimensions. The LLE algo-
rithm described in this paper discovers the neighborhood-preserving mappings shown in
(C); the color coding reveals how the data is embedded in two dimensions.

121

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

4

The Isomap algorithm

Intuition:

I In a small local region, Euclidean (extrinsic) distances between
points on a manifold approximately coincide with the intrinsic
distances. We want to keep the local distances unchanged.

I This is no longer the case for large distances: we want to keep
the intrinsic (geodesic) distances rather the ones in the
ambient space.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

5

The Isomap algorithm (2)

I If we want to “straighten” a manifold, we need to embed it in
such a way that the Euclidean distance after embedding
corresponds to the geodesic distance on the manifold.

So we would like to discover the geodesic distances in the
manifold.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

6

The Isomap algorithm (3)

I To discover the geodesic distances in the manifold:
I Build a kNN graph on the data
I Use the shortest path distance in this graph.
I Idea is: it goes “along” the manifold.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

7

The Isomap algorithm (4)

(figure by Matthias Hein)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

8

The Isomap algorithm (5)

The algorithm:

I Given some abstract data points X1, ..., Xn and a distance
function d(xi, xj).

I Build a k-nearest neighbor graph where the edges are weighted
by the distances. These are the local distances.

I In the kNN graph, compute the shortest path distances dsp
between all pairs of points and write them in the matrix D.
They correspond to the geodesic distances.

I Then apply metric MDS with D as input. Finds embedding
that preserves the geodesic distances.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
4

9

Theoretical guarantees

In the original paper (supplement) the authors have proved:

I If the data points X1, ..., Xn are sampled uniformly from a
“nice” manifold, then as n→∞ and k ≈ log n, the shortest
path distances in the kNN graph approximate the geodesic
distances on the manifold.

I Under some geometric assumptions on the manifold, MDS
then recovers an embedding with distortion converging to 0.

(Attention, the dimension is an issue here. Typically, we
cannot embed a manifold without distortion in a space of the
intrinsic dimension, we need to choose the dimension larger).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

0

History

I Manifold methods became fashionable in machine learning in
the early 2000s.

I Isomap was invented in 2000.

I Since then, a large number of manifold-based dimensionality
reduction techniques has been invented:
Locally linear embedding, Laplacian eigenmaps, Hessian
eigenmaps, Diffusion maps, Maximum Variance Unfolding, and
many more ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

1

Summary Isomap

I Unsupervised learning technique to extract the manifold
structure from distance / similarity data

I Intuition: local distances define the intrinsic geometry, shortest
paths in a kNN graphs correspond to geodesics.

I MDS then tries to find an appropriate embedding.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

2

(*) t-SNE

Literature:

I Original paper: van der Maaten, Hinton: Visualizing data
using t-SNE, JMLR 2008

I An online tutorial: Wattenberg, Viegas, Johnson: How to Use
t-SNE Effectively, Distill 2016

I Kobak, Berens: The art of using t-SNE for single cell
transcriptomics. Nature communications, 2019.

I Some theoretical analysis:
I Clustering with t-SNE, Provably. Linderman,Steinerberger,

SIAM Journal on Mathematics of Data Science
I Arora, Hu, Kothari: An Analysis of the t-SNE Algorithm for

Data Visualization, COLT 2018

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

3

General setup

t-SNE (pronounced “tee-snee”), t-Stochastic Neighbor Embedding:

I Method for non-linear dimensionality reduction

I Used mainly for data visualization / exploration

I Supposed to “identify” cluster structure.

Faithful t-SNE of transcriptomic data sets. To demonstrate
these ideas on a real-life data set, we chose to focus on the data
set from Tasic et al.3. It encompasses 23,822 cells from adult
mouse cortex, split by the authors into 133 clusters with strong
hierarchical organisation. Here and below we used a standard
preprocessing pipeline consisting of sequencing depth normal-
isation, feature selection, log-transformation, and reducing the
dimensionality to 50 PCs (see Methods).

In the Tasic et al. data, three well-separated groups of clusters
are apparent in the MDS (Fig. 2a) and PCA (Fig. 2b) plots,
corresponding to excitatory neurons (cold colours), inhibitory
neurons (warm colours), and non-neural cells such as astrocytes
or microglia (grey/brown colours). Performing PCA on these
three data subsets separately (Supplementary Fig. 1) reveals
further structure inside each of them: e.g. inhibitory neurons are
well separated into two groups, Pvalb/SSt-expressing (red/yellow)
and Vip/Lamp5-expressing (purple/salmon), as can also be seen
in Fig. 2a. This demonstrates the hierarchical organisation of the
data.

This global structure is missing from a standard t-SNE
visualisation (Fig. 2c): excitatory neurons, inhibitory neurons,
and non-neural cells are all split into multiple islands that are
shuffled among each other. For example, the group of purple
clusters (Vip interneurons) is separated from a group of salmon
clusters (a closely related group of Lamp5 interneurons) by some
excitatory clusters, misrepresenting the hierarchy of cell types.
This outcome is not a strawman: the original paper3 features a t-
SNE figure qualitatively very similar to our visualisation.

Perplexity values in the common range (e.g. 20, 50, 80) yield
similar results, confirming that t-SNE is not very sensitive to the
exact value of perplexity.

In contrast, setting perplexity to 1% of the sample size, in this
case to 238, pulls together large groups of related types,
improving the global structure (KNC and CPD increase), at the
expense of losing some of the fine structure (KNN decreases,
Fig. 2d). PCA initialisation with default perplexity also improves
the global structure (KNC and CPD increase, compared to
the default t-SNE, Fig. 2e). Finally, our suggested pipeline with
multi-scale similarities (perplexity combination of 30 and
n=100 ¼ 238), PCA initialisation, and learning rate n=12 "
2000 yields an embedding with high values of all three metrics
(Fig. 2f). Compared to the default parameters, these settings
slowed down FIt-SNE from #30 s to #2 m, which we still find to
be an acceptable runtime.

It is instructive to study systematically how the choice of
parameters influences the embedding quality (Fig. 3). We found
that the learning rate only influences KNN: the higher the
learning rate, the better preserved is the local structure, until is
saturates at around n=10 (Fig. 3a), in agreement with the results
of ref. 15. The other two metrics, KNC and CPD, are not affected
by the learning rate (Fig. 3c, e). The perplexity controls the trade-
off between KNN and KNC: the higher the perplexity combined
with 30, the worse is the microscropic structure (Fig. 3b) but the
better is the mesoscopic structure (Fig. 3d). Our choice of n=100
provides a reasonable compromise. Finally, the PCA initialisation
strongly improves the macroscopic structure as measured by the

a
MDS on class means

d

b

e

c

f

Default t-SNE
(perpexity 30, random init., ! = 200)PCA

Perplexity n /100 PCA initialisation
Multi-scale, PCA initialisation,
high learning rate (! = n /12)

KNN: 0.02
KNC: 0.47
CPD: 0.91

KNN: 0.27
KNC: 0.70
CPD: 0.37

KNN: 0.41
KNC: 0.62
CPD: 0.58

KNN: 0.41
KNC: 0.68
CPD: 0.51

KNN: 0.41
KNC: 0.53
CPD: 0.24

Pvalb

Sst

Lamp5

L2/3 IT

L5 NP

L5 IT

L6 IT

L6b

L5 PT

Vip

L6 CT

Non-neurons

Fig. 2 Tasic et al. data set. Sample size n ¼ 23;822. Cluster assignments and cluster colours are taken from the original publication3. Warm colours
correspond to inhibitory neurons, cold colours correspond to excitatory neurons, brown/grey colours correspond to non-neural cells. a MDS on class
means (n ¼ 133). Point sizes are proportional to the number of points per class. b The first two principal components of the data. KNN: 10-nearest
neighbour preservation, KNC: 10-nearest classes preservation, CPD: Spearman correlation between pairwise distances. c Default t-SNE with perplexity 30,
random initialisation, and learning rate 200. d T-SNE with perplexity n=100 ¼ 238. Labels denote large groups of clusters. e T-SNE with PCA initialisation.
f T-SNE with multi-scale similarities (perplexity combination of 30 and n=100 ¼ 238, PCA initialisation, and learning rate n=12 " 2000.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13056-x

4 NATURE COMMUNICATIONS | ��������(2019)�10:5416� | https://doi.org/10.1038/s41467-019-13056-x | www.nature.com/naturecommunications

Figure from Kobak/Berens paper

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

4

General setup (2)

General hope: it brings out the cluster structure much better than
MDS (left) or PCA (middle).

Faithful t-SNE of transcriptomic data sets. To demonstrate
these ideas on a real-life data set, we chose to focus on the data
set from Tasic et al.3. It encompasses 23,822 cells from adult
mouse cortex, split by the authors into 133 clusters with strong
hierarchical organisation. Here and below we used a standard
preprocessing pipeline consisting of sequencing depth normal-
isation, feature selection, log-transformation, and reducing the
dimensionality to 50 PCs (see Methods).

In the Tasic et al. data, three well-separated groups of clusters
are apparent in the MDS (Fig. 2a) and PCA (Fig. 2b) plots,
corresponding to excitatory neurons (cold colours), inhibitory
neurons (warm colours), and non-neural cells such as astrocytes
or microglia (grey/brown colours). Performing PCA on these
three data subsets separately (Supplementary Fig. 1) reveals
further structure inside each of them: e.g. inhibitory neurons are
well separated into two groups, Pvalb/SSt-expressing (red/yellow)
and Vip/Lamp5-expressing (purple/salmon), as can also be seen
in Fig. 2a. This demonstrates the hierarchical organisation of the
data.

This global structure is missing from a standard t-SNE
visualisation (Fig. 2c): excitatory neurons, inhibitory neurons,
and non-neural cells are all split into multiple islands that are
shuffled among each other. For example, the group of purple
clusters (Vip interneurons) is separated from a group of salmon
clusters (a closely related group of Lamp5 interneurons) by some
excitatory clusters, misrepresenting the hierarchy of cell types.
This outcome is not a strawman: the original paper3 features a t-
SNE figure qualitatively very similar to our visualisation.

Perplexity values in the common range (e.g. 20, 50, 80) yield
similar results, confirming that t-SNE is not very sensitive to the
exact value of perplexity.

In contrast, setting perplexity to 1% of the sample size, in this
case to 238, pulls together large groups of related types,
improving the global structure (KNC and CPD increase), at the
expense of losing some of the fine structure (KNN decreases,
Fig. 2d). PCA initialisation with default perplexity also improves
the global structure (KNC and CPD increase, compared to
the default t-SNE, Fig. 2e). Finally, our suggested pipeline with
multi-scale similarities (perplexity combination of 30 and
n=100 ¼ 238), PCA initialisation, and learning rate n=12 "
2000 yields an embedding with high values of all three metrics
(Fig. 2f). Compared to the default parameters, these settings
slowed down FIt-SNE from #30 s to #2 m, which we still find to
be an acceptable runtime.

It is instructive to study systematically how the choice of
parameters influences the embedding quality (Fig. 3). We found
that the learning rate only influences KNN: the higher the
learning rate, the better preserved is the local structure, until is
saturates at around n=10 (Fig. 3a), in agreement with the results
of ref. 15. The other two metrics, KNC and CPD, are not affected
by the learning rate (Fig. 3c, e). The perplexity controls the trade-
off between KNN and KNC: the higher the perplexity combined
with 30, the worse is the microscropic structure (Fig. 3b) but the
better is the mesoscopic structure (Fig. 3d). Our choice of n=100
provides a reasonable compromise. Finally, the PCA initialisation
strongly improves the macroscopic structure as measured by the

a
MDS on class means

d

b

e

c

f

Default t-SNE
(perpexity 30, random init., ! = 200)PCA

Perplexity n /100 PCA initialisation
Multi-scale, PCA initialisation,
high learning rate (! = n /12)

KNN: 0.02
KNC: 0.47
CPD: 0.91

KNN: 0.27
KNC: 0.70
CPD: 0.37

KNN: 0.41
KNC: 0.62
CPD: 0.58

KNN: 0.41
KNC: 0.68
CPD: 0.51

KNN: 0.41
KNC: 0.53
CPD: 0.24

Pvalb

Sst

Lamp5

L2/3 IT

L5 NP

L5 IT

L6 IT

L6b

L5 PT

Vip

L6 CT

Non-neurons

Fig. 2 Tasic et al. data set. Sample size n ¼ 23;822. Cluster assignments and cluster colours are taken from the original publication3. Warm colours
correspond to inhibitory neurons, cold colours correspond to excitatory neurons, brown/grey colours correspond to non-neural cells. a MDS on class
means (n ¼ 133). Point sizes are proportional to the number of points per class. b The first two principal components of the data. KNN: 10-nearest
neighbour preservation, KNC: 10-nearest classes preservation, CPD: Spearman correlation between pairwise distances. c Default t-SNE with perplexity 30,
random initialisation, and learning rate 200. d T-SNE with perplexity n=100 ¼ 238. Labels denote large groups of clusters. e T-SNE with PCA initialisation.
f T-SNE with multi-scale similarities (perplexity combination of 30 and n=100 ¼ 238, PCA initialisation, and learning rate n=12 " 2000.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13056-x

4 NATURE COMMUNICATIONS | ��������(2019)�10:5416� | https://doi.org/10.1038/s41467-019-13056-x | www.nature.com/naturecommunications

Figure from Kobak/Berens paper

(Question: at the cost of what? See later.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

5

General idea

I We start with points in a high-dim space Rd, we typically
embed in R2 (for visualization).

I We define a (non-symmetric) similarity function pi|j on the
input space using a Gaussian kernel, see next slide. For each
point i, we will interpret the similarities pi|j as a probability
distribution.

I We define a (non-symmetric) similarity function qi|j on the
output space using a heavy-tailed t-distribution.

I Then we minimize the Kullback-Leibler divergence between the
two by a gradient descent algorithm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

6

The similarity in the input space

I The non-symmetric similarity between i and j will be modeled
by a Gaussian kernel:

pi|j =
exp

(
− ‖xi − xj‖2/(2σ2

i)
)∑

k 6=i exp
(
− ‖xi − xk‖2/(2σ2

i)
)

I The similarities are normalized to sum to 1, so they can be
interpreted as a probability distribution.

I For each point i, we choose a different value of σi. The rough
idea is to choose σi such that the data point i is reasonably
similar to a predfined, fixed number of neighbors (a bit like the
parameter k in kNN methods).

I This is measured in a somewhat funny way (in my opinion):

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

7

The similarity in the input space (2)

I Fix a value of “perplexity” (≈ number of neighbors)
I Compute the entropy of the current input distribution at

point i (depending on the current value of σi):

H = −
∑
i 6=j

pj|i log2 pj|i

I Compute the “perplexity” P = 2H

I Choose the parameter σi of the Gaussian kernel such that the
perplexity matches the pre-specified value (easy: use binary
search, as perplexity monotonically depends on σ).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

8

Similarity in the output space

In earlier versions, people used the Gaussian kernels on the output
space as well:

qi|j =
exp

(
− ‖xi − xj‖2

)∑
k 6=i exp

(
− ‖xi − xk‖2

)
However, this led to undesired effects (the algorithm was called
SNE).

The breakthrough was to use a more heavy-tailed (more robust)
similarity on the output space, turning SNE into t-SNE:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
5

9

Similarity in the output space (2)

We model the similarity in the output space by a heavy-tailed
t-distribution (with one degree of freedom; same as Cauchy
distribution):

qi|j =

(
1 + ‖yi − yj‖2

)−1∑
k 6=i
(
1 + ‖yi − yk‖2

)−1

There is no parameter to tune here, at least in the vanilla version.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

0

The objective function

Given the input similarities pi|j, the goal is to find an embedding
whose output similarities qi|j match the input ones as good as
possible. This is measured by the Kullback-Leibler divergence:

cost(embedding) =
∑
i

KL(Pi||Qi)

=
∑
i

∑
j

pj|i log
pj|i
qj|i

This cost function is minimized by gradient descent.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

1

The objective function (2)

Interpretation:

I Large costs for points that are close in input space but far in
output space; Small cost for points that are far in input space
but close in output space

I Looking closer at the gradient that is being optimized, one can
identify two components: attactive forces and repulsive forces,
similarly to a system of springs.
I All points are repelled from each other.
I Points that are neighbors are also attracted to each other

(goverened by perplexity)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

2

T-SNE can be cool

In many cases it has been observed that t-SNE produces plots that
show true cluster structure:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

314 GEORGE C. LINDERMAN AND STEFAN STEINERBERGER

1.1. A case study. As an unsupervised learning method, t-SNE is commonly used to
visualize high dimensional data and provide crucial intuition in settings where ground truth
is unknown. The analysis of single cell RNA sequencing data, where t-SNE has become an
integral part of the standard analysis pipeline, provides a relevant example of its usage. Figure
1.1 shows (left) the output of running t-SNE on the 30 largest principal components of the
normalized expression matrix of 49,300 retinal cells taken from Macosko et al. (2015). The
output on the right has cells colored based on which of 12 cell type marker genes were most
expressed (with gray signifying that none of the marker genes were expressed). This example
is well suited to showcase both the tremendous impact of t-SNE in the medical sciences as well
as the inherent di�culties of interpreting its output when ground truth is unknown: how many
clusters are in the original space, and do they correspond one-to-one to clusters in the t-SNE
plot? Do the clusters (e.g., the largest cluster that does not express any marker genes) have
substructure that is not apparent in this visualization? Preprocessing steps will yield di↵erent
embeddings; how stable are the clusters? All these questions are of the utmost importance
and underline the need for a better theoretical understanding.

Figure 1.1. t-SNE output (left) and colored by some known ground truth (right).

1.2. Early exaggeration. t-SNE (described in greater detail in section 3) minimizes the
Kullback–Leibler divergence between a Gaussian distribution modeling distances between
points in the high dimensional input space and a Student t-distribution modeling distances
between corresponding points in a low dimensional embedding. Given a d-dimensional in-
put data set X = {x1, x2, . . . , xn} ⇢ Rd, t-SNE computes an s-dimensional embedding of
the points in X , denoted by Y = {y1, y2, . . . , yn} ⇢ Rs, where s ⌧ d and most commonly
s = 2 or 3. The main idea is to define a series of a�nities pij on X as well as a series of
a�nities qij in the embedding Y and then try to minimize the distance of these distributions
in the Kullback–Leibler distance

C(Y) = KL(P ||Q) =
X

i 6=j

pij log
pij
qij

,

which gives rise to a gradient descent method via

@C

@yi
= 4

X

j 6=i

(pij � qij)qijZ(yi � yj),

D
ow

nl
oa

de
d

06
/1

5/
20

 to
 8

9.
24

6.
12

3.
11

7.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Figure from Lindermann et al.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

3

T-SNE can be cool (2)

Theoretical results by Lindermann et al and Arora et al show that if
there exists a ground truth clustering consisting of highly spherical
clusters that are very well separated from each other, then a variant
of t-SNE has a high likelihood of finding it:

1.1 Our Results

Our main result identifies a simple deterministic condition on the clusterable data under which t-SNE prov-
ably succeeds in computing a full visualization.

Definition 1.4 (Well-separated, spherical data). Let X = {x1, x2, . . . , xn} ⇢ Rd be clusterable data with
C1, C2, . . . , Ck defining the individual clusters such that for each ` 2 [k], |C`| � 0.1(n/k). We say that X is
�-spherical and �-well-separated if for some b1, b2, . . . , bk > 0, we have:

1. �-Spherical: For any ` 2 [k] and i, j 2 C` (i 6= j), we have kxi � xjk2 � b`
1+� , and for any i 2 C`

we have
���
n
j 2 C` \ {i} : kxi � xjk2  b`

o��� � 0.51|C`|.

2. �-Well-separated: For any `, `
0 2 [k] (` 6= `

0), i 2 C` and j 2 C`0 we have kxi � xjk2 � (1 +
� log n)max{b`, b`0}.

The first condition asks for the distances between points in the same cluster (“intra-cluster distances”)
to be concentrated around a single value (with � controlling the “amount” of concentration). The second
condition requires that the distances between two points from different clusters should be somewhat larger
than the intra-cluster distances for each of the two clusters involved. In addition, we require that none of the
clusters has too few points. Such assumptions are satisfied by well-studied probabilistic generative models
for clusterable data such as mixture of Gaussians and more generally, mixture of log-concave distributions,
and have been used in previous work (Dasgupta, 1999; Arora and Kannan, 2005) studying “distance-based”
clustering algorithms.

For spherical and well-separated data, our main theorem below shows that t-SNE with early exaggeration
succeeds in finding a full visualization.

Theorem 1.5 (Informal, see Theorem 3.1 for a formal version). Let X = {x1, x2, . . . , xn} ⇢ Rd be �-
spherical and �-well-separated clusterable data with C1, C2, . . . , Ck defining the individual clusters. Then,
t-SNE with early exaggeration on input X outputs a full visualization of X with high probability.

Proof Technique. At a high level, t-SNE starts with a randomly initialized embedding and makes itera-
tive gradient updates to it. The analysis thus demands understanding the effect of this update rule to the
embedding of the high-dimensional points as a function of whether they lie in the same cluster or not. In
a recent work, Linderman and Steinerberger (2017) established a “shrinkage” result for this update rule -
they showed that points in the same cluster move towards each other under some mild conditions, that is, the
embedding of any cluster “shrinks” as the iterations proceed. This result, however, is insufficient to establish
that t-SNE succeeds in finding a full visualization as it does not rule out multiple clusters merging into each
other.

We resort to a more fine-grained analysis built on the one by Linderman and Steinerberger (2017) and
obtain an update rule for the centroids of the embeddings of all underlying clusters. This allows us to track
the changes to the positions of the centroids and show that the distance between distinct centroids remains
lower-bounded whenever the data is �-spherical and �-well-separated. Combined with the shrinkage result
for points in the same cluster, this implies that t-SNE outputs a full visualization of the data.

Our analysis implicitly relies on the update rule in t-SNE closely mimicking those appearing in the well-
studied noisy power method (with non-random noise). In Section 3.3, we make this connection explicit and
show that the behavior of t-SNE (with early exaggeration) on �-spherical and well-separated data can in fact
be closely approximated by power method run on a natural matrix of pairwise similarities.

4

Theorem from Arora et al

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

4

Choice of parameters is crucial!

While the algorithm sounds really simple and can produce cool
plots, the output really depends a lot on the choice of
parameters:

analysed with t-SNE. Each level of the landmarks hierarchy can
be explored separately. Ref. 18 successfully applied this method to
mass cytometry data sets with up to 15 million cells. However,
HSNE does not allow to embed all n points in a way that would
preserve the geometry on the level of landmarks.

Our approach to preserving global geometry of the data is
based on using PCA initialisation and large perplexity values. It

can fail if some aspects of the global geometry are not adequately
captured in the first two PCs or by the similarities computed
using a large perplexity. This may happen when the data set
contains very isolated but rare cell types. Indeed, a small isolated
cluster might not appear isolated in the first two PCs because it
would not have enough cells to contribute much to the explained
variance. At the same time, large perplexity will make the points

a

e

b

f

c

g

d

h

Radial glia (Aldoc) Neural progenitors (Eomes) Mature neurons (Stmn2) Interneurons (Gad1, Gad2)

Fig. 8 Developmental marker genes. Overlay over t-SNE embeddings from Fig. 7. a Expression of Aldoc gene (marker of radial glia) on the t-SNE embedding
from Fig. 7b. Any cell with Aldoc detected (UMI count above zero) was coloured in red. Another radial glia marker, Slc1a3, had similar but a bit broader
expression. b Expression of Eomes, marker of neural progenitors (neuroblasts). c Expression of Stmn2, marker of mature neurons. A pan-neuronal marker
Tubb3 had similar but a bit broader expression. d Expression of Gad1 and Gad2 (either of them), markers of inhibitory neurons. e–h The same genes
overlayed over the default t-SNE embedding from Fig. 7e.

a bCao et al.8, n = 2,058,652. Original t-SNE

29

6

24 26

Hepatocyte
HAEMATOPOIESIS

MESENCHYMAL

Endothelial

20

29

22

Epithelial

Lens

26
31

38

27
15

5

24

181028

9
NEURAL

TUBE

33
6

34
3513

3

417
1681

2 25

21

37

36

23

32

11

12

19

14
7

30

KNC: 0.57
CPD: 0.51

KNC: 0.39
CPD: 0.40

Neural
crest 3

Neural
crest 1

Neural
crest 2

23

38

27
18

11 22

14 15

367

34

12
3

5

339

10

20

28

1337

32

21
30

25

35 16
3117

8419

2

1

Our t-SNE

Fig. 9 Cao et al. data set. Sample size n ¼ 2;058;652. Cluster assignments and cluster colours are taken from the original publication8. a T-SNE embedding
from the original publication. The authors ran t-SNE in scanpy with default settings, i.e. with random initialisation, perplexity 30, and learning rate 1000.
For cluster annotations, see original publication. b T-SNE embedding produced with our pipeline for large data sets: a random sample of 25;000 cells was
embedded using PCA initialisation, learning rate 25;000=12, and perplexity combination of 30 and 250; all other cells were positioned on resulting
embedding and this was used to initialise t-SNE with learning rate 2;058;652=12, perplexity 30, and exaggeration 4. Labels correspond to the ten
developmental trajectories identified in the original publication. Labels in capital letters denote trajectories consisting of multiple clusters. 32,011 putative
doublet cells are not shown in either panel.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13056-x

10 NATURE COMMUNICATIONS | ��������(2019)�10:5416� | https://doi.org/10.1038/s41467-019-13056-x | www.nature.com/naturecommunications

Figure from Kobak/Berens

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

5

Choice of parameters is crucial! (2)

and automatically takes care of the optimisation issues. Perplexity
should be left at the default value 30 for very large data sets, but
can be combined with n=100 for smaller data sets. Exaggeration
can be increased to !4 for very large data sets, but is not needed
for smaller data sets.

In comparison, UMAP has two main adjustable parameters
(and many further optimisation parameters): n_neighbors,
corresponding to perplexity, and min_dist, controlling how
tight the clusters become. The latter parameter sets the shape of
the low-dimensional similarity kernel10 and is therefore analo-
gous to ν mentioned above. Our experiments with UMAP suggest
that its repulsive forces roughly correspond to t-SNE with exag-
geration !4 (Supplementary Figs. 2, 3). Whether this is desirable,
depends on the application. With t-SNE, one can choose to
switch exaggeration off and e.g. use the embedding shown in
Fig. 7c instead of Fig. 7b.

Several variants of t-SNE have been recently proposed in the
literature. One important example is parametric t-SNE, where a
neural network is used to create a mapping fðxÞ from high-
dimensional input space to two dimensions and is trained using
standard deep learning techniques to yield an optimal t-SNE
result42. Parametric t-SNE has been recently applied to

transcriptomic data under the names net-SNE43 and scvis44. The
latter method combined parametric t-SNE with a variational
autoencoder, and was claimed to yield more interpretable visua-
lisations than standard t-SNE due to better preserving the global
structure. Indeed, the network architecture limits the form that
the mapping fðxÞ can take; this implicit constraint on the com-
plexity of the mapping prevents similar clusters from ending up
in very different parts of the resulting embedding. Also, in this
approach the most appropriate perplexity does not need to grow
with the sample size, as long as the mini-batch size remains
constant. By default scvis uses mini-batch size of 512 and per-
plexity 10, which likely corresponds to the effective perplexity
of 10=512 $ n, i.e. !2% of the sample size, similar to our 1%
suggestion here.

Another important development is hierarchical t-SNE, or
HSNE45. The key idea is to use random walks on the k-nearest
neighbours graph of the data to find a smaller set of landmarks,
which are points that can serve as representatives of the sur-
rounding points. In the next round, the k-nearest neighbours
graph on the level of landmarks is constructed. This operation
can reduce the size of the data set by an order of magnitude, and
can be repeated until the data set becomes small enough to be

a n = 25,000

4

26
13

24

8

28
19

17

16

7

33
29

23

3

31 14
11 6 20

25
22

18

15

34

10

1

0

2 5

28

24
13

4

26

8

19

17

16

12 21
9

15

32

37

18

10

1

3

0
2 5

6
27

20

KNC: 0.53
CPD: 0.66

KNC: 0.46
CPD: 0.51

KNC: 0.44
CPD: 0.69

KNC: 0.39
CPD: 0.43

11
14

23

33

6

29

31
25

22

34

7

27

32

21

37

12
9

Without exaggeration Without downsampling Default t-SNE (! = 1000)

n = 1,306,127

c d e

b

Fig. 7 10x Genomics data set. Sample size n ¼ 1;306;127. Cluster assignments and cluster colours are taken from ref. 23. a T-SNE of a random subsample of
25;000 cells (PCA initialisation, perplexity combination of 30 and 250, learning rate 25;000=12). Cluster labels for several small clusters (30, 35, 36, and
38) are not shown here and in b because these clusters were very dispersed in the embeddings. b T-SNE of the full data set. All cells were positioned on the
embedding in panel a and this was used as initialisation. Perplexity 30, exaggeration 4, learning rate n=12. c The same as in b but without exaggeration.
d The same as in b but with PCA initialisation, i.e. without using the downsampling step. e Default t-SNE with learning rate set to η ¼ 1000: random
initialisation, no exaggeration.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13056-x ARTICLE

NATURE COMMUNICATIONS | ��������(2019)�10:5416� | https://doi.org/10.1038/s41467-019-13056-x |www.nature.com/naturecommunications 9

Figure from Kobak/Berens

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

6

Choice of parameters is crucial! (3)

Different values of perplexity (top row) and different values of early
stopping (bottom row):

Figures from Wattenberg et al.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

7

Choice of parameters is crucial! (4)

Some of the parameters to look at:

I Initialization: the algorithm starts with a set of points and
then tries to improve the embedding by gradient descent. You
can initialize with an MDS or PCA embedding, or randomly, or
many other ways. The results depend a lot on the initialization:

I Perplexity

I Learning rate, early stopping, early exaggeration, momentum,
... and lots of other heuristics that are being applied

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

8

Be careful with interpreations!

Cluster sizes in a t-SNE plot mean nothing:

The size of a cluster in a t-SNE plot does not have anything to do
with its “real” size. Consider the toy example below, which starts
with two Gaussians with very different sizes. In all the embeddings,
the clusters have the same sizes:

Figure from Wattenberg et al.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
6

9

Be careful with interpreations! (2)

Distances between clusters might not mean anything. The
relative position of clusters with respect to each other is
arbitrary.

Figures from Wattenberg et al.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

0

Be careful with interpreations! (3)

Random noise doesn’t always look random

Figure from Wattenberg et al.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

1

Be careful with interpreations! (4)

T-SNE might or might not preserve topology.

Figure from Wattenberg et al.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

2

Summary

I t-SNE is very widely used!!!

I It is very sensible to choices of parameters. For me this means
that you can play with the parameters until you see what you
would like / hope / expect to see ...

I It is really difficult to interpret t-SNE plots. They look great,
but see the previous slide for all the downsides. You cannot
trust global geometry, sizes, distances, ...

My personal bottom line:

I Using t-SNE to explore data is fine. But never trust t-SNE
plots to reveal any truth. When your explorative data
analysis with t-SNE has suggested some new insights, then by
all means go and validate your insights independently!
Never trust a paper that presents a t-SNE plot as the final
evidence. It can be a step on the way, but not more.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

3

Clustering

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

4

Data clustering

Data clustering is one of the most important problems of
unsupervised learning.

I Given just input data X1, ..., Xn

I We want to discover groups (“clusters”) in the data such that
points in the same cluster are “similar” to each other and
points in different clusters are “dissimilar” of each other.

I Important: a priori, we don’t have any information (training
labels) about these groups, and often we don’t know how
many groups there are (if any).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

5

Data clustering (2)

Applications:

I Find “genres” of songs

I Find different “groups” of customers

I Find two different types of cancer, based on gene expression
data

I Discover proteins that have a similar function

I ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

6

Data clustering (3)

Two main reasons to do this:

I Improve your understanding of the data! Exploratory data
analysis.

I Reduce the complexity of the data. Vector quantization.
For example, instead of training on a set of 106 customers, use
1000 “representative” customers.

I Break your problem into subproblems and treat each cluster
individually.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

7

Example: Clustering gene expression data

U
lr

ik
e
 v

o
n
 L

u
x
b
u
rg

20

Clustering Gene Expression Data

M. Eisen et al., PNAS, 1998

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

8

Example: Protein interaction networks

(from http://www.math.cornell.edu/ durrett/RGD/RGD.html)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
7

9

Example: Social networks

Corporate email communication (Adamic and Adar, 2005)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

0

Example: Image segmentation

Figure 6: Automatic image segmentation. Fully automatic intensity based image segmen-
tation results using our algorithm.

More experiments and results on real data sets can be found on our web-page
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

5 Discussion & Conclusions

Spectral clustering practitioners know that selecting good parameters to tune the cluster-
ing process is an art requiring skill and patience. Automating spectral clustering was the
main motivation for this study. The key ideas we introduced are three: (a) using a local
scale, rather than a global one, (b) estimating the scale from the data, and (c) rotating the
eigenvectors to create the maximally sparse representation. We proposed an automated
spectral clustering algorithm based on these ideas: it computes automatically the scale and
the number of groups and it can handle multi-scale data which are problematic for previous
approaches.

Some of the choices we made in our implementation were motivated by simplicity and are
perfectible. For instance, the local scale σ might be better estimated by a method which
relies on more informative local statistics. Another example: the cost function in Eq. (3) is
reasonable, but by no means the only possibility (e.g. the sum of the entropy of the rows
Zi might be used instead).

Acknowledgments:

Finally, we wish to thank Yair Weiss for providing us his code for spectral clustering.
This research was supported by the MURI award number SA3318 and by the Center of
Neuromorphic Systems Engineering award number EEC-9402726.

References

[1] G. H. Golub and C. F. Van Loan “Matrix Computation”, John Hopkins University Press, 1991,
Second Edition.

[2] V. K. Goyal and M. Vetterli “Block Transform by Stochastic Gradient Descent” IEEE Digital
Signal Processing Workshop, 1999, Bryce Canyon, UT, Aug. 1998

[3] R. Kannan, S. Vempala and V.Vetta “On Spectral Clustering – Good, Bad and Spectral” In Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer Sceince, 2000.

[4] M. Meila and J. Shi “Learning Segmentation by Random Walks” In Advances in Neural Infor-
mation Processing Systems 13, 2001

[5] A. Ng, M. Jordan and Y. Weiss “On spectral clustering: Analysis and an algorithm” In Advances
in Neural Information Processing Systems 14, 2001

[6] P. Perona and W. T. Freeman “A Factorization Approach to Grouping” Proceedings of the 5th
European Conference on Computer Vision, Volume I, pp. 655–670 1998.

[7] M. Polito and P. Perona “Grouping and dimensionality reduction by locally linear embedding”
Advances in Neural Information Processing Systems 14, 2002

[8] G.L. Scott and H.C. Longuet-Higgins “Feature grouping by ‘relocalisation’ of eigenvectors of
the proximity matrix” In Proc. British Machine Vision Conference, Oxford, UK, pages 103–108,
1990.

Figure 6: Automatic image segmentation. Fully automatic intensity based image segmen-
tation results using our algorithm.

More experiments and results on real data sets can be found on our web-page
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

5 Discussion & Conclusions

Spectral clustering practitioners know that selecting good parameters to tune the cluster-
ing process is an art requiring skill and patience. Automating spectral clustering was the
main motivation for this study. The key ideas we introduced are three: (a) using a local
scale, rather than a global one, (b) estimating the scale from the data, and (c) rotating the
eigenvectors to create the maximally sparse representation. We proposed an automated
spectral clustering algorithm based on these ideas: it computes automatically the scale and
the number of groups and it can handle multi-scale data which are problematic for previous
approaches.

Some of the choices we made in our implementation were motivated by simplicity and are
perfectible. For instance, the local scale σ might be better estimated by a method which
relies on more informative local statistics. Another example: the cost function in Eq. (3) is
reasonable, but by no means the only possibility (e.g. the sum of the entropy of the rows
Zi might be used instead).

Acknowledgments:

Finally, we wish to thank Yair Weiss for providing us his code for spectral clustering.
This research was supported by the MURI award number SA3318 and by the Center of
Neuromorphic Systems Engineering award number EEC-9402726.

References

[1] G. H. Golub and C. F. Van Loan “Matrix Computation”, John Hopkins University Press, 1991,
Second Edition.

[2] V. K. Goyal and M. Vetterli “Block Transform by Stochastic Gradient Descent” IEEE Digital
Signal Processing Workshop, 1999, Bryce Canyon, UT, Aug. 1998

[3] R. Kannan, S. Vempala and V.Vetta “On Spectral Clustering – Good, Bad and Spectral” In Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer Sceince, 2000.

[4] M. Meila and J. Shi “Learning Segmentation by Random Walks” In Advances in Neural Infor-
mation Processing Systems 13, 2001

[5] A. Ng, M. Jordan and Y. Weiss “On spectral clustering: Analysis and an algorithm” In Advances
in Neural Information Processing Systems 14, 2001

[6] P. Perona and W. T. Freeman “A Factorization Approach to Grouping” Proceedings of the 5th
European Conference on Computer Vision, Volume I, pp. 655–670 1998.

[7] M. Polito and P. Perona “Grouping and dimensionality reduction by locally linear embedding”
Advances in Neural Information Processing Systems 14, 2002

[8] G.L. Scott and H.C. Longuet-Higgins “Feature grouping by ‘relocalisation’ of eigenvectors of
the proximity matrix” In Proc. British Machine Vision Conference, Oxford, UK, pages 103–108,
1990.

(from Zelnik-Manor/Perona, 2005)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

1

Example: Genetic distances between mammals

Horse

WhiteRhino

HarborSeal

GreySeal

Cat

BlueWhale

Cow

FinbackWhale

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

HouseMouse

Rat

Opossum

Wallaroo

Platypus

Figure 2: The evolutionary tree built from complete
mammalian mtDNA sequences using block size k = 7
and d′.

each of the positions in the DNA sequence, and take out
the k bases covered by the 1s to form a length-k word. The
number of those distinct words is then used to define the
distances d′ and d∗ in Formula (6.2) and (6.2).

We applied the new defined distances to the 20 mam-
mal data. The performance is slightly bettern than the per-
formance of the distances defined in (6.2) and (6.2). The
modified d′ and d∗ can correctly construct the mammal tree
when 7 ≤ k ≤ 13 and 6 ≤ k ≤ 13, respectively.

Compression: To achieve the best approximation of
Kolmogorov complexity, and hence most confidence in the
approximation of ds and d, we use a new version of the Gen-
Compress program, [9], which achieves the currently best
compression ratios for benchmark DNA sequences. Gen-
Compress finds approximate matches (hence edit distance
becomes a special case), approximate reverse complements,
among other things, with arithmetic encoding when neces-
sary. Online service of GenCompress is at UCSB Bioin-
formatics Lab website: http://cytosine.cs.ucsb.edu:8080/.
We computed d(x, y) between each pair of mtDNA x and
y, using GenCompress to heuristically approximate K(x|y),
K(x), and K(x, y), and constructed a tree (Figure 3) using
the neighbor joining [32] program in the MOLPHY package
[1]. The tree is identical to the maximum likelihood tree of
Cao, et al. [8]. For comparison, we used the hypercleaning
program [7] and obtained the same result. The phylogeny in
Figure 3 re-confirms the hypothesis of (Rodents, (Primates,
Ferungulates)). Using the ds measure gives the same result.

To further assure our results, we have extracted only
the coding regions from the mtDNAs of the above species,
and performed the same computation. This resulted in the
same tree.

Evaluation: This new method for whole genome com-
parison and phylogeny does not require gene identification
nor any human intervention, in fact, it is totally automatic.

Platypus

Wallaroo

Opossum

Rat

HouseMouse

Cat

HarborSeal

GreySeal

WhiteRhino

Horse

FinbackWhale

BlueWhale

Cow

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

Rodents

Ferungulates

Primates

Marsupials and monotremes

Figure 3: The evolutionary tree built from complete
mammalian mtDNA sequences.

It is mathematically well-founded being based on general in-
formation theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated
by the successful construction of a chain letter phylogeny [5]
and when individual gene trees do not agree (Cao et al., [8])
as is the case for genomes. Next step would be to apply
this method to larger genomes such as cpDNA and bacteria
genomes.

7 The Language Tree
Normalized information distance is a totally general univer-
sal tool, not restricted to a particular application area. We
show that it can also be used to successfully classify nat-
ural languages. Let us borrow from biology the “nature”
(acquired by genetic mixture) versus “nurture” (acquired in
the life of the individual) terminology. Any language tree
built by only analyzing contemporary natural text corpora is
partially corrupted by historical “nurture” contaminations.
While according to Darwinism the genomes only change by
inheritance (nature), languages acquire their characteristic
by descent but also by interaction (nurture). Thus, while En-
glish is a Germanic Anglo-Saxon language, it has absorbed a
great deal of French-Latin components. Similarly, Hungar-
ian, often considered a Finn-Ugric language, which consen-
sus currently happens to be open to debate in the linguistic
community, is known to have absorbed many Turkish and
Slavic components. Thus, an automatic construction of a
language tree based on contemporary text corpora, exhibits
current linguistic relations (based on both nature and nur-
ture) which do not necessarily coincide completely with the
historic language family tree (based on nature). According
to a linguistic expert, only vocabulary is normally borrowed
between languages, and inflectional morphology is the best
indicator of linguistic descent. This may be the most im-
portant factor distorting the results. The misclassification
of English as Romance language must have something to do

cf. Chen/Li/Ma/Vitanyi (2004)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

2

Most common approach

Have two goals:

I Want distances between points in the same cluster to be small

I Want distances between points in different clusters be large

Naive approach:

I Define a criterion that measures these distances and try to find
the best partition with respect to this criterion: Example:

minimize
average within-cluster distances

average between-cluster distances

Problem:

I Which objective to choose?

I Most such optimization problems are NP hard (combinatorial
optimization).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

3

K-means and kernel k-means

Literature:
Tibshirani/Hastie/Friedmann

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

4

Standard k-means algorithm

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

5

k-means objective

I Assume we are given data points X1, ..., Xn ∈ Rd

I Assume we want to separate it into K groups.

I We want to construct K class representatives (class means)
m1, ...,mK that represent the groups.

I Consider the following objective function:

min
{m1,...,mK∈Rd}

K∑
k=1

∑
i∈Ck

‖Xi −mk‖2

That is, we want to find the centers such that the sum of
squared distances of data points to the closest centers are
minimized.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

6

k-means objective (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

7

Lloyd’s algorithm (k-means algorithm)

The following heuristic is typically used to find a local optimum of
the k-means objective function:

I Start with randomly chosen centers.

I Repeat the following two steps until convergence:
I Assign all points to the closest cluster center.
I Define the new centers as the mean vectors of the current

clusters.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

8

Lloyd’s algorithm (k-means algorithm) (2)

−2 0 2 4 6

0

2

4

6

Previous step

−2 0 2 4 6

0

2

4

6

Updated clustering for fixed centers

−2 0 2 4 6

0

2

4

6

Updated centers based on new clustering

−2 0 2 4 6

0

2

4

6

Previous step

−2 0 2 4 6

0

2

4

6

Updated clustering for fixed centers

−2 0 2 4 6

0

2

4

6

Updated centers based on new clustering

...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
8

9

Lloyd’s algorithm (k-means algorithm) (3)

−2 0 2 4 6

0

2

4

6

Previous step

−2 0 2 4 6

0

2

4

6

Updated clustering for fixed centers

−2 0 2 4 6

0

2

4

6

Updated centers based on new clustering

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

0

Lloyd’s algorithm (k-means algorithm) (4)

The formal k-means algorithm:

1 Input: Data points X1, ..., Xn ∈ Rd, number K of clusters to
construct.

2 Randomly initialize the centers m
(0)
1 , ...,m

(0)
K .

3 while not converged
4 Assign each data point to the closest cluster center, that is

define the clusters C
(i+1)
1 , ..., C

(i+1)
K by

Xs ∈ C(i+1)
k ⇐⇒ ‖Xs−m(i)

k ‖2 ≤ ‖Xs−m(i)
l ‖2, l = 1, ..., K

5 Compute the new cluster centers by

m
(i+1)
k =

1

|C(i+1)
k |

∑
s∈C(i+1)

k

Xs

6 Output: Clusters C1, ..., CK

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

1

Lloyd’s algorithm (k-means algorithm) (5)

matlab demo: demo_kmeans()

demo_kmeans()

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

2

K-means algorithm — Termination

Proposition 22 (Termination)

Given a finite set of n point in Rd. Then the k-means algorithm
terminates after a finite number of iterations.

Proof sketch.

I In each iteration of the while loop, the objective function
decreases.

I There are only finitely many partitions we can inspect.

I So the algorithm has to terminate.

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

3

K-means algorithm — Solutions can be

arbitrarily bad

Proposition 23 (Bad solution possible)

The algorithm ends in a local optimum which can be an arbitrary
factor away from the global solution.

Proof.

I We give an example with four points in R, see figure on the
next slides.

I By adjusting the parameters a and b and c we can achieve an
arbitrarily bad ratio of global and local solution.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

4

K-means algorithm — Solutions can be

arbitrarily bad (2)

Data set: 4 points on the real line:

Different solutions depending on the initialization:

If b > max{a, c} and a > c, then the local optimum Solution 2 is
worse by a factor of (a/c)2 than the global Solution 1.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

5

K-means algorithm — Initialization

Methods to select initial centers:

I Most common: randomly choose some data points as starting
centers.

I Much better: Farthest first heuristic:

1 S = ∅ # S set of centers

2 Pick x uniformly at random from the data points
S = {x}

3 while |S| < k
4 for all x ∈ X \ S
5 Compute D(x) := mins∈S ‖x− s‖2.
6 Select the next center y with probability proportional to

D(x) among the remaining data points and insert it in
S.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

6

K-means algorithm — Initialization (2)

The k-means algorithm with this heuristic is called kmeans++
and satisfies nice approximation guarantees.

I Initialize the centers using the solution of an even simpler
clustering algorithm.

I Ideally have prior knowledge, for example that certain points
are in different clusters.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

7

K-means algorithm — Heuristics for practice

As it is the standard procedure for highly non-convex optimization
problems, in practice we restart the algorithm many times with
different initializations. Then we use the best of all these runs as
our final result.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

8

K-means algorithm — Heuristics for practice (2)

Common problem:

I In the course of the algorithm it can happen that a center
“looses” all its data points (no point is assigned to the center
any more).

I In this case, one either restarts the whole algorithm, or
randomly replaces the empty center by one of the data points.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

6
9

9

K-means algorithm — Heuristics for practice (3)

Local search heuristics to improve the result once the algorithm has
terminated:

I Restart many times with different initializations.

I Swap individual points between clusters.

I Remove a cluster center, and introduce a completely new
center instead.

I Merge clusters, and additionally introduce a completely new
cluster center.

I Split a cluster in two pieces (preferably, one that has a very
bad objective function). Then reduce the number of clusters
again, for example by randomly removing one.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

0

k-means minimizes within-cluster distances

Another way to understand the k-means objective:

Proposition 24 (k-means and within-cluster distances)

The following two optimization problems are equivalent:

1. Find a discrete partition of the data set such that the
within-cluster-distances are minimized:

min
{C1,...,CK}

K∑
k=1

1

|Ck|2
∑

i∈Ck,j∈Ck

‖Xi −Xj‖2

2. Find cluster centers such that the distances of the data points to
these centers are minimized:

min
m1,...,mK∈Rd

K∑
k=1

∑
i∈Ck

‖Xi −mk‖2

Proof. Elementary, but a bit lengthy, we skip it.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

1

k-means leads to Voronoi partitions

Observe that the partition induced by the k-means objective
corresponds to a Voronoi partition of the space:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

2

k-means leads to Voronoi partitions (2)

This has two important consequences:

I all cluster boundaries are linear (WHY MIGHT THIS BE
INTERESTING?)

I The k-means algorithm always constructs convex clusters! This
gives intuition about when it works and when it doesn’t work:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

3

k-means leads to Voronoi partitions (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

4

K-means — computational complexity

I Finding the global solution of the k-means optimization
problem is NP hard (both if k is fixed or variable, and both if
the dimension is fixed or variable).

This is curious because one can prove that there only exist
polynomially many Voronoi partitions of any given data set.
The difficulty is that we cannot construct any enumeration to
search through them.

See the following paper and references therein:
Mahajan, Meena and Nimbhorkar, Prajakta and Varadarajan,
Kasturi: The planar k-means problem is NP-hard. WALCOM:
Algorithms and Computation, 2009.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

5

K-means — computational complexity (2)

I On the other hand, optimizing the k-means objective has
polynomial smoothed complexity.
Arthur, David and Manthey, Bodo and Röglin: k-Means has
polynomial smoothed complexity. FOCS 2009.

I With careful seeding, one can achieve constant-factor
approximations:
I Consider the random farthest first rule for initialization

(kmeans with this initialization is called kmeans++).
I Then, the expected objective value is at most a factor

O(log k) worse than the optimal solution.
I Reference:

Arthur, D., Vassilvitskii, S.: k-means++: the advantages of
careful seeding. In: Symposium on Discrete Algorithms
(SODA), 2007.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

6

More variants of K-means

I K-median: here the centers are always data points. Can be
used if we only have distances, but no coordinates of data
points.

I weighted K-means: introduce weights for the individual data
points

I kernel-K-means: the kernelized version of K-means (note that
all boundaries between clusters are linear).
I. S. Dhillon, Y. Guan, and B. Kulis, Kernel k-means, spectral
clustering and normalized cuts. KDD, 2004.

I soft K-means: no hard assignments, but “soft” assignments
(often interpreted as “probability” of belonging to a certain
cluster)

I Note: K-means is a simplified version of the EM-algorithm,
which fits a Gaussian mixture model to the data.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

7

Summary K-means

I Represent clusters by cluster centers

I Highly non-convex NP hard optimization problem

I Heuristic: Lloyd’s k-means algorithm

I Very easy to implement, hence very widely used.

I In my opinion: k-means works well for vector quantization (if
you want to find a large number of clusters, say 100 or so). It
does not work so well for small k, here you should consider
spectral clustering.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

8

Linkage algorithms for hierarchical clustering

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
0

9

Hierarchical clustering

Goal: obtain a complete hierarchy of clusters and sub-clusters in
form of a dendrogram

Horse

WhiteRhino

HarborSeal

GreySeal

Cat

BlueWhale

Cow

FinbackWhale

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

HouseMouse

Rat

Opossum

Wallaroo

Platypus

Figure 2: The evolutionary tree built from complete
mammalian mtDNA sequences using block size k = 7
and d′.

each of the positions in the DNA sequence, and take out
the k bases covered by the 1s to form a length-k word. The
number of those distinct words is then used to define the
distances d′ and d∗ in Formula (6.2) and (6.2).

We applied the new defined distances to the 20 mam-
mal data. The performance is slightly bettern than the per-
formance of the distances defined in (6.2) and (6.2). The
modified d′ and d∗ can correctly construct the mammal tree
when 7 ≤ k ≤ 13 and 6 ≤ k ≤ 13, respectively.

Compression: To achieve the best approximation of
Kolmogorov complexity, and hence most confidence in the
approximation of ds and d, we use a new version of the Gen-
Compress program, [9], which achieves the currently best
compression ratios for benchmark DNA sequences. Gen-
Compress finds approximate matches (hence edit distance
becomes a special case), approximate reverse complements,
among other things, with arithmetic encoding when neces-
sary. Online service of GenCompress is at UCSB Bioin-
formatics Lab website: http://cytosine.cs.ucsb.edu:8080/.
We computed d(x, y) between each pair of mtDNA x and
y, using GenCompress to heuristically approximate K(x|y),
K(x), and K(x, y), and constructed a tree (Figure 3) using
the neighbor joining [32] program in the MOLPHY package
[1]. The tree is identical to the maximum likelihood tree of
Cao, et al. [8]. For comparison, we used the hypercleaning
program [7] and obtained the same result. The phylogeny in
Figure 3 re-confirms the hypothesis of (Rodents, (Primates,
Ferungulates)). Using the ds measure gives the same result.

To further assure our results, we have extracted only
the coding regions from the mtDNAs of the above species,
and performed the same computation. This resulted in the
same tree.

Evaluation: This new method for whole genome com-
parison and phylogeny does not require gene identification
nor any human intervention, in fact, it is totally automatic.

Platypus

Wallaroo

Opossum

Rat

HouseMouse

Cat

HarborSeal

GreySeal

WhiteRhino

Horse

FinbackWhale

BlueWhale

Cow

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

Rodents

Ferungulates

Primates

Marsupials and monotremes

Figure 3: The evolutionary tree built from complete
mammalian mtDNA sequences.

It is mathematically well-founded being based on general in-
formation theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated
by the successful construction of a chain letter phylogeny [5]
and when individual gene trees do not agree (Cao et al., [8])
as is the case for genomes. Next step would be to apply
this method to larger genomes such as cpDNA and bacteria
genomes.

7 The Language Tree
Normalized information distance is a totally general univer-
sal tool, not restricted to a particular application area. We
show that it can also be used to successfully classify nat-
ural languages. Let us borrow from biology the “nature”
(acquired by genetic mixture) versus “nurture” (acquired in
the life of the individual) terminology. Any language tree
built by only analyzing contemporary natural text corpora is
partially corrupted by historical “nurture” contaminations.
While according to Darwinism the genomes only change by
inheritance (nature), languages acquire their characteristic
by descent but also by interaction (nurture). Thus, while En-
glish is a Germanic Anglo-Saxon language, it has absorbed a
great deal of French-Latin components. Similarly, Hungar-
ian, often considered a Finn-Ugric language, which consen-
sus currently happens to be open to debate in the linguistic
community, is known to have absorbed many Turkish and
Slavic components. Thus, an automatic construction of a
language tree based on contemporary text corpora, exhibits
current linguistic relations (based on both nature and nur-
ture) which do not necessarily coincide completely with the
historic language family tree (based on nature). According
to a linguistic expert, only vocabulary is normally borrowed
between languages, and inflectional morphology is the best
indicator of linguistic descent. This may be the most im-
portant factor distorting the results. The misclassification
of English as Romance language must have something to do

cf. Chen/Li/Ma/Vitanyi (2004)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

0

Simple idea

Agglomerative (bottom-up) strategy:

I Start: each point is its own cluster

I Then check which points are closest and “merge” them to
form a new cluster

I Continue, always merge two “closest” clusters until we are left
with one cluster only

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

1

Simple idea (2)

To define which clusters are “closest”:

Single linkage: dist(C,C ′) = minx∈C,y∈C′ d(x, y)

X

X

X
X

X
X

X
X X X

X

Average linkage: dist(C,C ′) =
∑
x∈C,y∈C′ d(x,y)

|C|·|C′|

X

X

X
X

X
X

X
X X X

X

Complete linkage: dist(C,C ′) = maxx∈C,y∈C′ d(x, y)

X

X

X
X

X
X

X
X X X

X

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

2

Linkage algorithms – basic form

Input:
• Distance matrix D between data points (size n× n)
• function dist to compute a distance between clusters (usually

takes D as input)

Initialization: Clustering C(0) = {C(0)
1 , ..., C

(0)
n } with C

(0)
i = {i}.

While the current number of clusters is > 1:
• find the two clusters that have the smallest distance to each

other
• merge them to one cluster

Output: Resulting dendrogram

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

3

Examples

... show matlab demos ...
demo_linkage_clustering_by_foot()

demo_linkage_clustering_comparison()

demo_linkage_clustering_by_foot()
demo_linkage_clustering_comparison()

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

4

Linkage algorithms tend to be problematic

Observations from practice:

I Linkage algorithms are very vulnerable to outliers

I One cannot “undo” a bad link

Theoretical considerations:

I Linkage algorithms attempt to estimate the density tree

I Even though this can be done in a statistically consistent way,
estimating densities in high dimensions is extremely
problematic and usually does not work in practice.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

5

History and References

I The original article: S. C. Johnson. Hierarchical clustering
schemes. Psychometrika, 2:241 - 254, 1967.

I A complete book on the topic: N. Jardine and R. Sibson.
Mathematical taxonomy. Wiley, London, 1971.

I Nice, more up-to-date overview with application in biology: J.
Kim and T. Warnow. Tutorial on phylogenetic tree estimation.
ISMB 1999.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

6

Linkage algorithms — summary

I Attempt to estimate the whole cluster tree

I There exist many more ways of generating different trees from
a given distance matrix.

I Advantage of tree-based algorithms: do not need to decide on
“the correct” number of clusters, get more information than
just a flat clustering

I However, one should be very careful about the results because
they are very unstable, prone to outliers and statistically
unreliable.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

7

A glimpse on spectral graph theory

Literature:

I U. Luxburg. Tutorial on Spectral Clustering, Statistics and
Computing, 2007.

I F. Chung: Spectral Graph Theory (Chapters 1 and 2).

I D. Spielman: Spectral Graph Theory, 2011.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

8

What is it about?

General idea:

I many properties of graphs can be described by properties of the
adjacency matrix and related matrices (“graph Laplacians”).

I In particular, the eigenvalues and eigenvectors can say a lot
about the “geometry” of the graph.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
1

9

Unnormalized Laplacians

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

0

Unnormalized Graph Laplacians: Definition

Consider an undirected graph with non-negative edge weights wij.
Notation:

I W :=the weight matrix of the graph

I D := diag(d1,, dn) the degree matrix of the graph

I L := D −W the unnormalized graph Laplacian matrix

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

1

Unnormalized Laplacians: Key property

Proposition 25 (Key property)

Let G be an undirected graph. Then for all f ∈ Rn,

f tLf = 1
2

∑n
i,j=1 wij(fi − fj)2.

Proof. Simply do the calculus:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

2

Unnormalized Laplacians: Key property (2)

f tLf = f tDf − f tWf

=
∑
i

dif
2
i −

∑
i,j

fifjwij

=
1

2

(∑
i

(
∑
j

wij)f
2
i − 2

∑
ij

fifjwij +
∑
j

(
∑
i

wij)f
2
j

)

=
1

2

∑
ij

wij(fi − fj)2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

3

Why is it called “Laplacian”?

Where does the name “graph Laplacian” come from?

f tLf =
1

2

∑
wij(fi − fj)2

Interpret wij ∼ 1/d(Xi, Xj)
2

f tLf =
1

2

∑
((fi − fj)/dij)2

looks like a discrete version of the standard Laplace operator

〈f,∆f〉 =

∫
|∇f |2dx

Hence the graph Laplacian measures the variation of the function f
along the graph: f tLf is low if points that are close in the graph
have similar values fi.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

4

Unnormalized Laplacians: Spectral properties

Proposition 26 (Simple spectral properties)

For an undirected graph with non-negative edge weights, the graph
Laplacian has the following properties:

I L is symmetric and positive semi-definite.

I Smallest eigenvalue of L is 0, corresponding eigenvector is
1 := (1, ..., 1)t.

I Thus eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

5

Unnormalized Laplacians: Spectral properties (2)

Proof.

Symmetry: W is symmetric (graph is undirected), D is
symmetric, so L is symmetric.

Positive Semi-Definite: by key proposition:
f tLf = 1

2

∑
ij wij(fi − fj)2 ≥ 0

Smallest Eigenvalue/vector: It is indeed an eigenvector because
L1 = D1−W1 = 0
It is the smallest because all eigs are ≥ 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

6

Unnormalized Laplacians and connected

components

Proposition 27 (Relation between spectum and clusters)

Consider an undirected graph with non-negative edge weights.

I Then the (geometric) multiplicity of eigenvalue 0 is equal to
the number k of connected components A1, ..., Ak of the
graph.

I The eigenspace of eigenvalue 0 is spanned by the characteristic
functions 1A1 , ..., 1Ak of those components
(where 1Ai(j) = 1 if vj ∈ Ai and 1Ai(j) = 0 otherwise).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

7

Unnormalized Laplacians and connected

components (2)

Proof, case k=1.

I Assume that the graph is connected.

I Let f be an eigenvector with eigenvalue 0.

I Want to show: f is a constant vector.

Here is the reasoning:

I By definition: Lf = 0.

I Exploiting this and the key proposition:

0 = f tLf =
∑
ij

wij(fi − fj)2

I The right hand side can only be 0 if all summands are 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

8

Unnormalized Laplacians and connected

components (3)

I Hence, for all pairs (i, j):
I either wij = 0 (that is, vi and vj are not connected by an

edge in the graph),
I or fi = fj .

Consequently: if vi and vj are connected in the graph, then
fi = fj.
In particular, f is constant on the whole connected component.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
2

9

Unnormalized Laplacians and connected

components (4)

Proof, case k > 1.

I If the graph consists of k disconnected components, both the
adjacency matrix and the graph Laplacian are block diagonal.
In particular, each little block is the graph Laplacian of the
corresponding connected component.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

0

Unnormalized Laplacians and connected

components (5)

I For each block (= each connected component), by the case
k = 1 we know that there is exactly one eigenvector for
eigenvalue 0, and it is constant:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

1

Unnormalized Laplacians and connected

components (6)

I For the matrix L we then know that there are k eigenvalues 0,
each one coming from one of the blocks. Padding the
eigenvectors with zeros leads to the cluster indicator vectors:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

2

Unnormalized Laplacians and connected

components (7)

QUESTION:
Consider a graph with k connected components:

WHY IS THERE NO CONTRADITION BETWEEN
PROPOSITION 27 (SECOND STATEMENT) AND
PROPOSITION 26???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

3

Normalized Laplacians

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

4

Normalized graph Laplacian

For various reasons (see below) it is better to normalize the graph
Laplacian matrix.

Two versions:

I The “symmetric” normalized graph Laplacian

Lsym = D−1/2LD−1/2

(where the square root of the diagonal matrix D can be
computed entry-wise).

I The “random walk graph Laplacian”

Lrw = D−1L

We will now see that both normalized Laplacians are closely related,
and have similar properties as the unnormalized Laplacian.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

5

Normalized Laplacians: First properties

Proposition 28 (Adapted key property)

For every f ∈ Rn we have

f tLsymf =
1

2

n∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

.

Proof. Similar to the unnormalized case. ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

6

Normalized Laplacians: First properties (2)

Proposition 29 (Simple spectral properties)

Consider an undirected graph with non-negative edge weights.
Then:

1. λ is an eigenvalue of Lrw with eigenvector u
⇐⇒ λ is an eigenvalue of Lsym with eigenvector w = D1/2u.

2. λ is an eigenvalue of Lrw with eigenvector u
⇐⇒ λ and u solve the generalized eigenproblem Lu = λDu.

3. 0 is an eigenvalue of Lrw with the constant one vector 1 as
eigenvector. 0 is an eigenvalue of Lsym with eigenvector D1/21.

4. Lsym and Lrw are positive semi-definite and have n
non-negative real-valued eigenvalues 0 = λ1 ≤ . . . ≤ λn.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

7

Normalized Laplacians: First properties (3)

Proof.

Part (1): multiply the eigenvalue equation Lsymw = λw with D−1/2

from the left and substitute u = D−1/2w.

Part (2): multiply Lrwu = λu with D from the left.

Part (3): Just plug it in the corresponding eigenvalue equations.

Part (4): The statement about Lsym follows from the adapted key
property, and then the statement about Lrw follows from (2). ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

8

Normalized Laplacians and connected

components

Proposition 30 (Relation between spectum and clusters)

Let G be an undirected graph with non-negative weights. Then the
multiplicity k of the eigenvalue 0 of both Lrw and Lsym equals the
number of connected components A1, . . . , Ak in the graph. For
Lrw, the eigenspace of 0 is spanned by the indicator vectors 1Ai of
those components. For Lsym, the eigenspace of 0 is spanned by the
vectors D1/21Ai .

Proof.
Analogous to the one for the unnormalized case.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
3

9

Cheeger constant

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

0

Cheeger constant

Let G be an an undirected graph with non-negative edge weights
wij, S ⊂ V be a subset of vertices, S̄ := V \ S its complement.
Define:

I Volume of the set: vol(S) :=
∑

s∈S d(s)

I Cut value: cut(S, S̄) :=
∑

i∈S,j∈S̄ wij
I Cheeger constant:

hG(S) :=
cut(S, S̄)

min{vol(S), vol(S̄)}
hG := min

S⊂V
hG(S)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

1

Cheeger constant (2)

Example: a clique (=fully connected graph, including self-loops)
with n vertices has hG = Θ(1):

I S that contains n/2 vertices:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

2

Cheeger constant (3)

I S that contains 1 vertex:

I Similarly for other sets S.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

3

Cheeger constant (4)

Example: two cliques with n/2 vertices each, connected by a single
edge. Results in hG = O(1/n2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

4

Cheeger constant (5)

Intuition:

small Cheeger cuts are achieved for cuts that split the graph into
reasonably big, tightly connected subgraphs (so that numerator is
large) which are well clustered (denominator small).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

5

Relation of the Cheeger constant and λ2

Theorem 31 (Cheeger inequality for graphs)

Consider a connected, undirected, unweighted graph. Let λ2 be the
second-smallest eigenvalue of Lsym. Then

λ2

2
≤ hG ≤

√
2λ2

Intuition:

I The Cheeger constant describes the cluster properties of a
graph.

I The Cheeger constant is controlled by the second eigenvalue.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

6

Relation of the Cheeger constant and λ2 (2)

Proof. (see Chung: Spectral Graph Theory Chapter 2).
Upper bound on the Cheeger constant:

Theorem Let 12 be the second smallest eigenvector
of Lsym and ha the Cheeger constant of the

graph Then
2 hat Xz

proof By Rayleigh's principle
vi jk jk

Az inf
v m in f
Hull Il 112

Lv VI D 21

Substitute w Dmv to get

wtLw
wi w

12 inf wµz
inf 2

wt DI wt DI E di w

To construct an upper bound ou Iz we now

consider a particular vector w
cut 195

et St argmin the
Scv min fuelCst v 1151

set that minimises the Cheesy constant Define

the vector U by

u

T i i est

Val Jt if i c T't

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

7

Relation of the Cheeger constant and λ2 (3)

Theorem Let 12 be the second smallest eigenvector
of Lsym and ha the Cheeger constant of the

graph Then
2 hat Xz

proof By Rayleigh's principle
vi jk jk

Az inf
v m in f
Hull Il 112

Lv VI D 21

Substitute w Dmv to get

wtLw
wi w

12 inf wµz
inf 2

wt DI wt DI E di w

To construct an upper bound ou Iz we now

consider a particular vector w
cut 195

et St argmin the
Scv min fuelCst v 1151

set that minimises the Cheesy constant Define

the vector U by

u

T i i est

Val Jt if i c T't

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

8

Relation of the Cheeger constant and λ2 (4)

Theorem Let 12 be the second smallest eigenvector
of Lsym and ha the Cheeger constant of the

graph Then
2 hat Xz

proof By Rayleigh's principle
vi jk jk

Az inf
v m in f
Hull Il 112

Lv VI D 21

Substitute w Dmv to get

wtLw
wi w

12 inf wµz
inf 2

wt DI wt DI E di w

To construct an upper bound ou Iz we now

consider a particular vector w
cut 195

et St argmin the
Scv min fuelCst v 1151

set that minimises the Cheesy constant Define

the vector U by

u

T i i est

Val Jt if i c T't

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
4

9

Relation of the Cheeger constant and λ2 (5)

Note that a L D 11 because

aid Ee Fo ga
di f E ga di 0

7 7

Now we get

Iz E
E ki u

djuj2

BY def of y

car edges
i

fist u

from S bTt

Es Inst d it Isr di

vi s't Ift

curls 5 11 it Eisa

cut S T't 2 mail sa i fo j

z
cut Hist
min fuel H1 wi G

2ha

A

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

0

Relation of the Cheeger constant and λ2 (6)

Note that a L D 11 because

aid Ee Fo ga
di f E ga di 0

7 7

Now we get

Iz E
E ki u

djuj2

BY def of y

car edges
i

fist u

from S bTt

Es Inst d it Isr di

vi s't Ift

curls 5 11 it Eisa

cut S T't 2 mail sa i fo j

z
cut Hist
min fuel H1 wi G

2ha

A

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

1

Relation of the Cheeger constant and λ2 (7)

Proof of the lower bound:

Follows similar principles, but is a bit longer, see the Chung book if
you are interested.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

2

Spectral clustering

Literature:

I U. Luxburg. Tutorial on Spectral Clustering, Statistics and
Computing, 2007.

I The more recent editions of Tibshirani/Hastie/Friedman also
contain a chapter on it.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

3

Clustering in graphs

General problem:

I Given a graph

I Want to find “clusters” in the graph:
I many connections inside the cluster
I few connections between different clusters

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

4

Clustering in graphs (2)

Examples:

I Find “communities” in a social network (e.g., to analyze
communication patterns in a company; to place targeted ads in
facebook)

I Find groups of jointly acting proteins in a protein-interaction
network

I Find groups of similar films (; “genres”)

I Find subgroups of diseases (for more specific medical
treatment)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

5

Clustering in graphs (3)

First idea:

I “Few connections between clusters” ≈ “small cut”.

I Thus clustering ≈ find a mincut in the graph.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

6

Clustering in graphs (4)

Problem: outliers

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

7

Clustering in graphs (5)

Better idea: find two sets such that

I the cut between the sets is small

I each of the clusters is “reasonably large”

Some background on complexity of cut problems:

I Finding any mincut (without extra constraints) is easy and can
be done in polynomial time.

I Finding the balanced mincut is NP hard

I Can we do something in between?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

8

RatioCut criterion

Idea:
I want to define an objective function that measures the quality

of a “nearly balanced cut”:
I the smaller the cut value, the smaller the objective function
I the more balanced the cut, the smaller the objective function

Measuring the balancedness of a cut:

I Consider a partition V = A ·∪B.

I Define |A| := number of vertices in A

I Introduce the balancing term 1/|A|+ 1/|B|.
I Observe: The balancing term is small when A and B have

(approximately) the same number of vertices:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
5

9

RatioCut criterion (2)

I Example: n vertices in total.
I Case |A| = n/2, |B| = n/2. Then

1/|A|+ 1/|B| = 4/n = O(1/n).
I Case |A| = 1, |B| = n− 1. Then

1/|A|+ 1/|B| = 1 + 1/(n− 1) = O(1).

I In general: Under the constraint that |A|+ |B| = n, the term
1
|A| + 1

|B| is minimal if |A| = |B|.

Formally, this can be seen by taking the derivative of the
function f(a) = 1/a+ 1/(n− a) with respect to a and setting
it to 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

0

RatioCut criterion (3)

Combining cut and balancing: Define:

cut(A,B) :=
∑

i∈A,j∈B

wij

RatioCut(A,B) = cut(A,B)

(
1

|A| +
1

|B|

)
RatioCut gets smaller if

I the cut is smaller

I the clusters are more balanced

This is what we wanted to achieve.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

1

RatioCut criterion (4)

Target is now: find the cut with the minimal RatioCut value in a
graph.

Bad news:
finding the global minimum of RatioCut is NP hard /

Good news:
But there exists an algorithm that finds very good solutions in most
of the cases: spectral clustering ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

2

Unnormalized spectral clustering

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

3

Goal: minimize RatioCut

Consider the following problem:

Given an undirected graph G with non-negative edge
weights. What is the minimal RatioCut in the graph?

On the following slides we want to show how we can use spectral
graph theory to achieve what we want.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

4

Relaxing balanced cut

Consider a graph with an even number n of vertices. For A ⊂ V ,
denote Ā = V \ A. We want to solve the following problem:

min
A⊂V

cut(A, Ā) subject to |A| = |Ā| (*)

We want to rewrite the problem in a more convenient way.
Introduce f = (f1, ..., fn)t ∈ Rn with

fi =

{
+1 if i ∈ A
−1 if i 6∈ A.

Now observe:

cut(A, Ā) =
∑

i∈A,j∈Ā

wij =
1

4

n∑
i,j=1

wij(fi − fj)2 =
1

2
f tLf

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

5

Relaxing balanced cut (2)

So we can rewrite problem (∗) equivalently as follows:

min
f
f tLf subject to

n∑
i=1

fi = 0 and fi = ±1 (**)

So far, we did not change the problem at all, we just wrote it in a
different way.

It still looks difficult because it is a discrete optimization problem.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

6

Relaxing balanced cut (3)

Now we are going to relax the problem: we simply replace the
difficult condition fi = ±1 by the two conditions
fi ∈ R and ‖f‖ = 1:

min
f
f tLf subject to

n∑
i=1

fi = 0 and fi ∈ R and ‖f‖ = 1

(#)

Finally, observe that
∑

i fi = 0 ⇐⇒ f ⊥ 1 where 1 is the
constant-one vector (1, 1, ..., 1). We obtain:

min
f
f tLf subject to f ⊥ 1 and fi ∈ R and ‖f‖ = 1 (##)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

7

Relaxing balanced cut (4)

The final observation is now:

I 1 is the smallest eigenvector of the matrix L

I So Rayleigh’s principle tells us that the solution to Problem
(##) is f ∗ being the second-smallest eigenvector of L.

To transform the solution of the relaxed problem into a partition we
simply consider the sign:

i ∈ A :⇐⇒ f ∗i ≥ 0

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

8

Relaxing balanced cut (5)

So we end up with the following algorithm:

HardBalancedCutRelaxation(G)

1 Input: Weight matrix (or adjacency matrix) W of the graph
2 D := the corresponding degree matrix
3 L := D −W (the corresponding graph Laplacian)
4 Compute the second-smallest eigenvector f of L
5 Define the partition A = {i

∣∣ fi ≥ 0}, Ā = V \ A
6 Return A, Ā

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
6

9

Relaxing balanced cut (6)

Remarks about the relaxation approach:

I Our original problem was NP hard.

I We now solve a relaxed problem (in polynomial time, see
below).

I In general, relaxing a problem does not lead to any guarantees
about whether the solution of the relaxed problem is close to
the solution of the original problem.

I This is also the case for spectral clustering. We can construct
example graphs for which the relaxation is arbitrarily bad.
However, such examples are very artificial.

I However, in practice the spectral relaxation works very well!!!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

0

Relaxing RatioCut

Now we want to solve the soft balanced mincut problem of
optimizing ratiocut:

min
A⊂V

RatioCut(A, Ā) (*)

This goes along the same lines as the hard balanced mincut
problem:

I Define particular values of fi, namely

fi =

{
+(|Ā|/|A|)1/2 if i ∈ A
−(|A|/|Ā|)1/2 if i ∈ Ā

I Observe that we can write RatioCut(A, Ā) = ... = f tLf .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

1

Relaxing RatioCut (2)

I So the RatioCut problem is equivalent to

min
f
f tLf subject to fi “of the form given above” (**)

I Also observe that any f of the form given above satisfies∑
i∈V fi = ... = 0. So any such f satisfies f ⊥ 1.

I So the RatioCut problem is also equivalent to

min
f
f tLf subject to f ⊥ 1 and fi “of the form given above”

(**)

I Now we relax the condition fi “of the form given above” to
fi ∈ R, and apply Rayleigh to see that we need to compute the
second eigenvector.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

2

Relaxing RatioCut (3)

I As before, we assign points to A and Ā according to the sign
of the resulting f ∗.

In pseudo-code, this algorithm is exactly the one we have
already seen above. It is called (unnormalized) spectral
clustering.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

3

(Unnormalized) Spectral Clustering, case two

clusters

UnnormalizedSpectralClustering(G)

1 Input: Weight matrix (or adjacency matrix) W of the graph
2 D := the corresponding degree matrix
3 L := D - W (the corresponding graph Laplacian)
4 Compute the second-smallest eigenvector f of L
5 Define the partition A = {i

∣∣ fi ≥ 0}, Ā = V \ A
6 Return A, Ā

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

4

Examples

A couple of data points drawn from a mixture of Gaussians on R.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

5

Examples (2)

/Users/ule/matlab_ule/not_in_path/demos_for_teaching/practical_session_summerschool_tuebingen07/

GraphDemos

/Users/ule/matlab_ule/not_in_path/demos_for_teaching/practical_session_summerschool_tuebingen07/GraphDemos
/Users/ule/matlab_ule/not_in_path/demos_for_teaching/practical_session_summerschool_tuebingen07/GraphDemos

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

6

Unnormalized spectral clustering for k clusters

One can extend the algorithm to the case of k clusters.

General idea:

I The first k eigenvectors encode the cluster structure of k
disjoint clusters.
(To see this, consider the case of k perfectly disconnected
clusters)

I To extract the cluster information from the first k
eigenvectors, we construct the so-called spectral embedding:
I Let V be the matrix that contains the first k eigenvectors as

columns.
I Now define new points Yi ∈ Rk as the i-th row of matrix V .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

7

Unnormalized spectral clustering for k clusters

(2)

I Note: in the “ideal case” (disconnected clusters) the Yi are
the same for all points in the same cluster.

I Idea: they are “nearly the same” if we still have nice (but not
perfect) clusters.

I In particular, any simple algorithm can recover the cluster
membership based on the embedded points Yi. We use
k-means to do so.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

8

Unnormalized spectral clustering for k clusters

(3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
7

9

Unnormalized spectral clustering for k clusters

(4)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

0

Unnormalized spectral clustering for k clusters

(5)

UnnormalizedSpectralClustering(G)

1 Input: Weight matrix (or adjacency matrix) W of the graph
2 D := the corresponding degree matrix
3 L := D - W (the corresponding graph Laplacian)
4 Compute the n× k matrix V that contains the first k

eigenvectors as columns.
5 Define the new data points Yi ∈ Rk to be the rows of the

matrix V . This is sometimes called the spectral embedding.
6 Now cluster the points (Yi)i=1,...,n by the k-means algorithm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

1

Unnormalized spectral clustering for k clusters

(6)

Some more intuition:

I Seems funny: we first say we want to use spectral clustering,
and in the end we run k-means.

I The point is that the spectral embedding is such a clever
transformation of the original data that after this
transformation the cluster structure is “obvious”, we just have
to extract it by a simple algorithm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

2

Analysis: Running time

The bottleneck of the algorithm is the computation of the
eigenvector:

I In general, the first eigenvectors of a symmetric matrix can be
computed in time O(n3)

I However, one can do much better on sparse matrices (running
time then depends on the sparsity and on other conditions
such as the “spectral gap”).
See also the slides on the power method (page 1319) in the
maths appendix.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

3

Analysis: No approximation guarantees

I As hinted above: we cannot guarantee that the solution we
find by unnormalized spectral clustering is close to the
minimizer of RatioCut

I In the following example, the cut constructed by spectral
clustering is c · n times larger than the best RatioCut:

Note that this example relies heavily on symmetry.
Guattery, S., Miller, G. (1998). On the quality of spectral separators. SIAM Journal of Matrix Anal. Appl., 1998.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

4

Analysis: No approximation guarantees (2)

I However, despite the lack of approximation guarantees, it
performs extremely well in practice. It terms of clustering
performance, it is the state of the art and one of the most
widely used “modern” algorithms for clustering.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

5

Normalized spectral clustering

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

6

Normalized cut criterion

We have seen that the unnormalized spectral clustering algorithm
solves the (relaxed) problem of minimizing Ratiocut.

For various reasons (see later), it turns out to be better to consider
the following objective function called normalized cut:

Ncut(A,B) = cut(A,B)

(
1

vol(A)
+

1

vol(B)

)
This looks very similar to RatioCut, but we measure the size of the
sets A and B not by their number of vertices, but by the weight of
their edges:

vol(A) =
∑
i∈A

di

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

7

Normalized cut criterion (2)

By a derivation that is very similar to what we have seen for
Ratiocut:

I relaxing the problem to minimizing Ncut leads to clustering
the eigenvectors of the random walk Laplacian Lrw.

I For computational reasons, one replaces the
eigendecomposition of Lrw by the one of Lsym (WHY?)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

8

Minimizing normalized cut

Relaxation approach, very similar to the one for Ratiocut, leads to
the following algorithm:

NormalizedSpectralClustering(G)

1 Input: Weight matrix (or adjacency matrix) W of the graph
2 D := the corresponding degree matrix
3 Lsym := D−1/2(D −W)D−1/2 (the normalized graph

Laplacian)
4 Compute the second-smallest eigenvector f of Lsym
5 Compute the vector g = D−1/2f
6 Define the partition A = {i

∣∣ gi ≥ 0}, Ā = V \ A
7 Return A, Ā

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
8

9

Normalized vs. unnormalized spectral clustering

You should always prefer the normalized spectral clustering
algorithm. There are several theoretical (and practical) results that
show this. Here is one of them:

The unnormalized spectral algorithm is not statistically consistent:
if the samle size increases, the second eigenvector of the
unnormalized Laplacian can converge to a trivial Dirac function
that just separates one point from the rest of the space. This never
happens for normalized spectral custering. Details are beyond the
scope of this lecture and require heavy functional analysis.

Literature: Luxburg, Bousquet, Belkin: Consistency of spectral clustering, 2008

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

0

Regularized spectral clustering

Literature:

I Zhang, Rohe: Understanding Regularized Spectral Clustering
via Graph Conductance, NeurIPS, 2018

I Chaudhuri, Chung, Tsiatas: Spectral clustering of graphs with
general degrees in the planted partition model, COLT 2012

I Amini, Cheng, Bickel, Levina: Pseudo-Likelihood methods for
community detection, Annals of Statistics, 2013

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

1

Regularization for spectral clustering

I In practice it still happens regularly that normalized spectral
clustering identifies outliers rather than the true clusters. The
reason is that the balancing is not strong enough.

I There is a very simple cure for it that helps very often: add a
little regularization term to the adjacency matrix before
applying normalized spectral clustering. Concretely, replace the
weight matrix W by the matrix

W̃ := W +
τ

n
J

where J is the all-ones-matrix and τ a small parameter, and
then compute the normalized Laplacian and use spectral
clustering as usual:

D̃ = degrees of W̃

L̃ = D̃ − W̃

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

2

Regularization for spectral clustering (2)

Figure: Karl Rohe

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

3

Regularization for spectral clustering (3)

Why does regularization help? Here is the line of argument:

I Many sparse random graphs provably have many “k-dangling
sets”, and those sets create small eigenvalues of the normalized
Laplacian (by Cheeger’s inequality, λ2 ≤ 2/(2k − 1) ≈ 1/k)

I If we regularize, one can prove that these eigenvalues
“disappear”: if the graph has a good cluster structure, then
one can prove that the correct cut has a smaller value in the
regularized graph than the cut of dangling sets.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

4

Regularization for spectral clustering (4)

Hang on, the regularized matrix is dense! So do we run into
computational issues?

No, we can still use the power method and exploit sparsity of the
graph:

(D̃−1/2W̃ D̃−1/2)v = D̃−1/2(W +
τ

n
J)D̃−1/2v

= D̃−1/2WD̃−1/2v︸ ︷︷ ︸
sparse

+
τ

n
1(1v)︸ ︷︷ ︸
O(n)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

5

History of spectral clustering

I Has been discovered and rediscovered several times since the
1970ies, but went pretty much unnoticed.

I Breakthrough papers:
I Shi, J. and Malik, J. Normalized cuts and image

segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2000.

I Meila, M. and Shi, J. A random walks view of spectral
segmentation. AISTATS, 2001.

I Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
analysis and an algorithm. NIPS, 2002.

I By now, it has been established as the most popular “modern”
clustering algorithm, with many theoretical results
underpinning its usefulness.

Still active field of research, e.g. see regularized spectral clustering.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

6

Spectral clustering summary

I Spectral clustering tries to solve a balanced cut problem:
I minimize Ratiocut (; unnormalized spectral clustering)
I minimize Ncut (; normalized spectral clustering)

I Both these problems are discrete optimization problems and
NP hard to solve.

I Spectral clustering solves a relaxed version of these problems.

I In theory, there are no approximation guarantees — the
relaxed solution can be miles away from the one we want.
In practice, it works very well and is state of the art in many
applications.

I Running time complexity can be as bad as O(n3), but for
sparse graphs it is very fast.

Normalized spectral clustering is THE modern state of the
art clustering algorithm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

7

Introduction to learning
theory

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

8

The standard theory for supervised learning

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

7
9

9

Learning Theory: setup and main questions

Literature on learning theory:

I High-level: U. von Luxburg and B. Schölkopf. Statistical
Learning Theory: Models, Concepts, and Results. 2011.

I More technical: Bousquet, Boucheron, Lugosi: Introduction to
statistical learning theory, 2003

I The “classic” book (technical): Devroye, Györfi, Lugosi: A
probabilistic theory of pattern recognition. Springer, 1996

I Some of the general text books cover different aspects, for
example the books by Shalev-Shwartz,Ben-David and
Mohri,Rostamizadeh, Talwalkar.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

0

Statistical learning theory

On an abstract level, SLT tries to answer questions such as:

I Which learning tasks can be performed by computers in
general (positive and negative results)?

I What kind of assumptions do we have to make such that
machine learning can be successful?

I What are the key properties a learning algorithm needs to
satisfy in order to be successful?

I Which performance guarantees can we give on the results of
certain learning algorithms?

In the following we focus on the case of binary classification,
for which the theory is well-understood.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

1

The framework

The data. Data points (Xi, Yi) are an i.i.d. sample from some
underlying (unknown) probability distribution P on the space
X × {±1}.

Goal. Our goal is to learn a deterministic function f : X → {±1}
such that the expected loss (risk) according to some given loss
function ` is as small as possible. In classification, the natural loss
function is the 0-1-loss.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

2

The framework (2)

Assumptions we (do not) make:

I We do not make any assumption on the underlying
distribution P that generates our data, it can be anything.

I True labels do not have to be a deterministic function of the
input (consider the example of predicting male/female based
on body height).

I Data points have been sampled i.i.d.

I Data does not change over time (the ordering of the training
points does not matter, and the distribution P does not
change),

I The distribution P is unknown at the time of learning.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

3

Recap: Bayes classifier

The Bayes classifier
The Bayes classifier for a particular learning problem is the classifier
that achieves the minimal expected risk.

Have already seen: if we knew the underlying distribution P , then
we also know the Bayes classifier (just look at the regression
function).

The challenge is that we do not know P . The goal is now to
construct a classifier that is “as close to the Bayes classifier” as
possible. Now let’s become more formal.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

4

Convergence and consistency

Assume we have a set of n points (Xi, Yi) drawn from P . Consider
a given function class F from which we are allowed to pick our
classifier. Denote:

I f ∗ the Bayes classifier corresponding to P .

I fF the best classifier in F , that is

fF = argmin
f∈F

R(f)

I fn the classifier chosen from F by some training algorithm on
the given sample of n points.

Now consider the following definitions:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

5

Convergence and consistency (2)

1. A learning algorithm is called consistent with respect to F
and P if the risk R(fn) converges in probability to the risk
R(fF) of the best classifier in F , that is for all ε > 0,

P (R(fn)−R(fF) > ε)→ 0 as n→∞.

2. A learning algorithm is called Bayes-consistent with respect
to P if the risk R(fn) converges to the risk R(f ∗) of the
Bayes classifier, that is for all ε > 0,

P (R(fn)−R(f ∗) > ε)→ 0 as n→∞.

3. A learning algorithm is called universally consistent with
respect to F (resp. universally Bayes-consistent) if it is
consistent with respect to F (resp. Bayes-consistent) for all
probability distributions P .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

6

Convergence and consistency (3)

Note that consistency with respect to a fixed function class F only
concerns the estimation error, not the approximation error:

I Here consistency means that our decisions are not affected
systematically from the fact that we only get to see a finite
sample, rather than the full space. In other words, all “finite
sample effects” cancel out once we get to see enough data.

I If a learning algorithm is consistent, it means that it does not
overfit when it gets to see enough data (low estimation error,
low variance).

I Consistency with respect to F does not tell us anything about
underfitting (approximation error; this depends on the choice
of F).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

7

Empirical risk minimization (ERM)

True risk of a function: R(f) = E(`(X, f(X), Y))

Empirical risk: Rn(f) =
1

n

n∑
i=1

`(Xi, f(Xi), Yi)

Empirical risk minimization: given n training points (Xi, Yi)i=1,...,n

and a fixed function class F , select the function fn that minimizes
the training error on the data:

fn = argmin
f∈F

Rn(f)

Earlier we informally discussed that ERM won’t work if the function
class F is “too large”. We are now going to make this formal.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

8

Controlling the estimation error: generalization

bounds

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
0

9

Law of large numbers and concentration

Recall from probability theory:

Proposition 32 (Law of large numbers, simplest version)

Let (Zi)i∈N be a sequence of independent random variables that
have been drawn according to some probability distribution P ,
denote its expectation as E(Z). Then (under mild assumptions)

1

n

n∑
i=1

Zi → E(Z) (almost surely).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

0

Law of large numbers and concentration (2)

Even more, there exist very strong guarantees on how fast this
convergence takes place:

Proposition 33 (Concentration inequality, Chernoff 1952,
Hoeffding 1963)

Assume that the random variables Z1, ..., Zn are independent and
take values in [0, 1]. Then for any ε > 0

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − E(Z)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp(−2nε2).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

1

Law of large numbers and concentration (3)

Now consider our scenario of binary classification.

Proposition 34 (Risks converge for fixed function)

Fix a function f0 ∈ F . Then, for this fixed function f0,

Rn(f0)→ R(f0) (almost surely).

DO YOU SEE WHY?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

2

Law of large numbers and concentration (4)

Proof:

I Apply the Hoeffding bound to the variables
Zi := `(f0(Xi), Yi). This leads to convergence in probability.

I (For those who know about probability theory: To get almost
sure convergence, you need to do one extra step, namely apply
the Borel-Cantelli lemma. Key is that

∑∞
n=1 exp(−2nε2) is

finite. Exercise.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

3

Law of large numbers and concentration (5)

Question: Let fn be the function selected by empirical risk
minimization. Does the LLN imply that

Rn(fn)−R(fn)→ 0 ???????????.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

4

Law of large numbers and concentration (6)

NO!!!

Here is a simple counter-example:

I X = [0, 1] with uniform distribution; labels deterministic with
x < 0.5 =⇒ y = −1 and x ≥ 0.5 =⇒ y = +1

I Draw n training points

I Define fn as follows: for all points in the training sample,
predict the training label; for all other points predict -1.

Here we have Rn(fn) = 0 but R(fn) = 0.5 for all n.

DO YOU SEE WHY WE CANNOT APPLY THE LLT, WHERE
DOES IT GO WRONG???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

5

Uniform convergence

Want to have a condition that is sufficient for the convergence of
the empirical risk of the data-dependent function fn:

I We require that for all functions in F , the empirical risk (as
measured on the data) has to be close to the true risk.

I Intuitively, for any ε > 0, we want that with high probability,

sup
f∈F
|Rn(f)−R(f)| < ε

I Formally, we have uniform converence (in probability) if
∀ε > 0 : limn→∞ P (supf∈F |Rn(f)−R(f)| > ε) = 0

I Note the logic behind this condition: if Rn(f) and R(f) are
close for all functions f ∈ F , they particularly will be close for
the function fn that has been chosen by the classification
algorithm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

6

Uniform convergence (2)

Note that in the counter-example above, this requirement is clearly
not satisfied.

WHY EXACTLY?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

7

Uniform convergence (3)

Definition:

We say that the law of large number holds uniformly over a
function class F if for all ε > 0,

P (sup
f∈F
|R(f)−Rn(f)| ≥ ε)→ 0 as n→∞.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

8

Uniform convergence: sufficient for consistency

Relatively easy to see:

Proposition 35 (Uniform convergence is sufficient for
consistency)

Let fn be the function that minimizes the empirical risk in F . Then:

P (|R(fn)−R(fF)| ≥ ε) ≤ P (sup
f∈F
|R(f)− Rn(f)| ≥ ε/2).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
1

9

Uniform convergence: sufficient for consistency

(2)

Proof.

|R(fn)−R(fF)|
(by definition of fF we know that R(fn)−R(fF) ≥ 0)

= R(fn)−R(fF)

= R(fn)− Rn(fn) + Rn(fn)− Rn(fF) + Rn(fF)−R(fF)

(note that Rn(fn)− Rn(fF) ≤ 0 by def. of fn)

≤ R(fn)− Rn(fn) + Rn(fF)−R(fF)

≤ 2 sup
f∈F
|R(f)− Rn(f)|

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

0

Uniform convergence: necessary for consistency

What is much less obvious is that uniform convergence is also
necessary, this is in fact a very deep result:

Theorem 36 (Vapnik & Chervonenkis, 1971)

Let F be any function class. Then empirical risk minimization is
uniformly consistent with respect to F if and only if uniform
convergence holds:

P (sup
f∈F
|R(f)−Rn(f)| > ε)→ 0 as n→∞, (1)

The proof is beyond the scope of this lecture.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

1

Uniform convergence: necessary for consistency

(2)

But the big question is now:

How do we know whether we have uniform consistency for some
function class F???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

2

Capacity measures for function classes

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

3

Finite classes

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

4

Capacity measures: intuition

Have seen:

I If a function class is too large (as in the counter-example),
then we don’t have uniform convergence.

I If a function class is small (say, it only consists of a single
function), then we have uniform convergence.

We now want to come up with ways to measure the size of a
function class — in such a way that we can bound the term

P (sup
f∈F
|R(f)−Rn(f)| > ε)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

5

Generalization bound for finite classes

Recall the Hoeffding bound for a fixed function f0:

P (R(f)−Rn(f)| ≥ ε) ≤ 2 exp(−2nε2).

Now consider a function class with finitely many functions:
F = {f1,, fm}. We get:

Pr(sup
f∈F
|R(f)−Rn(f)| ≥ ε)

= Pr(sup
i=1,...,m

|R(fi)−Rn(fi)| ≥ ε)

= Pr
(
|R(f1)−Rn(f1)| ≥ ε or |R(f2)−Rn(f2)| ≥ ε or ...

)
≤

m∑
i=1

Pr(|R(fi)−Rn(fi)| ≥ ε)

≤ 2m exp(−2nε2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

6

Generalization bound for finite classes (2)

Leads to the first result:

Proposition 37 (Generalization of finite classes)

Assume F is finite and contains m functions. Chose any
ε, 0 < ε < 1. Then, with probability at least 1− 2m exp(−2nε2),
we have for all f ∈ F that

|R(f)−Rn(f)| < ε.

Note that this statement is somewhat inconvenient, it is “the
wrong way round”: we choose the error, and get the probability
that this error holds; but we would like to say that with a chosen
probability, how large is the error.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

7

Generalization bound for finite classes (3)

So we now try to reverse the statement: set the probability to some
value δ, and the solve for ε:

δ = 2m exp(−2nε2) =⇒ ε =

√
log(2m) + log(1/δ)

2n

With this, the proposition becomes the following generalization
bound:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

8

Generalization bound for finite classes (4)

Theorem 38 (Generalization bound for finite classes)

Assume F is finite and contains m functions. Choose some failure
probability 0 < δ < 1. Then, with probability at least 1− δ, for all
f ∈ F we have

R(f) ≤ Rn(f) +

√
log(2m) + log(1/δ)

2n

Note that the generalization bound holds uniformly (with the same
error guarantee) for all functions in F , so in particular for the
function that a classifier might pick based on the sample points it
has seen.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
2

9

Generalization bound for finite classes (5)

Let’s digest this bound:

I It bounds the true risk by the empirical risk plus a “capacity
term”.

I If the function class gets larger (m increases), then the bound
gets worse.

I If m is “small enough” compared to n (in the sense that
logm/n is small, then we get a tight bound.

I The whole bound only holds with probability 1− δ. When we
decrease δ (higher confidence), the bound gets worse.

I If m is fixed, and the confidence value δ is fixed, and n→∞,
then the empirical risk converges to the true risk. The speed of
convergence is of the order 1/

√
n.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

0

Generalization bound for finite classes (6)

I If you want to grow your function space with n in order to be
able to fit more accurately if you have more data, you need to
make sure that (logm)/n→ 0 if you want to get consistency.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

1

Generalization bound for finite classes (7)

EXERCISE:
Consider X = [0, 1], split it into a grid of k cells of the same size.
As function class, consider all functions that are piecewise constant
(0 or 1) on all cells. Denote this function class by Fk.

Case 1: k is fixed.

I Prove that ERM is uniformly consistent with respect to Fk if k
is fixed.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

2

Generalization bound for finite classes (8)

I Is the classifier also Bayes consistent? Exercise: prove or give a
counter-example.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

3

Generalization bound for finite classes (9)

Case 2: k grows with n, so formally k is a function of n, denoted
by k(n).

I How fast can k(n) grow such that we still have consistency
with respect to Fk(n)?

I What about the approximation error / Bayes consistency?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

4

Generalization bound for finite classes (10)

Bottom line:

I For finite function classes, we can measure the size of F by its
number m of functions.

I This leads to a generalization bound with plausible behavior.

However, what should we do if F is infinite (say, space of all linear
functions)? Then the approach above does not work ... WHY?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

5

Shattering coefficient

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

6

Shattering coefficient: definition

We now want to measure the capacity of an infinite class of
functions. The most basic such capacity measure is the following:

Definition: For a given sample X1,, Xn ∈ X and a function
class F define FX1,...,Xn as the set of those functions that we get by
restricting F to the sample:

FX1,...,Xn := {f |X1,...,Xn ; f ∈ F}

The shattering coefficient N (F , n) of a function class F is defined
as the maximal number of functions in FX1,...,Xn :

N (F , n) := max{|FX1,...,Xn| ; X1, ..., Xn ∈ X}

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

7

Shattering coefficient: definition (2)

Example 1: X = R, F as below (positive class = right half-space)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

8

Shattering coefficient: definition (3)

Example 2: X = R2, F such that positive class = space above a
horizontal line

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
3

9

Shattering coefficient: definition (4)

Example 3: X = R2, F = interior of circles.

CAN YOU COME UP WITH A BOUND ON THE SHATTERING
COEFFICIENT FOR A SMALL n?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

0

Shattering coefficient: generalization bound

Theorem 39 (Generalization bound with shattering
coefficient)

Let F be any arbitrary function class. Then for all 0 < ε < 1,

Pr(sup
f∈F
|R(f)−Rn(f)| > ε) ≤ 2N (F , 2n) exp(−nε2/4).

The other way round: With probability at least 1− δ, all functions
f ∈ F satisfy

R(f) ≤ Rn(f) + 2

√
log(N (F , 2n))− log(δ)

n
.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

1

Proof of Theorem 39 by symmetrization

I By Rn we denote the risk on our given sample of n points.

I By R′n we denote the risk that we get on a second,
independent sample of n points, called the “ghost sample”.

Proposition 40 (Symmetrization lemma)

Pr(sup
f∈F
|R(f)−Rn(f)| > ε)

≤ 2 Pr(sup
f∈F
|Rn(f)−R′n(f)| > ε/2).

(Proof elementary, omitted)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

2

Proof of Theorem 39 by symmetrization (2)

What is the point of symmetrization?

I The right hand side only depends on the values of the
functions f on the two samples:
If two functions f and g coincide on all points of the orignal
sample and the ghost sample, at is f(x) = g(x) for all x in the
samples, then Rn(f) = Rn(g) and R′n(f) = R′n(g).

I So the supremum over f ∈ F in fact only runs over finitely
many functions: all possible binary functions on the two
samples.

I The number of such functions is bounded by the shattering
coefficient N (F , 2n).

I Now Theorem 39 is a consequence of Theorem 38.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

3

Discussion of the generalization bound with

shattering coefficient

I The bound is analogous to the one for finite function classes,
just the number m of functions has been replaced by the
shattering coefficient.

I Intuitively, the shattering coefficient measures “how powerful”
a function class is, how many different labelings of a data set it
can possibly realize.

I Overfitting happens if a function class is very powerful and can
in principle fit everything. Then we don’t get consistency, the
shattering coefficient is large.
The smaller the shattering coefficient, the less prone we are to
overfitting (in the extreme case of one function, we don’t
overfit).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

4

Discussion of the generalization bound with

shattering coefficient (2)

I To prove consistency of a classifier, we need to establish that
logN (F , 2n)/n→ 0 as n→∞.

Intuitively: the number of possibilities in which a data set can
be labeled has to grow at most polynomially in n.

I Shattering coefficients are complicated to compute and to deal
with. To prove consistency, we would need to know how fast
the shattering coefficients grow with n (exponentially or less).

We now study a tool that can help us with this.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

5

VC dimension

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

6

VC dimension: Definition
Definition: We say that a function class F shatters a set of points
X1, ..., Xn if F can realize all possible labelings of the points, that
is |FX1,...,Xn| = 2n.

The VC dimension of F is defined as the largest number n such
that there exists a sample of size n which is shattered by F .
Formally,

VC(F) = max{n ∈ N
∣∣ ∃X1, ..., Xn ∈ X s.t. |FX1,...,Xn| = 2n}.

If the maximum does not exist, the VC dimension is defined to be
infinity.

(VC stands for Vapnik-Chervonenkis, the people who invented it)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

7

VC dimension: Definition (2)

Example: positive class = closed interval

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

8

VC dimension: Definition (3)

Example: positive class = interior of a axis algined rectangle

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
4

9

VC dimension: Definition (4)

Example: positive class = interior of a convex polygon

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

0

VC dimension: Definition (5)

Example: sine waves

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

1

VC dimension: Definition (6)

Finally, examples that are relevant for practice (SVMs!):

I X = Rd, F = linear hyperplanes. Then V C(F) = d+ 1.
Proof see exercises.

I X = Rd, ρ > 0, Fρ := linear hyperplanes with margin at least
ρ. Then one can prove: if the data points are restricted to a
ball of radius R, then

V C(F) = min

{
d,

2R2

ρ2

}
+ 1

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

2

VC dimension: Sauer-Shelah Lemma

Why are we interested in the VC dimension? Here is the reason:

Proposition 41 (Vapnik, Chervonenkis, Sauer, Shelah)

Let F be a function class with finite VC dimension d. Then

N (F , n) ≤
d∑
i=0

(
n

i

)
for all n ∈ N. In particular, for all n ≥ d we have

N (F , n) ≤
(en
d

)d
.

Proof: nice combinatorial argument, see the exercises.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

3

VC dimension: Sauer-Shelah Lemma (2)

This is a really cool statement:

I If a function class has a finite VC dimension, then the
shattering coefficient only grows polynomially!

I If a function class has infinite VC dimension, then the
shattering coefficient grows exponentially.

I It is impossible that the growth rate of the function class is
“slightly smaller” than 2n. Either it is 2n, or much smaller,
polynomial.

e
i

e
a
g

j
I

s
fO

I3is
S

sf

s
ef
E

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

4

Generalization bound with VC dimension

Plugging the Sauer-Shelah-Lemma in Theorem 39 immediately gives
the following generalization bound in terms of the VC dimension:

Theorem 42 (Generalization bound with VC dimension)

Let F be a function class with VC dimension d. Then with
probability at least 1− δ, all functions f ∈ F satisfy

R(f) ≤ Rn(f) + 2

√
d log(2en/d)− log(δ)

n
.

Consequence: VC-dim finite =⇒ consistency

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

5

Generalization bound with VC dimension (2)

More generally, the statement also holds the other way round:

Theorem 43

Empirical risk minimization is consistent with respect to F if and
only if VC(F) is finite.

Proof skipped.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

6

Generalization bound with VC dimension (3)

Yet another interpretation of the generalization bound: how many
samples do we need to draw to achieve error at most ε?

I Set ε := 2
√

d log(2en/d)−log(δ)
n

, solve for n and ignore all
constants.

I Result: We need of the order n = d/ε2 many sample points.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

7

Rademacher complexity

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

8

Rademacher complexity

The shattering coefficient is a purely combinatorial object, it does
not take into account what the actual probability distribution is.
This seems suboptimal.

Definition: Fix a number n of points. Let σ1, ..., σn be i.i.d. tosses
of a fair coin (result is -1 or 1 with probability 0.5 each). The
Rademacher complexity of a function class F with respect to n is
defined as

Radn(F) := E sup
f∈F

1

n

n∑
i=1

σif(Xi)

The expectation is both over the draw of the random points Xi and
the random labels σi.
It measures how well a function class can fit random labels.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
5

9

Rademacher complexity (2)

There exist a number of generalization bounds for Rademacher
complexities, and they tend to be sharper than the ones by
combinatorial concepts like shattering coefficients. They typically
look like this:

Theorem 44 (Rademacher generalization bound)

With probability at least 1− δ, for all f ∈ F ,

R(f) ≤ Rn(f) + 2 Radn(F) +

√
log(1/δ)

2n

Proofs are beyond the scope of this lecture.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

0

Rademacher complexity (3)

Computing Rademacher complexities for function classes is in many
cases much simpler than computing shattering coefficients or VC
dimensions.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

1

Generalization bounds: conclusions

I Generalization bounds are a tool to answer the question
whether a learning algorithm is consistent.

I Consistency refers to the estimation error, not the
approximation error.

I Typically, generalization bounds have the following form:
With probability at least 1− δ, for all f ∈ F

R(f) ≤ Rn(f) + capacity term + confidence term

The capacity term measures the size of the function class.
The confidence term deals with how certain we are about our
statement.

I There are many different ways to measure the capacity of
function classes, we just scratched the surface.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

2

Generalization bounds: conclusions (2)

I Generalizations are worst case bounds: worst case over all
possible probability distributions, and worst case over all
learning algorithms that pick a function from F .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

3

Controlling the approximation error

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

4

Nested function classes

I So far, we always fixed a function class F and investigated
wether the estimation error in this class vanishes as we get to
see more data.

I However, we need to take into account the approximation error
as well.

I Idea is now: consider function classes that slowly grow with n:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

5

Nested function classes (2)

I If we have few data, the class is supposed to be small to avoid
overfitting (generalization bound!)

I Eventually, when we see enough data, we can afford a larger
function class without overfitting. The larger the class, the
smaller our approximation error.

There are two major approaches to this:

I Structural risk minimization: explicit approach

I Regularization: implicit approach

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

6

Structural risk minimization (SRM)

I Consider a nested sequence of function spaces: F1 ⊂ F2 ⊂ ...

I We now select an appropriate function class and a good
function in this class simultaneously:

fn := argmin
m∈N,f∈Fm

Rn(f) + capacity term(Fm)

I The capacity term is the one that comes from a generalization
bound.

I If the nested function classes approximate the space of “all”
functions, one can prove that such an approach can lead to
universal consistency.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

7

Regularization

Recap: regularized risk minimization:

minimizeRn(f) + λ · Ω(f)

where Ω punishes “complex” functions.

The trick is now: Regularization is an implicit way of performing
structural risk minimization.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

8

Regularization (2)

Proving consistency for regularization is technical but very elegant:

I Make sure that your overall space of functions F is dense in
the space of continuous functions
Example: linear combinations of a universal kernel.

I Consider a sequence of regularization constants λn with
λn → 0 as n→∞.

I Define function class Fn := {f ∈ F ; λn · Ω(f) ≤ const}
I Choose λn → 0 so slow that logN (Fn, n)/n→ 0.

I On the one hand, this ensures that in the limit we won’t
overfit, the estimation error goes to 0.

I On the other hand, if λn → 0, then Fn → F because
λΩ(f) < c =⇒ Ω(f) ≤ c/λn →∞.
Hence, the approximation error goes to 0, so we won’t
underfit.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
6

9

Regularization (3)

If you want to see the mathematical details, I recommend the
following paper:

Steinwart: Support Vector Machines Are Universally Consistent.
Journal of Complexity, 2002.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

0

Brief history

I The first proof that there exists a learning algorithm that is
universally Bayes consistent was the Theorem of Stone 1977,
about the kNN classifier.

I The combinatorial tools and generalization bounds have
essentially been developed in the early 1970ies already (Vapnik,
Chervonenkis, 1971, 1972, etc) and refined in the years around
2000.

I The statistics community also proved many results, in
particular rates of convergence. There the focus is more on
regression rather than classification.

I By and large, the theory is well understood by now, the focus
of attention moved to different areas of machine learning
theory (for example, online learning, unsupervised learning,
etc).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

1

Getting back to Occam’s razor

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

2

Examples revisited

Remember the examples we discussed in the first lecture?

The question was which of the two functions should be preferred.

Many of you had argued that unless we have a strong belief that
the right curve is correct, we should prefer the left one due to
“simplicity”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

3

Examples revisited (2)

This principle is often called “Occam’s razor” or “principle of
parsimony”:

When we choose from a set of otherwise equivalent models, the
simpler model should be preferred.

Intuitive argument:

“Occam’s razor helps us to shave off those concepts, variables or
constructs that are not really needed to explain the phenomenon.
By doing that, developing the model will become easier, and there
is less chance of introducing inconsistencies, ambiguities and
redundancies. “

These formulations can be found in many papers and text books, I don’t know the original source ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

4

Occam’s razor vs. learning theory

However:

I The main message of learning theory was that we need to
control the size of the function class F .

I We had not at all talked about “simplicity” of functions!

Is this a contradiction? Is Occam’s razor wrong???

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

5

Occam’s razor vs. learning theory (2)

First point of view: we don’t need “simplicity”:

I Consider an example of a function class that just contains 10
functions, all of which are very “complicated” (not “simple”).

I For the estimation error, this would be great, we would soon
be able to detect which of the function minimizes the ERM,
with high probability.

I If the function class also happens to be able to describe the
underlying phenomenon (low approximation error), this would
be perfect.

I In this case, we do not need simple functions!!!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

6

Occam’s razor vs. learning theory (3)

Second point of view: Spaces of simple functions tend to be
small.

Example: Polynomials in one variable, with a discrete set of
coefficients:

f(x) =
d∑

k=1

akx
k with ak ∈ {−1,−0.99,−0.98,, 0.98, 0.99, 1}

There are about 200 polyonimals of degree 1,
2002 polynomials of degree 2,
200d polynomials of degree d.

Here, the spaces get larger the more “parameters” we have.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

7

Occam’s razor vs. learning theory (4)

Both points of view come together if we talk about data
compression.

I A space with few functions can be represented with few bits
(say, by a small lookup table).

I A space with “simple” functions can be represented with few
bits as well (encode all the parameters).

I A space of “complex” function cannot be compressed.

Intuitive conclusion:

I Spaces of simple functions are small, spaces of complex
functions tend to be large.

I Learning theory tells us that we should prefer small function
spaces.

I This often leads to spaces of simple functions.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

8

Occam’s razor vs. learning theory (5)

This intuition can be made rigorous and formal:

I Sample compression bounds in statistical learning theory

I The whole branch of learning based on the “Minimum
description length principle” (comprehensive book in this area
by Peter Grünwald)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
7

9

Occam’s razor vs. learning theory (6)

Bottom line:

I The quantity that is important is not so much the simplicity of
the functions but rather the size of the function space.

I But spaces of simple functions tend to be small and are good
candidates for learning.

I Occam’s razor slightly misses the point, but is a good first
proxy. It is not always correct, but often...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

0

Learning theory: outlook

We have just scratched the surface and considered the simplest
results in the “classic regime” of supervised learning.

This type of learning theory can NOT explain why deep networks
work:

I The function class induced by a deep network have a very high
capacity, so that the standard learning theory leads to useless
bounds (uniform convergence does not hold).
I This has been proved theoretically.
I This also has been proved empirically, by the fact that DNNs

can learn perfectly fit arbitrarily shuffled labels.

I DNNs are trained to highly overfit the data — but still they
generalize!

All this does not mean that the standard learning theory is wrong.
It means that we need other tools to explain DNNs.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

1

Learning theory: outlook (2)

There are a couple of very interesting results out there, and it is
beyond this lecture to discuss it. Maybe just one teaser:

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd !C of the form

h(x) =

NX

k=1

ak�(x ; vk) where �(x ; v):=e
p�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ⇥R, we find the predictor hn,N 2
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khkH1 , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ju
ne

 1
9,

 2
02

0

Figure from Belkin et al, 2019, PNAS

All in all, this is still a widely open field of research.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

2

(*) The No-Free-Lunch Theorem

Literature:

I The way I present it is taken from the paper: Ho and Pepyne.
Simple explanation of the no-free lunch theorem and its
implications. Journal of Optimization Theory and Applications,
2002.

I The book by Shalev-Shwartz and Ben-David discusses the NFL
as well in Sec. 5.1, albeit with a different formulation.

I More general version can be found in Chapter 7 in Devroye/
Györfi / Lugosi.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

3

Intuition

I Intuitively the no free lunch theorem (NFL) says that there
does not exist a single best classifier that outperforms any
other classifier on all learning problems.

I There exist many different versions to state this formally,
below we describe the easiest one.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

4

NFL, simple version

I Assume that the space of all input points just consists of a
finite set X = {x1,, xm}. Assume that the marginal
distribution over these points is the uniform one (that is, each
value xi is equally likely).

I Assume that we consider binary classification, that is
Y = {±1}, and that the labels are deterministic functions of
the input.

I Particularly, there exists some function f : X → Y that does
not make any error.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

5

NFL, simple version (2)

Now consider the following table:

I Rows correspond to all possible true functions (there are 2m

such functions)

I Columns correspond to all possible estimated functions

I The entries rij give the true error of function fi when the true
function is fj.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

6

NFL, simple version (3)

Proposition 45 (Risk in each row is the same)

In each row of the table, each risk value occurs the same number of
times.

Proof.

I rij = 0 exactly once (if fi = fj)

I rij = 1/m exactly m times

I rij = 2/m exactly
(
m
2

)
times

I ...

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

7

NFL, simple version (4)

Proposition 46 (Simple NFL)

In the model introduced above: On average over all true functions
f , the performance of all classifiers f̂ is the same.

Proof. Obvious consequence of the previous proposition. ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

8

NFL, simple version (5)

Proposition 47 (Simple NFL with training data)

In the model introduced above: Assume we are given a training set
(Xi, Yi)i=1,...,n. Then, on average over all test distributions, all
classifiers that are consistent with the training set perform the
same.

Proof.

I In the table above, eliminate all columns that are not
consistent with the training data.

I Among the remaining ones, all distributions over test labels are
possible.

I Then the result follows by a similar argument as above. ,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
8

9

NFL, simple version (6)

Note that much more general theorems exist, for example for the
standard machine learning scenario where we draw data from joint
distribution P on X × Y and X is any space you want ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

0

NFL, simple version (7)

Discussion:

I Have seen: “The best possible classifier for all data sets” does
not exist.

I SHOULD WE GIVE UP? IS MACHINE LEARNING
MEANINGLESS?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

1

NFL, simple version (8)

I No: the key is that in practice we do not see “all possible data
sets”. As soon as we make assumptions on the data sets, the
NFL breaks down (“Making assumptions” means to delete
some columns from the above matrix, and then the proof
breaks down).

I This shows once more how important it is to incorporate these
assumptions to the machine learning algorithm ; inductive
bias!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

2

NFL, simple version (9)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

3

History / Literature

I Wolpert, David. The Lack of A Priori Distinctions between
Learning Algorithms. Neural Computation, 1996.

I Many generalizations since then (both to the field of machine
learning and optimization in general).

I Ho and Pepyne. Simple explanation of the no-free lunch
theorem and its implications. Journal of Optimization Theory
and Applications, 2002.

I Chapter 7 in Devroye/ Györfi / Lugosi

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

4

Machine Learning in the
context of society

The general debate
Fairness
Use of energy
Explainability

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

5

The issues with ML

Literature:

see the literature lists of the two seminars on AI and ethics
(summer 2019 and winter 2018/19, links on my webpage under
“past lectures”.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

6

Foreword: AI vs ML

In the public debate, everybody uses the term Artificial Intelligence
(AI) rather than Machine Learning (ML)...

Personally, I find it important to use the term “Machine Learning”:
it does not implicitly suggest that there is any intelligence involved.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

7

ML: potential “good” and “bad” uses

There is a lot of discussion in which social contexts ML might be
acceptable and in which contexts ML is undesired. Here are some
keywords:

Problematic uses of ML (most people in Germany would find this
undesirable):

I Fake videos and fake news

I Profiling and filter bubbles

I Social Scoring

I Predictive Policing

I Compas system for bail decisions

I Automatic weapons

WHAT ARE THE ISSUES?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

8

ML: potential “good” and “bad” uses (2)

Too extreme? Consider the following systems. Used in many
places, but many people have reservations against it (WHY?)

I College admission

I Automatic screening of job applications

I Credit scoring

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

8
9

9

ML: potential “good” and “bad” uses (3)

A more technical product:

Self-driving cars (WHAT MIGHT BE ISSUES?)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

0

ML: potential “good” and “bad” uses (4)

Good uses of ML:

I Medical applications (e.g., app for skin cancer detection that
can be used in remote areas)

I Speech synthesis, machine translation: consider you are in a
foreign country; you talk in your mother tongue to your phone,
which translates it and pronounces it in the target language of
the country.

I Applications in science

I Optimization of processes (eg forcasting of energy production
and consumption to achieve better distribution)

WHAT MAKES THESE APPLICATIONS “BETTER” THAN THE
PREVIOUS ONES?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

1

ML: potential “good” and “bad” uses (5)

Another consideration: AI uses a lot of energy! Can we afford this,
given the climate crisis?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

2

ML: potential “good” and “bad” uses (6)

And last but not least:

super-intelligence... a topic that raises many emotions and
speculations as well.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

3

ML reasearch: a critical debate

There is an ongoing debate about the responsibility of researchers
in AI. Here are some typical questions you might get asked:

I How can you still justify to work on AI, given that it can be
used for XXX (where XXX might be one of the things
mentioned above).

I How can you still justify to work on AI, given the climate crisis?

I Can we still control the AI research, or does/did/will it get out
of control? (; super-intelligence)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

4

ML reasearch: a critical debate (2)

In particular, in Tübingen you might additionally get asked or
encounter statements such as:

I Do you think it is legitimate to have a position in public
research and at the same time work for an industry company
(e.g. Amazon)?

I ML research is governed by the interetests of industry (Cyber
Valley), free reseaarch does not exist any more.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

5

ML reasearch: a critical debate (3)

It is REALLY REALLY IMPORTANT that all of you get familiar
with that debate, and also that you form YOUR OWN opinion.

I In the following slides, I give you some keywords that are
important in this debate.

I These slides are meant to highlight some of the important
questions, issues, topics. Covering the debate on each of this
topics would take a few lectures, so take it as a teaser. If you
want to know more, please check out the literature that we
had in the past ethics and society seminars (on my webpage
under “past teaching”).

I My slides don’t give any answers!!! There often are no simple
answers!!! And your answers might be different from my
answers.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

6

Algorithm ethics

I For which applications is it ok to use algorithms, for which
ones it it not ok?
Consider the example of information filtering such as detecting
the sexual orientation of a person from images.

I Can we counteract biases in algorithms (e.g., “Man is to
Computer Programmer as Woman is to Homemaker”)?

I How can we realize the transparency of decisions taken by
algorithms? (right for explanations)

I Who is responsible for decisions taken by algorithms? Who is
liable?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

7

Moral machines

If machines (potentially robots) actively take decisions that
influence our lives, is it possible to embed some “moral values” in
these machines? If yes, how?

I Extreme example for self driving cars: if “the car” encounters a
critical traffic situation where an accident is unavoidable,
should it “decide” to kill three old ladies or one kid?

This is a special instance of all kind of “trolley problems” in
philosophy and ethics.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

8

ML: potential consequences for economy and

public welfare

I ML might make many people lose their jobs: truck drivers,
workers in call centers, ... but potentially also medical
assistants or lawyers

I How many, how fast?

I Will their jobs be replaced by “other jobs”?

I In the long run, if nobody is going to work, who is going to
pay taxes?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
0

9

Philosophy of science and technology

determinsim

The question is:

I Can we “control” AI research?

I Could we (in principle?) stop AI research if we realize it gets
“dangerous” (eg building super-human robots)?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

0

AI in the future: Utopia or dystopia?

Utopia:

I In the (far?) future, intelligent robots will do all the work for
us. We all get payed unconditional basic income and can
spend our time with the things we really like to do.

Dystopia:

I Intelligent robots are going to take over the world. Humans
might even end up being their slaves or wiped out.

I Even if robots don’t take over the world, we loose our meaning
of life because they are better in everything (even in arts or
music)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

1

Regulations

Can we regualate the use of AI? If yes, how would a good
regulation look like, on which level would it be realizable (Germany?
EU? world wide?)

Examples:

I The new European General Data Protection Regulation
(GDPR), and explainability

I San Francisco bans use of face recognition systems for its
police and other agencies (2019)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

2

Why are YOU concerned

AI is going to change the world.

You will get asked what your part in this is, and what your
responsibility is, and how you take on this responsibility.

This is the case in Tübingen, but also in the rest of the world.

This public debate is REALLY IMPORTANT. And it is also
important that you form your own opinion in this debate.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

3

Fairness

Literature:

I Book draft by Solon Barocas, Moritz Hardt, Arvind Narayanan:
Fairness and machine learning. Available online:
http://www.fairmlbook.org

This book also contains many other references to literature.

http://www.fairmlbook.org

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

4

Why can ML be unfair?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

5

Example: Credit scoring

Machine learning systems are used to predict whether applicants are
going to pay back or default a credit.

Say we just build a linear model and explore which features of a
person are important / highly correlated with the decision of that
system.

It turns out that that the ZIP code of your current address is a very
strong predictor for the ”yes/no” decision. So just because you live
in a low-income neighborhood, you have a harder time getting the
credit.

In particular, you probably need to “compensate” your bad ZIP
code by, say, a higher income.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

6

Example: College admission

Harvard Admissions Lawsuit: 2014/15, students complained
that Harvard admission rules are unfair:

Race plays a significant role in admissions decisions. Con-
sider the example of an Asian-American applicant who is
male, is not disadvantaged, and has other characteristics
that result in a 25% chance of admission. Simply chang-
ing the race of the applicant to white — and leaving all his
other characteristics the same — would increase his chance
of admission to 36%. Changing his race to Hispanic (and
leaving all other characteristics the same) would increase his
chance of admission to 77%. Changing his race to African-
American (again, leaving all other characteristics the same)
would increase his chance of admission to 95%.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

7

Example: College admission (2)

More formally, the argument is:

P (accepted
∣∣ features = f, race = asian-american)

� P (accepted
∣∣ features = f, race = white)

� P (accepted
∣∣ features = f, race = hispanic)

� P (accepted
∣∣ features = f, race = african-american)

Is it obviously unfair? Can it be fair?

What could be the reason for the behavior of the system?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

8

Example: College admission (3)

Affirmative action!

According to Harvard: “If Harvard stopped taking race into
consideration as one factor in its admissions process and adopted
the race-neutral alternatives that SFFA suggested, the result would
be a class that fails to achieve the diversity and excellence that
Harvard seeks. ”

(SFFA = Students for Fair Admission)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
1

9

Example: College admission (4)

Oct 2019: judges concluded: what Harvard does is lawful. Here are
some quotes (taken from the Harvard webpage, potentially biased):

I Consistent with what is required by Supreme Court precedent,
Harvard has demonstrated that it uses race as a factor that
can act as a “plus” or a “tip” in making admissions decisions.

I Harvard has demonstrated that there are no workable and
available race-neutral alternatives that would allow it to achieve
an adequately diverse student body while still perpetuating its
standards for academic and other forms of excellence.

I Based on the Court’s preferred model there is not a statistically
significant difference between the chances of admission for
similarly situated Asian American and white applicants.

Sources:
https://admissionscase.harvard.edu/

Fair ML book, Sec. on “Counterfactual discrimination analysis”

https://admissionscase.harvard.edu/

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

0

Example: Deliveries

Amazon deliveries:

Amazon uses a data-driven system to determine the neighborhoods
in which to offer free same-day delivery. A 2016 study found stark
disparities in the demographic makeup of these neighborhoods: in
many U.S. cities, white residents were more than twice as likely as
black residents to live in one of the qualifying neighborhoods.

Source: Fairness book.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

1

Example: Street bump

This is a project by the city of Boston to crowdsource data on
potholes. The smartphone app automatically detects pot holes
using data from the smartphone’s sensors and sends the data to the
city, which then fixes the streets.

The problem:

In areas with a large elderly population, people tend to have less
smartphones than in other areas.

The same obviously holds for low-income neighborhoods as
compared to wealthy neighborhoods.

Source: fairness book.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

2

Example: Recruitement tools (1)

Amazon, where men hold 74 percent of the company’s managerial
positions, recently discontinued use of a recruiting algorithm after
discovering gender bias. The data that engineers used to create the
algorithm were derived from the resumes submitted to Amazon over
a 10-year period, which were predominantly from white males. The
algorithm was taught to recognize word patterns in the resumes,
and these data were benchmarked against the company’s
predominantly male engineering department. As a result, the AI
software penalized any resume that contained the word “women” in
the text and downgraded the resumes of women who attended
women’s colleges.

Source: Hamilton, Isobel Asher. Why It’s Totally Unsurprising That Amazon’s Recruitment AI Was Biased against Women”
Business Insider, October 13, 2018.

https://www.brookings.edu/research/

algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/

https://www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/
https://www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

3

Example: Recruitement tools (2)

I The employment agency in Austria is planning to use
automatic tools to classify unemployed persons. The three
classes specify what (according to the algorithm) are the
chances of finding a new job: “low”, “middle”, “high”.

I Data: personal features such as age, education, prior jobs, ...

I The explicit idea is then to spend more effort on the top group
than on the bottom group.

I The procedure is under criticism because it could transform
existing discrimination into a technical solution.

I For example, it has been proven that female gender and older
age lead to a worse evaluation by the algorithm.

Source: Süddeutsche Zeitung, Oktober 2019:
https://www.sueddeutsche.de/digital/digitalisierung-arbeitslosigkeit-jobcenter-1.4178635

https://www.sueddeutsche.de/digital/digitalisierung-arbeitslosigkeit-jobcenter-1.4178635

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

4

Example: Word embeddings

Word embeddings are a popular tool to generate vector space
representations of words (e.g., word2vec algorithm). Input consists
of word co-occurrences in text corpora, output generates an
embeddig r of words into some vector space, say R300.

It has been observed that these word embeddings capture semantic
strucutures, so you can do “word arithmetics”:

Example:

I Compute the difference v := r(“France”)− r(“Paris”)

I Compute r(“England”) + v, then you obtain something close
to “London”

I We say: “London is to England as Paris is to France”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

5

Example: Word embeddings (2)

Now you can start playing:

I Fix a word X

I Ask “man is to X as woman is to Y” and observe Y.

I Here are some word pairs that you will find:

man = computer programmer =⇒ woman = home maker
man = surgeon =⇒ woman = nurse
man = brilliant =⇒ woman = lovely

You can see how the word embedding perfectly reproduces all the
gender stereotypes that you might find in large text corpora!

Source: Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., Kalai, A. T. Man is to computer programmer as woman is
to homemaker? debiasing word embeddings. NeurIPS, 2016.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

6

Example: Compas

I The algorithm COMPAS is used in the US nationwide to
decide whether defendants awaiting trial are too dangerous to
be released on bail
(German: on bail = “auf Kaution freilassen”)

I The COMPAS tool assigns defendants scores from 1 to 10 that
indicate how likely they are to re-offend. The score is based on
more than 100 factors, including age, sex and criminal history.
Notably, race is not used.

I The higher this recidivism score, the more likely a person is
considered risky and is being detained.
(German: recidivism=Rückfall)

There is a heated debate about whether this score is biased agains
black people:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

7

Example: Compas (2)

First point of view: score is not biased:

If you have a certain score s, the probability to reoffend is about
the same for white and black persons:

∀s = 1, ..., 10 :

P (reoffend|score = s; race=white)

≈P (reoffend|score = s; race=black)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

8

Example: Compas (3)

Consequence: when judges see a defendant’s risk score, they need
not consider the defendant’s race when interpreting it.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
2

9

Example: Compas (4)

Second point of view: the scores are biased:

Among those defendants who ultimately did not reoffend, blacks
were more than twice as likely as whites to be classified as medium
or high risk (42 percent vs. 22 percent):

P (high risk score|not reoffend, race=black)�
P (high risk score|not reoffend; race=white)

Even though these defendants did not go on to commit a crime, the
black ones are subjected to harsher treatment by the courts than
the white ones.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

0

Example: Compas (5)

Bringing it together (see text on next slide):

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

1

Example: Compas (6)

First point of view: the algorithm is fair: Within each risk
category, the proportion of defendants who reoffend is
approximately the same regardless of race (In the figure: take the
“low” bar of both populations; both for white and black, this ”low”
bar has roughly the same fraction of light and dark blue; same goes
for “medium/high” bar).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

2

Example: Compas (7)

Second point of view: The algorithm is unfair: Black
defendants who don’t reoffend are predicted to be riskier than white
defendants who don’t reoffend. In the figure: for the black
population, compare the two dark blue areas between “low” and
“medium/high”. They are nearly the same. This is not true for the
white population.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

3

Example: Compas (8)

And why can this happen? In the raw data, black defendants
reoffend at a higher rate than whites (in the figure: theoverall area
of light blue vs dark blue is higher for black (58%) than for white
(33%). A classifier that is perfect in terms of accuracy will be more
likely to classify black defendants as medium or high risk than
whithe defendants (58 percent vs. 33 percent).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

4

Example: Compas (9)

So who is right? Is it fair or not?

Depends on the way we measure fairness, and also on the way we
measure the “success” of such a system.

In particular, for this data it is impossible to construct non-trivial
classifier that is “fair” with respect to both points of view.

Literature:
Machine bias: There is software across the country to predict future criminals. And it is biased against black. Julia Angwin,
Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica, 2016

Washington Post: A computer program used for bail and sentencing decisions was labeled biased against blacks. It’s actually

not that clear. https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/

can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas/

https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas/
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas/

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

5

Example: Compas (10)

As a side remark, there are more obviously problematic things
about the data. In particular, there might be people who have been
released and also have re-offended, but were never caught in doing
so. Likelihood that his might happen might be different, depending
on where you live, for example. This might introduce yet more bias
to the data.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

6

Examples: First take away

I Implicitly, all kinds of biases can happen in automatic
classification systems.

I In most of the systems outlined above, the ones who had
desigend the system did not intend to be unfair or
discriminatory (e.g., street bump; word embeddings)

I In some systems, the ones who had designed it intentionally
tried to promote certain minorities (affirmative action in
Harvard admission).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

7

Examples: First take away (2)

I There is no unique definition of fairness! Many definitions
exist, typically they are exclusive (you cannot be fair with
respect to all of them).

I Which definition of fairness is appropriate can be very different
for different applications, and always needs to be discussed in
the context of society.

I When we want to have a “fair” system, we might need to give
up performance on other aspects, for example overall
classification accuracy (e.g., compas) or utility/profit (e.g.,
credit scoring).

I Having “fairness” as a criterion is a request that comes from
society.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

8

Examples: First take away (3)

It is hard to come up with a real application for machine learning
where we cannot spot any potential discrimnatory behavior!!!

So this is an issue. Always.

And typically there is no simple solution.

But there are at least some things that we can do, see below.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
3

9

Data and measurement

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

0

Sources of unfairness: minorities

I If we test for overall accuracy, a 5 % error stastical model
might perform terribly for a minority group:

Minorities simply get “drowned” in systems that
maximize accuracy: training and test error do not change
much if we change the classification on minority groups.

I Worse, in many settings minority groups might be
underrepresented relative to population statistics (due to
sampling bias, see next slide)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

1

Sources of unfairness: Biases in data

I Sampling bias: Data collection might have demographic,
geographic, behavioral, temporal biases. Certain groups will be
over / under-represented in the sample.

Example: The record of crimes only come from those crimes
observed by police. The police department tends to dispatch
more officers to the place that was found to have higher crime
rate initially and is thus more likely to record crimes in such
regions. Even if people in other regions have higher crime rate
later, it is possible that due to less police attention, the police
department still record that these regions have lower crime
rate.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

2

Sources of unfairness: Biases in data (2)

I Pre-existing biases in data, e.g. gender roles in text and
images, racial stereotypes, ...

Example:
I past hiring data;
I word embeddings

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

3

Sources of unfairness: measurement

Problem of feature measurement: Which featuresdo we
measure, and how?

Examples:

I In the US it is common to collect statistics according to race
(“African-American, Hispanic, Asian, ... ”) and even gender
(“self-identified male”, “self-identified female”). The problem:
I People might not want to answer truthfully
I People might not even be able to answer truthfully
I By forming these categories, they become normative: How we

measure a concept changes how we think about it.

By selecting features we influence the way we model the problem.
The selection of measurements might systematically favor/ disfavor
certain groups!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

4

Sources of unfairness: measurement (2)

Problem of target measurement:

In the very end, ML algorithms try to learn a function that fits a
target variable. In social contexts, the choice of the target variable
is often difficult, and often only a coarse proxy of what we would
like to measure. By making a choice we already encode biases:

Examples:

I Job promotion: If our target variable is the idea of a “good
employee”, we might use performance review scores to
quantify it. This means that our data inherits any biases
present in managers’ evaluations.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

5

Sources of unfairness: measurement (3)

I Hiring: Instead of relying on performance reviews for a sales
job, we might rely on the number of sales closed. But is that
an objective measurement or is it subject to the biases of the
potential customers (who might respond more positively to
certain salespeople than others) and workplace conditions
(which might be a hostile environment for some, but not
others)?

I Computer vision: there are systems out there that are
supposed to rank people’s physical attractiveness. The training
data consists of human evaluation of attractiveness, and all
these classifiers showed a preference for lighter skin — simply
because most of the images show white persons and most of
the evaluators were white, male, young men.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

6

Sources of unfairness: measurement (4)

I Health systems rely on commercial prediction algorithms to
identify and help patients with complex health needs. We show
that a widely used algorithm, affecting millions of patients,
exhibits significant racial bias: At a given risk score, Black
patients are considerably sicker than White patients, as
evidenced by signs of uncontrolled illnesses. Remedying this
disparity would increase the percentage of Black patients
receiving additional help from 17.7 to 46.5%. The bias arises
because the algorithm predicts health care costs rather than
illness, but unequal access to care means that we spend less
money caring for Black patients than for White patients. Thus,
despite health care cost appearing to be an effective proxy for
health by some measures of predictive accuracy, large racial
biases arise. We suggest that the choice of convenient,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

7

Sources of unfairness: measurement (5)

seemingly effective proxies for ground truth can be an
important source of algorithmic bias in many contexts.
Ziad Obermeyer, Brian Powers, Christine Vogeli, Sendhil Mullainathan: Dissecting racial bias in an algorithm used

to manage the health of populations. Science, Okt 2019.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

8

Discussion

Fairness is not a technical requirement, but one that comes from
society!

Nothing about fairness is obvious and simple.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
4

9

Some basic notions of fairness

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

0

Very simplified setup

Data consists of

I Features X ∈ X
I Protected/sensitive attributes A ∈ A (e.g., gender, race,...).

Depending on the application, the protected attributes are
explicitly known or not.

I True target variable Y ∈ Y .

The high-level goal is to learn a classifier C : X ×A → Y which for
each individual predicts a target variable Ŷ (which can be an
estimate of Y , but also something more abstract).

In the following, for simplicity we assume the protected attribute to
be binary (e.g., black/white), the true outcome is binary
(“reoffends or not”), and the predicted outcome is binary (“kept in
jail / released on bail”).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

1

Very simplified setup (2)

Example 1: compas

I X = features of the person

I A = white or black

I Y = whether the person would reoffend

I Ŷ = whether the system says that the person should be
released on bail

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

2

Very simplified setup (3)

Again, keep in mind: all this is a very poor proxy!

I the actual data X incorporates all sorts of measurement biases

I the sensitive attributes A are often not even known, might be
ill-defined (gender), misreported, inferred, ...

I The classifier C is often hard to understand (e.g., a deep
neural net)

I Y is often a poor proxy of the actual variable of interest

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

3

Measuring fairness

As we have seen in the examples above: there is no unique
definition of fairness.

Below are some popular definitions, many more definitions exist.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

4

Demographic parity
(called independence in fairml book)

Demographic parity:

P (Ŷ = 1
∣∣ A = 1) = P (Ŷ = 1

∣∣ A = 0)

Independently of all other features, both groups should have the
same rate of success.

Examples could be:

I The same proportion of males (A = 0) and females (A = 1)
should be promoted (Ŷ = 1).

I The same proportion of white (A = 0) and black (A = 1)
people should be released on bail (Ŷ = 1).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

5

Demographic parity (2)

Alternative (more general) definition that can be used beyond the
discrete cases:

The two random variables Ŷ and A are independent:

Ŷ ⊥ A

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

6

Demographic parity (3)

The assumption that there is no dependence / correlation between
target variable Y and sensitive variable A is very strong. As soon as
such a correlation exists, demographic parity might be highly
problematic.

Can you come up with an example?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

7

Equalized odds
(called separation in fairml book)

All groups experience the same false positive rate and the same
false negative rate:

P (Ŷ = 0|Y = 1, A = 0) = P (Ŷ = 0|Y = 1, A = 1)

and

P (Ŷ = 1|Y = 0, A = 0) = P (Ŷ = 1|Y = 0, A = 1)

(Sometimes, one cares more about one direction than the other.)

Examples:

I Among the students who have the potential to achieve a MSc
degree (Y = 1), the likelihood to be accepted to the masters
program (Ŷ = 1) should be the same for male (A = 0) and
females (A = 1).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

8

Equalized odds (2)

I Among the people who do not reoffend (Y = 1), the likelihood
to be released on bail (Ŷ = 1) should be the same for both
white(A = 0) and black (A = 1).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
5

9

Equalized odds (3)

More general definition:

Conditionally on the random variable Y , the two random variables
Ŷ and A are independent:

Ŷ ⊥ A
∣∣ Y

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

0

Equalized odds (4)

Sounds good.

But note: the perfect classifier (with false negative and false
positive rate being 0) is always perfectly fair according to this
definition.

Hm...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

1

Predictive parity
(called sufficiency in fairml book)

Predictive parity criterion:

P (Y = 1|Ŷ = y, A = 0) = P (Y = 1|Ŷ = y, A = 1).

If the prediction for a person is Ŷ = y, then the probability that the
true value Y = 1 should be the same for all sensitive groups.

More generally, we can define it as Y ⊥ A
∣∣ Ŷ .

Example:
Compas, the first point of view: if the compas system predicts score
ŷ ∈ {1, ..., 10}, the likelihood to actually reoffend should be the
same for black and white. Then the judge, when he sees a
particular score ŷ, can treat white and black persons the same.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

2

Predictive parity (2)

More general notion: calibration.

Assume the score is supposed to predict a certain probability (say,
the probability that a person reoffends). We say that the score Ŷ
satisfies calibration by group if for all score values y and all groups
a we have

P (Y = 1|Ŷ = y, A = a) = y

In words: the probabilities are “correct”.

In simple cases, calibration and predictive parity are more or less the
same, but this does not always need to be the case.

See fairml book, and the paper: Fair prediction with disparate impact: A study of bias in recidivism prediction instruments.

Alexandra Chouldechova, 2017.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

3

Extreme cases

Consider the situation of binary classification and a binary sensitive
attribute.

Extreme case 1: Constant classifier:

I Y = 1 for all inputs.

I The output Y is independent of anything else, in particular the
sensitive attribute.

I This classifier is maximally fair. In particular, it satisifies
demographic parity and equalized opportunity.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

4

Extreme cases (2)

Extreme case 2: predicting the sensitive attribute.

I Y = 1 ⇐⇒ A = 1.

I The output Y is identical with the sensitive attribute.

I This classifier is maximally unfair with respect to demographic
partity and equalized opportunity

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

5

Extreme cases (3)

Whenever you evaluate fairness/accuracy of classifiers, use the two
extreme case classifiers as baselines to see how much you can
improve...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

6

Impossibility results

There exist all kinds of statements that in non-trivial circumstances,
the different criteria typically cannot hold at the same time:

I Assume that A and Y are not independent. Then demographic
parity and equalized odds cannot both hold.

I Assume Y is binary, A is not independent of Y , and Ŷ is not
independent of Y . Then, demographic parity and predictive
parity cannot both hold.

I Assume that all events in the joint distribution of (A, Ŷ , Y)
have positive probability, and assume A is not independent of
Y . Then, equalized odds and predictive parity cannot both
hold.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

7

Impossibility results (2)

I Assume Y is not independent of A and assume Ŷ is a binary
classifier with nonzero false positive rate. Then, predicitve
parity and equalized odds cannot both hold.

For literature and proofs, see for example the fairml book, or the following paper: Kleinberg, Jon, Sendhil Mullainathan, and
Manish Raghavan. ”Inherent trade-offs in the fair determination of risk scores.” arXiv preprint arXiv:1609.05807 (2016).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

8

Indiviudal fairness

I Here we don’t talk about different groups and whether they
are treated in a similar way, but about individuals.

I The notion of fairness simply says that two indiviudals who are
“similar” (according to some pre-specified metric) should
receive similar treatment.

I However, in practice this is hard to use. In particular: what is
the right notion of similarity, both in the input space and the
target space?

Literature: Dwork, Cynthia, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through awareness.

2012.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
6

9

Counterfactual fairness

I computes what (the distribution of) any of the variables would
have been had certain other variables been different, other
things being equal.

I For instance, given the causal model we can ask “Would
individual i have graduated (Y = 1) if they hadn’t had a job?”

Literature: Russell, C., Kusner, M. J., Loftus, J., Silva, R. When Worlds Collide: Integrating Different Counterfactual
Assumptions in Fairness. NeurIPS 2017.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

0

Lots of criteria

Many criteria for fairness exist and have been invented several times
(and many more are not in this table):

fairness in machine learning 73

A dictionary of criteria

For convenience we collect some demographic fairness criteria below
that have been proposed in the past (not necessarily including the
original reference). We’ll match them to their closest relative among
the three criteria independence, separation, and sufficiency. This table
is meant as a reference only and is not exhaustive. There is no need
to memorize these different names.

Table 6: List of demographic fairness criteria

Name Closest relative Note Reference

Statistical parity Independence Equivalent Dwork et al. (2011)
Group fairness Independence Equivalent

Demographic parity Independence Equivalent
Conditional statistical parity Independence Relaxation Corbett-Davies et al. (2017)

Darlington criterion (4) Independence Equivalent Darlington (1971)
Equal opportunity Separation Relaxation Hardt, Price, Srebro (2016)

Equalized odds Separation Equivalent Hardt, Price, Srebro (2016)
Conditional procedure accuracy Separation Equivalent Berk et al. (2017)
Avoiding disparate mistreatment Separation Equivalent Zafar et al. (2017)

Balance for the negative class Separation Relaxation Kleinberg, Mullainathan, Raghavan (2016)
Balance for the positive class Separation Relaxation Kleinberg, Mullainathan, Raghavan (2016)

Predictive equality Separation Relaxation Chouldechova (2016)
Equalized correlations Separation Relaxation Woodworth (2017)
Darlington criterion (3) Separation Relaxation Darlington (1971)

Cleary model Sufficiency Equivalent Cleary (1966)
Conditional use accuracy Sufficiency Equivalent Berk et al. (2017)

Predictive parity Sufficiency Relaxation Chouldechova (2016)
Calibration within groups Sufficiency Equivalent Chouldechova (2016)
Darlington criterion (1), (2) Sufficiency Relaxation Darlington (1971)

Source: fairml book

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

1

Lots of criteria (2)

I The one, unique fairness criterion does not exist.

I Fairness is a concept that comes from society, and cannot
always be captured in a satisfactory manner by statistical
definitions.

I While being plausible in some applications, all of the existing
criteria have serious drawbacks and fail to capture important
aspects of the problem. See the fairml book for a discussion.

I But also note: the baseline is decisions made by humans, and
they are definitely biased as well.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

2

Lots of criteria (3)

One aspect that I find interesting:

I The different definitions of fairness set the scene for a
discussion that needs to be conducted in societey.

I This discussion is obviously necessary regarding the use of
algorithms.

I But one can also extend this discussion to examine / quantify
the bias of human decisions (e.g., courts).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

3

Technical approaches to improve fairness

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

4

Three main approaches

There are three high-level ideas to improve unfair classifiers:

I Preprocessing: Try to fix the bias in the data

I Training: Train algorithms to learn decisions that are accurate
and fair at the same time

I Postprocessing: Try to fix an unfair blackbox model in
hindsight

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

5

Fix unfairness in data

First naive idea to fix some of the unfairness: remove
sensitive features from data.

However, this is pretty much impossible!

The obvious problem: many other variables are highly correlated
with the sensitive attribute. So the ML algorithm can focus on
those as a proxy:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

6

Fix unfairness in data (2)

Standard example:

I In many cities, there exist quarters that are predominantly
inhabited by white resp. black people. And often, black people
have a low income. Hence, then the zip code of their
neighborhood is both highly correlated with income and with
race. Consequently, it might be harder to get a credit if you
live in one of those quarters.

I So even if the race is not used explicitly as a feature in a
classifier, it is implicitly present whenever the ZIP codeis being
used. The same is true for many other varialbes.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

7

Fix unfairness in data (3)

In many cases, the discriminatory features are not even well-defined:

Some patterns in the training data (smoking is associated with
cancer) represent knowledge that we wish to mine using machine
learning, while other patterns (girls like pink and boys like blue)
represent stereotypes that we might wish to avoid learning.

It is hard (impossible) to tell the algorithms which patterns it is
supposed to find. In fact, we might not even have a unique opinion
among humans...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

8

Fix unfairness in data (4)

Of course you could try to remove all variables that are
correlated with the sensitive attribute. But:

I In many cases, this will remove all the relevant variables.

I This is in particular true if you have more than one sensitive
variable (e.g., gender and race)

I And other cases, you might not have access to the sensitive
attribute, so you cannot even compute the correlation in
advance.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
7

9

Fix unfairness in data (5)

Another approach: remove feature representation alltogether
and use prototypes. Represent each data point x as a weighted
linear combination of K prototypes to satisfy demographic parity,
and keep original information and accuracy as much as possible.

Won’t work in most cases ...

Literature: Richard Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi: Learning Fair Representations. ICML 2013

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

0

Train for accuracy and fairness

Consider a standard supervised machine learning setup: you want to
learn a function f that minimizes the empirical risk R̂(f) (with
respect to some loss function `, over some function space F). You
might use a regularizer Ω(f) to prevent overfitting.

Additionally, we now consider the fairness of the classifier. Assume
your data has two sensitive groups, A = 1 and A = 0, and assume
we are after demographic parity.

Define the true unfairness as the difference in demographic parity:

unf(f) = P (f(x) > 0
∣∣ A = 1)− P (f(x) > 0

∣∣ A = 0)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

1

Train for accuracy and fairness (2)

and its empirical version as

ûnf(f) =
1

n

∑
i|ai=1

1f(xi)>0 −
∑
i|ai=0

1f(xi)>0

Now we pose the following optimization problem:

min
f∈F

Rn(f) + λΩ(f)

subject to ûnf(f) < τ

WHAT DO YOU THINK, IS IT EASY? DIFFICULT?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

2

Train for accuracy and fairness (3)

I Obvious problem: unf is discrete, so it is hard to optimize.

I Standard solution: use convex relaxations. However, we found:
Most existing relaxations are too loose! Even if the “relaxed
fairness” is perfectly satisfied, the true fairness can be very
bad.

I We consider some first approches that come with guarantees
for fairness, see our paper citet below if you are interested.
Definitely not the end of the story yet.

Bottom line: I believe that this approach is the most useful one,
but currently there is nothing out there that really works well.

Literature:
M. B. Zafar, I. Valera, M. G. Rogriguez, and K. P. Gummadi. Fairness Constraints: Mechanisms for Fair Classification.
WWW 2017, ICML 2017.
M. Lohaus, M. Perrot, U. von Luxburg. Too Relaxed to Be Fair. 2020.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

3

Fix models in hindsight

I Consider a scenario where an agency / company trains a
classifier on data, but the way it trains the classifier is kept
private (e.g., credit assessment; compas score).

I Now assume somebody evaluates the results of the classifier
and finds it to be unfair.

I Could we “fix it” in hindsight, without getting access to the
internal workings of the classifier?

What are our options?

I We only get access to the prediction Ŷ of the classifier, and the
sensitive attribute A (which we need to evaluate the classifier).

I All we can do is now to construct a “derived classifier” that
takes Ŷ and A as input and produces a new output Ỹ
(potentially, randomized output).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

4

Fix models in hindsight (2)

If A and Ŷ are binary, our derived classifier can set exactly four
parameters:

pya = P (Ỹ = 1
∣∣ Ŷ = y, A = a) , for y ∈ {0, 1}, a ∈ {0, 1}

We can now construct a post-processed solution that satisfies
equalized opportunity, see the assignment this week. This leads to a
randomized classifier (randomization here helps to get a better
accuracy-fairness tradeoff).

But obviously, the accuracy of the classifier might decrease when
we apply this linear program. The original paper gives some
guarantees on this

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

5

Fix models in hindsight (3)

Assume we not only get access to the binary label Ŷ , but to a real
valued score f(X) that we would threshold at some value t:

Ŷ = 1 ⇐⇒ f(X) ≥ t

Then we could plot the the ROC-curves of both groups separately
and choose the classifier where both curves intersect. Then for
both groups, false positive and false negative rates are equal:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

6

Fix models in hindsight (4)

If the curves do not intersect, there are still ways to solve the
problem using a randomized predictor. See the paper below for
more details.

Literature:
M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. NeurIPS, 2016.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

7

Tradeoffs

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

8

Tradeoff accuracy / fairness

I “Fair” classifiers try to optimize two objectives: fairness and
accuracy.

I Obviously, the accuracy of the fair classifier can only be ≤
then one of the one that is optimized for accuracy alone.

I A choice has to be made (how much accuracy loss do we
tolerate for how much fairness?)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
8

9

Fair classifiers can require randomization

In particular, if classifiers are modified in hindsight, it is often
impossible to achieve classifiers without resorting to randomization.

Depending on the application, randomization is highly questionable
(a randomized decision who is going to stay in jail?!?)

Agarwal, A., Beygelzimer, A., DudÃk, M., Langford, J., Wallach, H. (2018). A reductions approach to fair classification.
M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. NeurIPS, 2016.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

0

Feedback loops

We need to be careful of feedback loops when employing ML tools:

Self-fulfilling predictions:

I Suppose a predictive policing system determines certain areas
of a city to be at high risk for crime.

I More police officers might be deployed to such areas, hence
more crimes might be detected in these areas.

I The prediction that the areas are risky will appear to be
validated (even if the area does not have an increased crime
risk).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

1

Feedback loops (2)

Predictions that affect the training set:

I predictive policing activity will leads to arrests, records of
which might be added to the algorithm’s training set.

I These areas might then continue to appear to be at high risk
of crime.

Literature: Ensign, D., Friedler, S. A., Neville, S., Scheidegger, C., Venkatasubramanian, S. (2017). Runaway feedback loops
in predictive policing. arXiv:1706.09847.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

2

Discussion

I Fairness is a topic that has a long history of debate, in ethics,
sociology, and many other fields.

I Bottom line, both from looking at data and from considering
the theoretical negative results: there often is no obvious
“solution”.

I In practice, there are many different decisions to take (which
notion of fairness, which tradeoff is acceptable, is
randomization acceptable, etc). Different decisions lead to
different solutions.

I Most of these issues cannot be fixed by technical solutions.
Society has to decide! (But we need to help them and explain
the issues).

See also: Sam Corbett-Davies, Sharad Goel: The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine

Learning. Arxiv, 2018

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

3

Energy footprint of ML

Literature:

David MacKay: Sustainable Energy, without the hot air.

This book is highly recommended, a must read for everybody
interested in climate debates!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

4

AI and climate

AI does use a lot of energy and produces a lot of carbon dixoid!
To understand its impact, let’s first dive into some numbers.

In the following I closely follow the book of MacKay (and this is the
source of the numbers; even if numbers might be a bit outdated, it
is all about the orders of magnitude, which are still correct).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

5

Units of energy

Let’s first convert all sources of energy to the same unit, so we can
compare different sources of energy (electricity, gas, fuel, ...).

The basic units are:

I W (Watt) for power (German: “Leistung”)

I Wh or kWh for energy (German: “Energie”, “Arbeit”), This is
the critical number.

I The connection between the two: Power is the rate at which
something uses energy:
power = energy / time.

I Analogy with water running through pipes: the abolute
consumption in liters would be the equivalent of energy, the
flow capacity of your pipes would be the equivalent of power
(flow = volume/time). In the end, what is important is the
absolute amount of water you use.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

6

Units of energy (2)

To get a feeling, we often use a somewhat unusual unit, kWh/day.
For example, we might say that an old-fashioned light bulb of
40 W, switched on round the clock, would consume 1 kWh / day:

1 kWh/day = 1000 Wh/24h = 1000/24 W ≈ 40 W

The advantage of this unit is that it relates to something we know
(the light bulb), hence is easier to interpret.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

7

Energy consumption of the average European

A typical energy footprint of a person in Europe might be:

Power necessary round the
clock

20% Car (say 50 km per day) 40 kWh / day = 1600 W
20 % Plane (say, one intercontinen-

tal trip per year)
30 kWh / day = 1200 W

10% Food 15 kWh / day = 600 W
20 % Heating/cooling 37 kWh / day ≈ 1500 W
30 % Stuff (production of all the

things that we consume)
60 kWh / day ≈ 2400 W

(source: David McKay book)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

8

Your household and devices
Fridge/Freezer (new/old) 20 - 150 W
heat pump (new/old) 50 - 150 W
light bulbs old 40 - 100 W
ceiling floodlights (old) up to 500 W!!!!
LED lamps 3 - 15 W
30“ LED screen 50 W
65“ LED TV 150 W
Mac Mini 85 W
a wifi router 10 W
apple phone charger, no load 0,012 W
apple phone charder, loading < 1 W
google / youtube use Total energy consumption of all of

Germany for google/youtube, averaged over the whole population

1 W

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

9
9

9

Your household and devices (2)

Take away:

I Unplugging your phone won’t make much of a difference, really.

I The important devices are the ones that are constantly
running, for many hours or even round the clock.

I Running a webserver (60W) day and night adds up to
something considerable: 60W = 1.5kW/h. This is 10% of the
energy of your food production!

I Try to switch off all devices if you don’t need them (desktops,
screens, wifi, ...)

I One more flight, and you energy footprint rises considerably.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
0

YOUR energy use for AI

How expensive is computing on GPUs / CPUs?

one GPU (eg Nvidia Tesla V100) 300 W
one CPU (eg intel Core i7) 100 W

If you train a neural network on 10 GPUs for 1 week, this gives

(10× 300W)× (7 · 24h) ≈ 500kWh

If we convert this to our standard unit of measurement (distributing
it constantly over the year), this means

500kWh/365 days ≈ 1.4kWh/day

Again, this is about 10% of the energy used to produce your food.

Multiply it by the number of weeks you train...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
1

YOUR energy use for AI (2)

Take away: if you work in the field of ML / AI, your energy
consumption for training and testing might be significant, so please
be responsible:

I make sure you test your code sufficiently on a small scale
before you deploy it large scale.

I don’t just fiddle around with lots of architectures, parameters,
datasets on a cluster; have a plan first

I think about your setup to avoid running meaningless
experiments alltogether

But, also keep the relations sane: unless you are a super-user, the
power consumption of the experiments that you conduct to write a
NeurIPS paper is an order of magnitude smaller than the power
consumption of the flight that actually brings you to the conference.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
2

The large scale

On the large scale, energy use of information technology is not
negligible. Here are some examples:

Google world wide 2017 6 TWh
Bitcoin world wide 2017 20 TWh
German yearly electricity pro-
duction

250 TWh

Google Germany, averaged
over all popuation

1 W per person, constantly
running

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
3

Saving energy with the help of AI?

People often advocate that AI might also help us to save energy:

I Intelligent power management

I More efficient farming

I More efficient production

I ...

My personal take on this:

I It is definitely worth to work on such questions, and small
contributions might add to something considerable.

I But we are definitely not there yet!

I Personally, I doubt that the savings through AI will be on the
same scale as the consumption.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
4

Takeaway

First takeaway:

Energy consumption of AI research is not negligible:

I Compute power (say, for some of us as large as the our food
consumption, but for most of us it is far less). Be responsible
and don’t waste computation power on compute clusters!

I Traveling!!! Avoid flying.
I Focus on conferences that are close-by.
I Resist the temptation to fly to an invited talk at MIT for two

days.

Note of caution: not all energy that is being used by “digital
services” can be attributed to AI. Much of it goes into streaming
videos, using cloud services, etc ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
5

Takeaway (2)

Second takeaway:

To save energy on a scale that matters for the climate,
there are many other important things that you personally
can take care of:

I Avoid flying. Avoid the car.

I For devices that are running round the clock: replace old ones
by new ones (freezer; heat pump; light bulbs).

I For devices that are running round the clock: consider
switching them off if you don’t need them.

I Insulate your house, use solar energy. It is not about saving
money, but about saving energy.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
6

Explainability

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
7

Explanations of algorithmic decisions in general

... are important in many contexts:

I Example: Medical context

I EXample: EU Genderal Data Protetection Regulation (2018):
Is interpreted as implementing a “right for explainations”

For example, in Art. 14:
”In cases of automated decision making, the controller [=the
one who runs the algorithm] shall provide the subject [the
person on whom a decision is taken] with meaningful
information about the logic involved”

Goal of explanations might be: establish understanding, trust,
sanity checks, possibility to object, ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
8

Explainations in ML

Many different mechanisms exist:

I Explain by mechanism of algorithm (eg decision tree, kNN)

I Exemplar-based explanations

I feature-based explanations

I Counterfactual explanations

I Local explanations of highly complex models (LIME)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

0
9

Explaining by examples

You don’t get the credit because you are very similar to person X,
and person X did not get the credit either.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
0

Identifying most relevant features

Globally identify most relevant features, then use those to explain.

Examples:

I In a decision tree, what are the most relevant variables?

I In a linear model, which coordinates get the highest weight?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
1

Counterfactual explanations

If your income would be 500 Euro more, you would get the credit.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
2

Local explanations of highly complex models

I Assume we are in a high-dim Euclidean feature space. We
have learned a complex function (e.g, SVM with Gaussian
kernel; neural network).

I We obviously cannot globally replace the complicated function
by a simple function that is based on very few “explainable”
features (WHY?)

I But we might be able to locally approximate the complicated
function by a simple linear function, to understand the decision
at a particular point x.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
3

Local explanations of highly complex models (2)

How LIME works for tabular (=Rd) data, very rough sketch:

I Fix a point x for which you want to explain the decision of a
complicated function f

I Sample points x1, ..., xm locally around x evaluate the function
f(x1), ..., f(xm)

I Locally approximate the complicated decision function f by a
simple linear function.

I Identify the few most prominent coordinates in this model and
use those as explanations.

I Important: we don’t need to know anything about the learning
algorithm, it can be applied to any black box algorithm as soon
as we can evaluate for every input what the learned output
would be.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
4

Local explanations of highly complex models (3)

qj−= qj1
qj+= qj2

qj3 qj4ξj

f(ξ)

xij

πi

f

zij

Given a specific datapoint x (in red), we want to build a local
model for f (in blue), given new samples x1, ..., xn (in black).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
5

Local explanations of highly complex models (4)

We could prove: these coordinates typically are the ones that
contribute most to the gradient of f at x. Intuitively: LIME
identifies those features such that if we would change those
features, we would most easily lead to a different output of f .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
6

Local explanations of highly complex models (5)

Most prominent application domain: image classifications by neural
networks:

Apply LIME to “superpixels”:

LIME for images (II)

I Need for interpretable features: not pixels.
I Split › in superpixels (contiguous patches of the image [Ren and

Malik, 2003]). Here d

Õ = 64.

‘≠æ

7

Find out which of them are most relevant for a given output abel:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
7

Local explanations of highly complex models (6)

(a) original image (b) explaining 'terrapin' (c) explaining 'strawberry'

M. T. Ribeiro, S. Singh, and C. Guestrin. Why should I trust you? Explaining the predictions of any classifier. In SIGKDD,
2016.

Garreau, Luxburg: Explaining the Explainer: A First Theoretical Analysis of LIME. AISTATS, 2020.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
8

Summary

I Explainations im ML are an active an important field of
research

I This is also related to Ethics and Philosophy of Science (what
is an explanation, after all?)

I Some approaches exist, but there is definitively room for more
...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

1
9

Low rank matrix methods

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
0

Introduction: recommender systems,

collaborative filtering

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
1

Recommender systems

Goal: give recommendations to users, based on their past behavior:

I Recommend movies (e.g., netflix)

I recommend music (e.g., lastfm)

I recommend products to buy (e.g., amazon)

ANY IDEAS HOW WE COULD DO THIS?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
2

Recommender systems (2)

Content-based approach:

I Model products based on explicit features. Use theses features
to define a similarity function between products

I If a user likes product A, then recommend products similar to
A.

Prominent example: Pandora Radio. You start with a song you like,
and then Pandora plays similar songs.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
3

Recommender systems (3)

Collaborative approach:

I Forget about explictly modeling users or features.

I Instead, implicitly model similarity of users and products based
on past shopping behavior.

I Consider user/product matrix with ratings. Defines an implicit
similarity between users (or products).

I Then recommend similar items to similar users.

Prominent example: lastfm

ADVANTAGES / DISADVANTAGES OF THE TWO?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
4

Matrix factorization basics

Hastie, Tibshirani, Wainwright: Statistical learning with sparsity.
2015. Chapter 7.2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
5

Recap: singular value decomposition (SVD)

Recall PCA:

I Eigenvalue decomposition for a symmetric matrix

I Best rank-k approximation of the matrix: based on highest k
eigenvalues

Now want to do something more general for arbitrary (non-square)
matrices.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
6

Recap: singular value decomposition (SVD) (2)

Every (!) matrix can be decomposed as follows:

U is the matrix of left singular vectors, V the right singular vectors,
and the diagonal of Σ contains the singular values.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
7

Recap: singular value decomposition (SVD) (3)

There is a simple relationship between SVD and PCA:

For any matrix A,

I the left singular vectors are the eigenvectors of AAt

I the right singular vectors are the eigenvectors of AtA

I the non-zero singular values are the square roots of the
eigenvalues of both AAt and AtA.

PROOFS: EXERCISE!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
8

SVD for rank-k approximation

Consider the following “Top-k-SVD” procedure:

I Given a n× d matrix A.

I Compute the SVD such that the singular values are sorted in
decreasing order.

I Keep the first k columns of U and V . Call the resulting
matrices Uk ∈ Rn×k and Vk ∈ Rd×k (such that V t

k ∈ Rk×d).

I Keep the singular values σ1, ..., σk and write them in a
diagonal matrix Σk ∈ Rk×k.

I Now define Ak := UkΣkV
t
k .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

2
9

SVD for rank-k approximation (2)

Intuitive interpretation:

I Assume that A is a matrix recording ratings of n users about d
products.

I Then the top-k right singular vectors can be interpreted as
basic “customer types”. Each customer is a weighted mixture
of the basic customers.

I Similarly, the top-k left singular vectors can be interpreted as
basic “product types”.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
0

SVD for rank-k approximation (3)

The Frobenius norm of matrix is defined as ‖B‖F :=
√∑

ij b
2
ij.

Theorem 48 (SVD as rank-k approximation)

The matrix Ak defined by the first k singular values/vectors solves
the following rank-k-approximation problem:

Given A and k, find the matrix Ak with rank at most k such that
‖A− Ak‖F is minimized.

Proof: EXERCISE (consider the hints in Exercise 7.2. p. 196 in
“statistical learning with sparsity”).

EXERCISE: COMPARE THIS RESULT WITH THE
CORRESPONDING RESULT FOR PCA!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
1

SVD for rank-k approximation (4)

Digest again what the intuitive interpretation is:

I We know the full product / user matrix.

I The k top singular vectors define k types of users / products.

I Based on these few types, we can “explain” the behavior of
everybody (up to a small approximation error).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
2

Low rank matrix completion

Literature
• Hastie, Tibshirani, Wainwright: Statistical learning with

sparsity. 2015. Chapter 7
Some important orgingal papers:
• Candes, Recht: Exact matrix completion via convex

optimization. Foundations of computational mathematics,
2009.
• R. Keshavan, Andrea Montanari, and Sewoong Oh: Matrix

completion from noisy entries. JMLR, 2010
• Mazumder, Hastie, Tibshirani: Spectral regularization

algorithms for learning large incomplete matrices. JMLR, 2010.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
3

Netflix problem

General problem:

I Consider a huge matrix of user ratings of movies. Rows
correspond to movies, columns correspond to users, entries are
ratings on a scale from 1 to 5.

I We only know few entries in this matrix.

I The matrix completion problem is to estimate the missing
entries in order to recommend new movies to a user.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
4

Netflix problem (2)

History of the Netflix challenge:

I Launched in 2006

I Data: About 20.000 movies, 500.000 users, 109 ratings (that
is, about 1% of the entries are known)

I Goal: predict the missing entries, error measure RMSE (root
mean squared error

√∑n
i=1(zi − ẑi)2/n)

I First team that beats Netflixes own algorithm by an
improvement of at least 10% wins a prize of 1 million dollars.

I Was finally achieved in 2009.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
5

Matrix completion problem

General setup:

I Consider an m× n matrix which is unknown.

I We get to see some entries in the matrix.

I Assume that the position of the revealed entries is random (no
adversarial setting).

I Goal is to estimate the unknown entries as well as possible.

CAN YOU THINK OF EASY / DIFFICULT CASES? IS IT
ALWAYS POSSIBLE?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
6

Matrix completion problem (2)

We need to make assumptions to be able to solve this problem
(inductive bias!). If the entries are not related to each other (say,
independent random numbers), there is no way in which we could
predict missing entries.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
7

Matrix completion problem (3)

High-level idea from learning theory: A useful inductive bias is one
that leads to a “small” set of possible matrices.

Here is what everybody uses:

We are going to look for a matrix that has low rank.

(Just as a sanitiy check: a matrix with independent random entries typically

has high rank, the eigenvalues follow the semi-circle law.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
8

Matrix completion, first formulations

Denote by Ω the set of entries of a matrix Z that have been
observed: we know the values zij for all (i, j) ∈ Ω. We would like
to solve the following problem:

minimize rank(M) subject to mij = zij for (i, j) ∈ Ω.

or a slightly weaker version

minimize rank(M) subject to
∑

(i,j)∈Ω

(mij − zij)2 ≤ δ

or the regularization version

minimize
∑

(i,j)∈Ω

(mij − zij)2 + λ rank(M)

Is NP hard /

CAN YOU SEE WHAT MAKES IT SO DIFFICULT?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

3
9

Matrix completion, first approach using SVD

Here is a straight forward heuristic by which we can try to solve the
optimization problem:

Hard-Impute

I Have an initial guess for the missing entries ; matrix Z1

I Compute the SVD of Z1, keep the first r singular components
; Z2

I Fill in the missing entries with the ones of Z2, and start over
again ...

Sometimes this works reasonably.

But let’s try to think about alternatives ... one option for
non-convex optimization problems is always to construct a convex
relaxation (have seen this before, at least twice, where?)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
0

Trace as convex relaxation of rank

Let us try to find a convex relaxation of the rank function:
I If σ := σ(A) denotes the vector of singular values of matrix A,

then

rank(A) = ‖σ‖0

I Recall the standard approch in sparse regression (Lasso). We
relaxed the 0-norm to the 1-norm, which is convex:

‖σ‖1 =
∑
i

|σi|.

We now use this as a norm for matrices, it is called the nuclear
norm or the trace norm:

‖A‖tr := ‖σ(A)‖1.

One can prove that the nuclear norm is the tightest convex
relaxation of the rank of a matrix.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
1

Trace norm regulariziation

Now consider the following optimization problems:

minimize ‖M‖tr subject to
∑

(i,j)∈Ω

(mij − zij)2 ≤ δ (∗)

minimize
1

2

∑
(i,j)∈Ω

(mij − zij)2 + λ‖M‖tr (∗∗)

These two problems are essentially the same, once in the natural
formulation (∗) and once in the regularization / Lagrangian
formulation (∗∗).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
2

Trace norm regulariziation (2)

Two big questions:

I Can we give an efficient algorithm that can find the global
optimum, either in formulation (∗) or in (∗∗)?

I If yes, what can we say about the theoretical properties of the
global optimum, how close is it going to be to the matrix we
are looking for? In particular, how many entries do we need to
observe to find a good reconstruction?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
3

Solving (∗), naive algorithm: semi-definite

program

The first formulation of the problem is a semi-definite program. In
principle, SDPs can be solved in polynomial time, but “polynomial”
can still be very long... There are general-purpose solvers for such
problems, but they are so slow that they only work for small
instances.

We skip the details.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
4

Solving (∗∗) efficiently: soft-impute

Here is a strategy to solve (∗∗):

I Start with initial guesses for the missing values.

I Compute the SVD, “soft-threshold” the singular values by
some threshold λ.

I Repeat until convergence.

Soft-thresholding:

I Given the SVD of a matrix Z = UDV t, denote the singular
values by di.

I We define Sλ(Z) := UDλV
t where Dλ is the diagonal matrix

with diagonal entries (di − λ)+ := max(di − λ, 0)

I Soft thresholding decreases the trace norm and also often
decreases the rank of a matrix.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
5

Solving (∗∗) efficiently: soft-impute (2)

Let’s first consider one step of soft-thresholding on a completely
known matrix Z (no missing entries):

Proposition 49

Consider a matrix Z that is completely known, and choose some
λ > 0. Then solution of the optimization problem

min
M
‖Z −M‖2

F + λ‖M‖tr

is given by the result Sλ(Z) of one round of soft-thresholding.

Proof: see Mazumder, Hastie, Tibshirani: Spectral regularization
algorithms for learning large incomplete matrices. JMLR, 2010.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
6

Solving (∗∗) efficiently: soft-impute (3)

Now we want to use a similar approach to complete the matrix Z in
case it is just partially observed (problem (∗∗)).

Introduce notation:

I Denote by Ω the set of matrix entries that are known.

I Define the “projection” PΩ(Z) as the matrix that has the
original values zij at all the observed positions of Z, and 0
otherwise (that is, fill the unobserved entries with zeros).

I With this definition,∑
(i,j)∈Ω(zij −mij)

2 = ‖PΩ(Z)− PΩ(M)‖F .

I Define P⊥Ω (Z) as the “projection” of the matrix Z on the
entries that are NOT in Ω (so that Z = PΩ(Z) + P⊥Ω (Z)).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
7

Solving (∗∗) efficiently: soft-impute (4)

Input: Z the partially observed matrix; a sequence of parameters
λ1, ..., λK

MAZUMDER, HASTIE AND TIBSHIRANI

3.3 Algorithm

Using the notation in 3.1, we rewrite (3) as:

minimize
Z

fλ(Z) :=
1
2
∥PΩ(X)−PΩ(Z)∥2F +λ∥Z∥∗ . (10)

We now present Algorithm 1—SOFT-IMPUTE—for computing a series of solutions to (10) for
different values of λ using warm starts.

Algorithm 1 SOFT-IMPUTE

1. Initialize Zold = 0.

2. Do for λ1 > λ2 > .. . > λK :

(a) Repeat:
i. Compute Znew← Sλk(PΩ(X)+P⊥Ω (Zold)).

ii. If ∥Z
new−Zold∥2F
∥Zold∥2F

< ε exit.

iii. Assign Zold← Znew.
(b) Assign Ẑλk ← Znew.

3. Output the sequence of solutions Ẑλ1 , . . . , ẐλK .

The algorithm repeatedly replaces the missing entries with the current guess, and then updates
the guess by solving (8). Figures 2, 3 and 4 show some examples of solutions using SOFT-IMPUTE
(blue continuous curves). We see test and training error in the top rows as a function of the nuclear
norm, obtained from a grid of values Λ. These error curves show a smooth and very competitive
performance.

4. Convergence Analysis

In this section we study the convergence properties of Algorithm 1. Unlike generic first-order
methods (Nesterov, 2003) including competitive first-order methods for nuclear norm regularized
problems (Cai et al., 2008; Ma et al.), SOFT-IMPUTE does not involve the choice of any additional
step-size. Most importantly our algorithm is readily scalable for solving large scale semidefinite
programming problems (2) and (10) as will be explained later in Section 5.

For an arbitrary matrix Z̃, define

Qλ(Z|Z̃) =
1
2
∥PΩ(X)+P⊥Ω (Z̃)−Z∥2F +λ∥Z∥∗ (11)

as a surrogate of the objective function fλ(z). Note that fλ(Z̃) = Qλ(Z̃|Z̃) for any Z̃.
In Section 4.1, we show that the sequence Zkλ generated via SOFT-IMPUTE converges asymptot-

ically, that is, as k→ ∞ to a minimizer of the objective function fλ(Z). SOFT-IMPUTE produces a
sequence of solutions for which the criterion decreases to the optimal solution with every iteration
and the successive iterates get closer to the optimal set of solutions of the problem 10. Section 4.2

2292

Z

Intuition:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
8

Solving (∗∗) efficiently: soft-impute (5)

I Inner loop (a) for fixed λ: clamp the observed values of the
matrix, fill the rest by a low-rank approximation, until
convergence

I Outer loop (2): start with a case that is easy (λi large, matrix
low rank) and work our way towards the more difficult
situation of smaller λi

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

4
9

Solving (∗∗) efficiently: soft-impute (6)

Properties:

I It can be proved that this algorithm always converges to the
global solution of (∗∗) (for a suitable choice of the sequence
(λk)k=1,...,K).

I It can be implemented efficiently even for huge matrices (just a
couple of hours for the whole Netflix dataset). Main trick: can
decompose the dense matrix Z in a sum of a sparse matrix and
a low rank matrix. Can exploit this cleverly in the algorithm.

176 MATRIX DECOMPOSITIONS

Algorithm 7.1 Soft-Impute for matrix completion.
1. Initialize Zold = 0 and create a decreasing grid ⁄

1

> . . . > ⁄K .
2. For each k = 1, . . . , K, set ⁄ = ⁄k and iterate until convergence:

Compute ‚Z⁄ Ω S⁄

!
P

�

(Z) + P ‹
�

(Zold)
"
.

Update Zold Ω ‚Z⁄

3. Output the sequence of solutions ‚Z⁄1 , . . . , ‚Z⁄K .

its convergence to the global solution is established. In Exercise 7.4, the reader
is asked to verify that a fixed point of the algorithm satisfies the zero sub-
gradient equations associated with the objective function (7.10). It can also
be derived as a first-order Nesterov algorithm (see Exercise 7.5). Each itera-
tion requires an SVD computation of a (potentially large) dense matrix, even
though P

�

(Z) is sparse. For “Netflix-sized” problems, such large dense matri-
ces can typically not even be stored in memory (68Gb with 8 bytes per entry).
Note, however, that we can write

P
�

(Z) + P‹
�

(Zold) = P
�

(Z) ≠ P
�

(Zold)¸ ˚˙ ˝
sparse

+ Zold

¸˚˙˝
low rank

. (7.14)

The first component is sparse, with |�| nonmissing entries. The second com-
ponent is a soft-thresholded SVD, so can be represented using the correspond-
ing components. Moreover, for each component, we can exploit their special
structure to e�ciently perform left and right multiplications by a vector, and
thereby apply iterative Lanczos methods to compute a (low rank) SVD e�-
ciently. It can be shown that this iterative algorithm converges to the solution
of the problem

minimize
MœRm◊n

;
1
2ÎP

�

(Z) ≠ P
�

(M)Î2

F + ⁄ÎMÎı

<
, (7.15)

which is another way of writing the objective function in (7.10).
Figure 7.2 shows the results of Soft-Impute applied to the Netflix ex-

ample. We see that the regularization has paid o�, since it outperforms the
iterated SVD algorithm Hard-Impute. It takes longer to overfit, and because
of the regularization, is able to use a higher rank solution. Taking advantage of
the warm starts in Algorithm 7.1, it took under 5 hours of computing to pro-
duce the solution path in Figure 7.2, using the R package softImpute (Hastie
and Mazumder 2013). See also Figure 7.5 in Section 7.3.3, which illustrates
the performance of the Soft-Impute algorithm for noisy matrix completion
over a range of di�erent ranks and sample sizes. We discuss this figure at more
length in that section.

In terms of convergence speed, Mazumder et al. (2010) show that the
Soft-Impute algorithm is guaranteed to converge at least sub-linearly, mean-
ing that O(1/”) iterations are su�cient to compute a solution that is ”-close

I R-package softImpute

Details: Mazumder, Hastie, Tibshirani

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
0

Solving (∗∗) efficiently: soft-impute (7)

Soft-impute on the Netflix data:

MISSING DATA AND MATRIX COMPLETION 173

¸ (cliques/genres), and then adding some noise. Table 7.2 shows the data for
the ten customers and ten movies with the most ratings.

The competition identified a “probe set” of ratings, about 1.4 million of
the entries, for testing purposes. These were not a random draw, rather movies
that had appeared chronologically later than most. Figure 7.2 shows the root-
mean-squared error over the training and test sets as the rank of the SVD
was varied. Also shown are the results from an estimator based on nuclear
norm regularization, discussed in the next section. Here we double centered
the training data, by removing row and column means. This amounts to fitting
the model

zij = –i + —j +
rÿ

¸=1

ci¸gj¸ + wij ; (7.8)

However, the row and column means can be estimated separately, using a
simple two-way ANOVA regression model (on unbalanced data).

0 50 100 150 200

0
.7

0
.8

0
.9

1
.0

Rank

R
M

S
E

Train
Test

0.65 0.70 0.75 0.80 0.85 0.90

0
.9

5
0

.9
6

0
.9

7
0

.9
8

0
.9

9
1

.0
0

Training RMSE

Te
st

 R
M

S
E

Hard−Impute
Soft−Impute

Netflix Competition Data

Figure 7.2 Left: Root-mean-squared error for the Netflix training and test data for
the iterated-SVD (Hard-Impute) and the convex spectral-regularization algorithm
(Soft-Impute). Each is plotted against the rank of the solution, an imperfect cal-
ibrator for the regularized solution. Right: Test error only, plotted against training
error, for the two methods. The training error captures the amount of fitting that
each method performs. The dotted line represents the baseline “Cinematch” score.

While the iterated-SVD method is quite e�ective, it is not guaranteed to
find the optimal solution for each rank. It also tends to overfit in this example,
when compared to the regularized solution. In the next section, we present
a convex relaxation of this setup that leads to an algorithm with guaranteed
convergence properties.

Figure from “Statistical learning with sparsity”. Dotted line on rhs = Netflixes own algorithm, baseline. Sanity check:
random guessing would have RMSE≈2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
1

Theoretical results on matrix completion

Setting:

I Consider an arbitrary matrix Z. For simplicity, assume that Z
is square of size p× p.

I Assume that we observed n entries of the matrix, drawn
uniformly at random.

I Question: how large does n need to be such that we can
successfully reconstruct the matrix Z (exactly or
approximately)?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
2

Condition: no empty columns or rows

Problem of empty columns:

If there is a column (or a row) that does not have any observed
entry, it will be impossible to reconstruct the matrix.

QUESTION TO YOU: We sample n elements. Each element
belongs to one of p columns. How large does n need to be such
that, with reasonably high probability, we have at least one element
per column?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
3

Condition: no empty columns or rows (2)

ANSWER: this is the coupon collector problem, we need at least
p log p samples.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
4

Condition: enough parameters to express rank r

Number of “parameters” for a rank-r matrix:

I A rank-r matrix of dimension p× p can be described by r
vectors of length p ; rp parameters

I In general, we cannot assume that we can “compress” these rp
entries any further

I So it is plausible that we won’t be able to perfectly reconstruct
such a matrix if we observe less than rp entries of the matrix.

(of course, this is argument is really hand-waiving, but often such
hand-waiving intuition helps to get a first feeling for a problem; the
next step is then to make it precise)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
5

Condition: coherency

Consider the following matrix

MISSING DATA AND MATRIX COMPLETION 177

to the global optimum. In the absence of additional structure (such as strong
convexity), this is the fastest rate that can be expected from a first-order gra-
dient method (Nemirovski and Yudin 1983). Interestingly, in certain settings,
it can be shown that simple first-order methods converge at a much faster
geometric rate, meaning that O(log(1/”)) iterations are su�cient to compute
a ”-optimum. For instance, Agarwal, Negahban and Wainwright (2012a) an-
alyze an algorithm closely related to the Soft-Impute algorithm; they show
that under the same conditions that guarantee good statistical performance
of the nuclear norm estimator, this first-order algorithm is guaranteed to con-
verge at the geometric rate.

7.3.3 Theoretical Results for Matrix Completion

There are a variety of theoretical results for matrix completion using nuclear-
norm regularization. Beginning with the simpler “no-noise” case, suppose that
we sample N entries of a p ◊ p matrix uniformly at random. How large does
N need to be, as a function of the matrix dimension p and rank r, for the
nuclear norm relaxation (7.9) to recover the matrix exactly? Of course, this
is always possible if N Ø p2, so that our interest is in guarantees based on
N π p2 samples.

A first easy observation is that if there are no observed entries in some
row (or column) of the matrix, then it is impossible to recover the matrix
exactly, even if it is rank one. In Exercise 7.8, we show how this argument
implies that any method—not only nuclear norm relaxation—needs at least
N > p log p samples, even for a rank one matrix. This phenomenon is an
instance of the famous “coupon collector” problem (Erdos and Renyi 1961).
As for the e�ect of the rank, note that we need roughly O(rp) parameters
to specify an arbitrary p ◊ p matrix with rank r, since it has O(r) singular
vectors, each with p components. As we will see, under certain restrictions
on the “coherence” of the matrices, nuclear norm relaxation succeeds in exact
recovery based on a sample size just a logarithmic factor larger. Coherence
measures the extent to which the singular vectors of a matrix are aligned with
the standard basis.

In order to appreciate the need for coherence constraints, consider the
rank-one matrix Z = e

1

eT
1

, with a single one in its upper left corner, as shown
on the left side of Equation (7.16) below:

Z =

Q

cca

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

R

ddb and ZÕ =

Q

cca

v
1

v
2

v
3

v
4

0 0 0 0
0 0 0 0
0 0 0 0

R

ddb . (7.16)

If we are allowed to observe only N π p2 entries of this matrix, with the
entries chosen uniformly at random, then with high probability, we will not
observe the single nonzero entry, and hence have no hope of distinguishing
it from the all-zeroes matrix. Similar concerns apply to a matrix of the form

Assume we want to solve EXACT recovery:

I It is of rank one (so the problem should be easy, few
parameters to learn).

I However, there is only one important entry.

I If we sample of order less than of the order p2 entries,
likelihood is high that we never get to see this particular entry.
So if we are after exact recovery, we have a problem.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
6

Condition: coherency (2)

The problem in this example is:

I Some entries are much more important than others.

I In mathematical terms: the eigenvectors of this matrix are too
much aligned with the standard basis of Rp.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
7

Condition: coherency (3)

To deal with this problem:

We want to “measure” up to which extent the eigenvectors of the
matrix are aligned with the standard basis: this leads to the notion
of coherence.

Definition: Let U be a suspace of Rd of dimension r and PU the
orthogonal projection on U . Then the coherence of U wrt to the
standard basis (ei)i is defined as

µ(U) :=
d

r
max
i=1,...,d

‖Pu ei‖2

FOR MATRIX COMPLETION, IS IT BETTER TO HAVE SMALL
OR LARGE COHERENCE?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
8

Condition: coherency (4)

To get intuition, consider the case where U is spanned by one
vector:

I The smaller µ(U), the “easier” the matrix will be to recover.

I Maximum value of coherence occurs if U = span(ei) (more
generally, if ei ∈ U). Then we have ‖Pu ei‖ = 1.

I Minimum value of coherence occurs if U is spanned by the
vector (1/

√
n, ..., 1/

√
n)t.

I Intuition: More generally, coherence is low (good) if all entries
of the vector have about the same order of magnitude. Then
each entry contains about the same amount of information, so
sampling few entries should be fine.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

5
9

Condition: coherency (5)

Examples:

The matrix we started with:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
0

Condition: coherency (6)

Same matrix, just flipped entries:

As a sanity check, the all ones matrix:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
1

Condition: coherency (7)

A random rank-r matrix:

See plot on next page:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
2

Condition: coherency (8)

Plot of maxi=1...n ‖PV ei‖, random rank-r matrix, n=100:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
3

Guarantee for exact recovery

One can prove guarantees of the following flavor (p size of matrix, r
rank):

With high probability, exact recovery is possible if the number of
observed entries is at least

N ≥ Crp log p

Here, C is a constant that depends on the coherence of the matrix:

I Coherence low: N ≈ rp log p

I Coherence high: C · r ≈ p, such that we need to sample about
p2 log p entries.

Proofs are beyond the scope of this lecture.

GIVEN OUR PREVIOUS OBSERVATIONS, DO YOU THINK
THIS IS A GOOD OR A BAD RESULT?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
4

Guarantee for exact recovery (2)

Concretely, the coherency-based theorem for exact recovery looks as
follows (Candes, 2009):

This paper sharpens the results in [7,18] to provide a bound on the number of entries required to reconstruct a low
rank matrix which is optimal up to a small numerical constant and one logarithmic factor. The main theorem makes
minimal assumptions about the low rank matrix of interest. Moreover, the proof is very short and relies on mostly
elementary analysis.

In order to precisely state the main result, we need one definition. Candès and Recht observed that it is impossible
to recover a matrix which is equal to zero in nearly all of its entries unless all of the entries of the matrix are observed
(consider, for example, the rank one matrix which is equal to 1 in one entry and zeros everywhere else). In other
words, the matrix cannot be mostly equal to zero on the observed entries. This motivated the following definition

Definition 1.1 Let U be a subspace of Rn of dimension r and PU be the orthogonal projection onto U . Then the
coherence of U (vis-à-vis the standard basis (ei)) is defined to be

µ(U) ≡
n

r
max

1≤i≤n
∥PUei∥2. (1.1)

Note that for any subspace, the smallest µ(U) can be is 1, achieved, for example, if U is spanned by vectors whose
entries all have magnitude 1/

√
n. The largest possible value for µ(U) is n/r which would correspond to any subspace

that contains a standard basis element. If a matrix has row and column spaces with low coherence, then each entry can
be expected to provide about the same amount of information.

Recall that the nuclear norm of an n1×n2matrixX is the sum of the singular values ofX , ∥X∥∗ =
∑min{n1,n2}

k=1 σk(X),
where, here and below, σk(X) denotes the kth largest singular value of X . The main result of this paper is the fol-
lowing

Theorem 1.1 Let M be an n1 × n2 matrix of rank r with singular value decomposition UΣV ∗. Without loss of
generality, impose the conventions n1 ≤ n2,Σ is r × r, U is n1 × r and V is n2 × r. Assume that

A0 The row and column spaces have coherences bounded above by some positive µ0.

A1 The matrix UV ∗ has a maximum entry bounded by µ1

√

r/(n1n2) in absolute value for some positive µ1.

Supposem entries of M are observed with locations sampled uniformly at random. Then if

m ≥ 32 max{µ2
1, µ0} r(n1 + n2) β log2(2n2) (1.2)

for some β > 1, the minimizer to the problem

minimize ∥X∥∗
subject to Xij = Mij (i, j) ∈ Ω.

(1.3)

is unique and equal to M with probability at least 1 − 6 log(n2)(n1 + n2)2−2β − n2−2β1/2

2 .

The assumptions A0 and A1 were introduced in [4]. Both µ0 and µ1 may depend on r, n1, or n2. Moreover,
note that µ1 ≤ µ0

√
r by the Cauchy-Schwarz inequality. As shown in [4], both subspaces selected from the uniform

distribution and spaces constructed as the span of singular vectors with bounded entries are not only incoherent with
the standard basis, but also obey A1 with high probability for values of µ1 at most logarithmic in n1 and/or n2.
Applying this theorem to the models studied in Section 2 of [4], we find that there is a numerical constant cu such
that cur(n1 + n2) log5(n2) entries are sufficient to reconstruct a rank r matrix whose row and column spaces are
sampled from the Haar measure on the Grassmann manifold. If r > log(n2), the number of entries can be reduced
to cur(n1 + n2) log4(n2). Similarly, there is a numerical constant ci such that ciµ2

0r(n1 + n2) log3(n2) entries are
sufficient to recover a matrix of arbitrary rank r whose singular vectors have entries with magnitudes bounded by
√

µ0/n1.
Theorem 1.1 greatly improves upon prior results. First of all, it has the weakest assumptions on the matrix to be

recovered. In addition to assumption A1, Candès and Tao require a “strong incoherence condition” (see [7]) which is
considerably more restrictive than the assumption A0 in Theorem 1.1. Many of their results also require restrictions
on the rank ofM , and their bounds depend superlinearly on µ0. Keshavan et al require the matrix rank to be no more

2

(here ‖ · ‖∗ denotes the trace norm).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
5

Guarantee for approximate recovery

Guarantee from Keshavan et al, 2010:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
6

Simulations: noise-free setting

Assume you want to run simulations for low rank matrix
completion, under controlled conditions.

HOW COULD YOU GENERATE A “RANDOM” LOW RANK
MATRIX TO PLAY WITH?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
7

Simulations: noise-free setting (2)

I Model the ground truth by a simple low rank model:
I Generate the p× r matrices U and V with independent

random entries, normally distributed according to N(0, 1)
(in the figures below: p = 20 or 40, and r = 1 or 5.)

I Define Z = U · V t.
(WHAT IS THE RANK OF THESE MATRICES? WHAT
CAN YOU SAY ABOUT THE SINGULAR VALUES?)

I Generate the toy data: Sample n random entries from this
matrix.

I Try to recover the ground truth:
I Use soft-impute to complete the matrices, results in Ẑ.
I Check whether ‖Ẑ − Z‖ ≈ 0
I Repeat this experiment many times and report fraction of

correctly recovered matrices.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
8

Simulations: noise-free setting (3)MISSING DATA AND MATRIX COMPLETION 179

0.0 0.2 0.4 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Proportion Missing

P
ro

b
a
b
ili

ty
 o

f
E

xa
ct

 C
o
m

p
le

tio
n

Rank 1

p=20
p=40

0.0 0.2 0.4 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Proportion Missing
P

ro
b
a
b
ili

ty
 o

f
E

xa
ct

 C
o
m

p
le

tio
n

Rank 5

Figure 7.4 Convex matrix completion in the no-noise setting. Shown are probabili-
ties of exact completion (mean ± one standard error) as a function of the proportion
missing, for n ◊ n matrices with n œ {20, 40}. The true rank of the complete matrix
is one in the left panel and five in the right panel.

estimator (7.10). Singular vector incoherence conditions are less appropriate
for noisy observations, because they are not robust to small perturbations.
To understand this issue, suppose that we start with a matrix B that has
rank r ≠ 1, Frobenius norm one, and is maximally incoherent, meaning that
all its singular vectors are orthogonal to the standard basis vectors. Recalling
the troublesome matrix Z from Equation (7.16), now consider the perturbed
matrix Lú = B+”Z for some ” > 0. The matrix Lú always has rank r, and no
matter how small we choose the parameter ”, it is always maximally coherent,
since it has the standard basis vector e

1

œ Rp as one of its singular vectors.
An alternative criterion that is not sensitive to such small perturbations is

based on the “spikiness” ratio of a matrix (Negahban and Wainwright 2012).
In particular, for any nonzero matrix L œ Rp◊p, we define –

sp

(L) = pÎLÎŒ
ÎLÎF

,
where ÎLÎŒ is the element-wise maximum absolute value of the matrix entries.
This ratio is a measure of the uniformity (or lack thereof) in the spread of
the matrix entries; it ranges between 1 and p. For instance, any matrix L
with all equal entries has –

sp

(L) = 1, the minimal value, whereas the spikiest
possible matrix such as Z from Equation (7.16) achieves the maximal spikiness
ratio –

sp

(Z) = p. In contrast to singular vector incoherence, the spikiness
ratio involves the singular values (as well as the vectors). Thus, the matrix
Lú = B + ”Z. will have a low spikiness ratio whenever the perturbation ” > 0
is su�ciently small.

For the nuclear-norm regularized estimator (7.10) with a bound on the

Figure from “Statistical learning with sparsity”; r=rank of true matrix, p dimension of matrix

WHAT CAN YOU SEE?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

6
9

Simulations: noise-free setting (4)

I Problem gets harder the less entries we observe (curves
decrease from left to right). Makes sense.

I Problem gets more difficult if original matrix has a higher
rank (compare left and right figure). Makes sense.

I For a fixed r, likelihood of exact recovery increases with the
dimension p (that is, the problem seems simpler if the
original matrix is larger!!!). Not entirely sure here, let’s
discuss:

The last point seems surprising, here are possible explanations:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
0

Simulations: noise-free setting (5)

I Possible explanation 1: to recover a rank r-matrix of size p
means to recover rp parameters. The matrix has const · p2

many entries that can serve as our source of information. So
the ratio between what we want and what we have is
rp/p2 = r/p, which for fixed r gets better when p increases.

I Possible explanation 2: Consider the recovery theorem of
Keshavan: everything else being fixed, the necessary number of
samples m increases as mp ≈ p log p, but probability of exact
recovery increases as 1− 1/p3. So if we would compare the
probability of recovering all entries from mp measurements,
then this probability would increase with p.
(Note that strictly speaking, the theorem does not make a
statement that says that if the proportion of missing samples is
fixed to a particular constant, that then the probability of

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
1

Simulations: noise-free setting (6)

recovery grows with p. But I guess one could extract such a
statement from the proof.)

I All these explanations are a bit ad hoc, and if I really had to
find out, I would need to dig in, rewrite the theorems, and run
simulations on my own.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
2

Simulations: noisy setting

Noisy setting:

I Generate the matrix Z as before.

I Now add Gaussian noise with standard deviation 0.5 to each of
the entries of Z, this results in Znoisy.

I Now try to reconstruct Z, when you observe entries from
Znoisy (using Soft-impute).

I Plot

average relative error :=
average Frobenius norm error

noise standard deviation

(WHAT IS THE BEST AVERAGE RELATIVE ERROR YOU
COULD HOPE FOR?)

Results:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
3

Simulations: noisy setting (2)MISSING DATA AND MATRIX COMPLETION 181

0.0 0.2 0.4 0.6

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Proportion Missing

A
ve

ra
g

e
 R

e
la

tiv
e

 E
rr

o
r

Rank 1

0.0 0.2 0.4 0.6

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Proportion Missing
A

ve
ra

g
e

 R
e

la
tiv

e
 E

rr
o

r

Rank 5

Figure 7.6 Matrix completion via Soft-Impute in the noisy setting. The plots show
the imputation error from matrix completion as a function of the proportion missing,
for 40◊40 matrices. Shown are the mean absolute error(± one standard error) over
100 simulations, all relative to the noise standard deviation. In each case we chose
the penalty parameter to minimize the imputation error, and the results would be
somewhat worse if that parameter were chosen by cross-validation. The true rank of
the complete matrix is one in the left panel and five in the right panel. The average
absolute size of each matrix entry was 0.80 and 1.77 in the left and right panels,
respectively.

Figure 7.6 is another illustration of the imputation error from matrix com-
pletion in the noisy setting. Here we use Soft-Impute on 40 ◊ 40 matrices,
with entries generated from a standard Gaussian matrix with rank r = 1 or
5, plus noise of standard deviation ‡ = 0.5. We see that for rank one, we
can impute the missing values with average error close to ‡ even when the
proportion missing is as high as 50%. However when the true rank increases
to five, the procedure starts to break down at about 30% missing.

7.3.4 Maximum Margin Factorization and Related Methods

Here we discuss a class of techniques that are close in spirit to the method of
the previous section. These are known as maximum margin matrix factoriza-
tion methods (MMMF), and use a factor model for approximating the matrix
Z (Rennie and Srebro 2005).4 Consider a matrix factorization of the form
M = ABT , where A and B are m ◊ r and n ◊ r, respectively. One way to

4The “maximum margin” refers to the particular margin-based loss used by these au-
thors; although we use squared-error loss, our focus is on the penalty, so we use the same
acronym.

Figure from “Statistical learning with sparsity”

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
4

Outlook / literature

I We just scratched the surface, there are many more variants of
the problem, and also many more algorithms.

I If you are interested, the book “Statistical learning with
sparsity” is a good starting point.

History:

I PhD thesis Fazel 2002: nuclear norm as surrogate for rank

I Nati Srebro et al, 2005, nuclear norm relaxations, with first
generalization bounds.

I Candes, Recht: Exact matrix completion via convex
optimization. Foundations of computational mathematics
(FOCM), 2009. Bounds in exact case.

I Netflix challenge: 2006 - 2009.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
5

Compressed sensing

Book chapters:
• Hastie, Tibshirani, Wainwright: Statistical learning with

sparsity. 2015. Chapter 10.
• Shalev-Shwartz, Ben-David: Understanding Machine Learning,

Section 23.3.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
6

Motivation

Consider the camera in your phone:

I If you take a picture, it first generates a raw image that is
stored by a pixel-based representation (e.g., rgb values for each
pixel).

I Then it compresses the picture by representing it in a suitable
basis (say, a wavelet basis) and generates a compressed version
of the image (say, a jpg file).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
7

Motivation (2)STATISTICAL LEARNING WITH SPARSITY 5

theory tells us that, if f(t) actually has very low band-
width, then a small number of (uniform) samples will suf-
fice for recovery. As we will see in the remainder of this
article, signal recovery can actually be made possible for a
much broader class of signal models.

INCOHERENCE AND THE SENSING OF SPARSE SIGNALS
This section presents the two fundamental premises underlying
CS: sparsity and incoherence.

SPARSITY
Many natural signals have concise representations when
expressed in a convenient basis. Consider, for example, the
image in Figure 1(a) and its wavelet transform in (b).
Although nearly all the image pixels have nonzero values, the
wavelet coefficients offer a concise summary: most coeffi-
cients are small, and the relatively few large coefficients cap-
ture most of the information.

Mathematically speaking, we have a vector f ∈ Rn (such as
the n-pixel image in Figure 1) which we expand in an orthonor-
mal basis (such as a wavelet basis) ! = [ψ1ψ2 · · ·ψn] as follows:

f(t) =
n∑

i=1
xi ψi(t), (2)

where x is the coefficient sequence of f , xi = ⟨ f,ψi⟩. It will be
convenient to express f as !x (where ! is the n × n matrix
with ψ1, . . . ,ψn as columns). The implication of sparsity is
now clear: when a signal has a sparse expansion, one can dis-
card the small coefficients without much perceptual loss.
Formally, consider fS(t) obtained by keeping only the terms
corresponding to the S largest values of (xi) in the expansion
(2). By definition, fS := !xS, where here and below, xS is the
vector of coefficients (xi) with all but the largest S set to zero.
This vector is sparse in a strict sense since all but a few of its
entries are zero; we will call S-sparse
such objects with at most S nonzero
entries. Since ! is an orthonormal
basis (or “orthobasis”), we have
∥ f − fS∥ℓ2 = ∥x − xS∥ℓ2 , and if x is
sparse or compressible in the sense
that the sorted magnitudes of the (xi)

decay quickly, then x is well approxi-
mated by xS and, therefore, the error
∥ f − fS∥ℓ2 is small. In plain terms,
one can “throw away” a large fraction
of the coefficients without much loss.
Figure 1(c) shows an example where
the perceptual loss is hardly noticeable
from a megapixel image to its approxi-
mation obtained by throwing away
97.5% of the coefficients.

This principle is, of course, what
underlies most modern lossy coders
such as JPEG-2000 [4] and many

others, since a simple method for data compression would be to
compute x from f and then (adaptively) encode the locations
and values of the S significant coefficients. Such a process
requires knowledge of all the n coefficients x, as the locations
of the significant pieces of information may not be known in
advance (they are signal dependent); in our example, they tend
to be clustered around edges in the image. More generally,
sparsity is a fundamental modeling tool which permits efficient
fundamental signal processing; e.g., accurate statistical estima-
tion and classification, efficient data compression, and so on.
This article is about a more surprising and far-reaching impli-
cation, however, which is that sparsity has significant bearings
on the acquisition process itself. Sparsity determines how effi-
ciently one can acquire signals nonadaptively.

INCOHERENT SAMPLING
Suppose we are given a pair ($,!) of orthobases of Rn. The first
basis $ is used for sensing the object f as in (1) and the second is
used to represent f . The restriction to pairs of orthobases is not
essential and will merely simplify our treatment.

DEFINITION 1
The coherence between the sensing basis $ and the representa-
tion basis ! is

µ($,!) =
√

n · max
1≤k, j≤n

|⟨ϕk,ψ j⟩|. (3)

In plain English, the coherence measures the largest correlation
between any two elements of $ and !; see also [5]. If $ and !
contain correlated elements, the coherence is large. Otherwise,
it is small. As for how large and how small, it follows from linear
algebra that µ($,!) ∈ [1,

√
n].

Compressive sampling is mainly concerned with low coher-
ence pairs, and we now give examples of such pairs. In our first
example, $ is the canonical or spike basis ϕk(t) = δ(t − k) and

[FIG1] (a) Original megapixel image with pixel values in the range [0,255] and (b) its
wavelet transform coefficients (arranged in random order for enhanced visibility).
Relatively few wavelet coefficients capture most of the signal energy; many such images
are highly compressible. (c) The reconstruction obtained by zeroing out all the coefficients
in the wavelet expansion but the 25,000 largest (pixel values are thresholded to the range
[0,255]). The difference with the original picture is hardly noticeable. As we describe in
“Undersampling and Sparse Signal Recovery,” this image can be perfectly recovered from
just 96,000 incoherent measurements.

(a) (b)

−1
0 2 4 6 8 10

−0.5
0

0.5

1.5
2

Wavelet
Coefficients× 104

1

(c)
× 105

IEEE SIGNAL PROCESSING MAGAZINE [23] MARCH 2008

Figure 1.2 (a) Original megapixel image with pixel values in the range [0, 255]
and (b) its wavelet transform coe�cients (arranged in random order for enhanced
visibility). Relatively few wavelet coe�cients capture most of the signal energy; many
such images are highly compressible. (c) The reconstruction obtained by zeroing out
all the coe�cients in the wavelet expansion but the 25, 000 largest (pixel values are
thresholded to the range [0, 255]). The di�erences from the original picture are hardly
noticeable.

ical models and their selection are discussed in Chapter 9 while compressed
sensing is the topic of Chapter 10. Finally, a survey of theoretical results for
the lasso is given in Chapter 11.

We note that both supervised and unsupervised learning problems are dis-
cussed in this book, the former in Chapters 2, 3, 4, and 10, and the latter in
Chapters 7 and 8.

Notation

We have adopted a notation to reduce mathematical clutter. Vectors are col-
umn vectors by default; hence — œ Rp is a column vector, and its transpose
—T is a row vector. All vectors are lower case and non-bold, except N -vectors
which are bold, where N is the sample size. For example xj might be the
N -vector of observed values for the jth variable, and y the response N -vector.
All matrices are bold; hence X might represent the N ◊ p matrix of observed
predictors, and � a p ◊ p precision matrix. This allows us to use xi œ Rp to
represent the vector of p features for observation i (i.e., xT

i is the ith row of
X), while xk is the kth column of X, without ambiguity.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
8

Motivation (3)

Idea: it would be great if we could skip the first step and directly
capture the data in the better representation.

This is called compressed (compressive) sensing.

Applications:

I Cameras with little power / storage. Take a picture with less
pixels, but achieve the same quality in the end.

I MRI / tomography: scans parts of the body, scanning time
increases for larger images. Want to speed up scanning (take
less pictures) but still have the same quality.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

7
9

Setup

Assume we observe a vector x ∈ Rd.

I Typically it is not be sparse in the standard basis, that is ‖x‖0

is close to d

I But it might be sparse in a different basis: There exists an
orthonormal matrix U such that x = Uα and α is a sparse
vector: ‖α‖0 =: s is small

I If we would know the basis U and would have a technical way
to measure the signal in this basis directly, this would be great.

I Goal is now: construct a basis that does the job.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
0

Setup (2)

Notation in the following:

I d dimension of the original space (high)

I s true sparsity of the signal in the basis U (low)

I k the sparsity we actually achieve (hopefully low as well)

We always have s ≤ k ≤ d.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
1

Example: Single pixel camera

I Standard camera: record millions of pixels and then apply
compression (e.g. jpeg compression) after the picture has been
taken.

I New approach: we use only a single pixel detector to create
images and we gather only a small fraction of the information,
effectively compressing the image while taking it.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
2

Example: Single pixel camera (2)

second-largest one, and so on. The first such algorithm, called
Orthogonal Matching Pursuit (OMP), did not offer the same
guarantees of accuracy that l1-minimization did. However,
there is now a variety of colorfully named variations, such as
Regularized OMP (ROMP) and Stagewise OMP (StOMP), which
successfully combine the accuracy of l1-minimization with the
speed of OMP. These algorithms have the advantage of being
somewhat more intuitive than the “high-dimensional miracle”
of l1-minimization; Figure 3 shows an example.

Meanwhile, researchers in several different fields are explor-
ing practical applications of compressed sensing. Baraniuk
and Kelly’s single-pixel camera, built in 2006, uses an array
of bacteria-sized mirrors to acquire a random sample of the
incoming light. (See Figure 6.) Each mirror can be tilted in one
of two ways, either to reflect the light toward the single sensor
or away from it. Thus the light that the sensor receives is a
weighted average of many different pixels, all combined into
one pixel. By taking K log(N/K) snapshots, with a different
random selection of pixels each time, the single-pixel camera
was able to acquire a recognizable picture with a resolution
comparable to N pixels. (See figure “One Is Enough,” page 114.)

Baraniuk and Kelly’s team is now working on “hyperspec-
tral cameras,” which would reconstruct a complete spectrum
at each point of the image. “A conventional digital image has
red, blue and green pixels,” Baraniuk says. “It’s great for mak-
ing a picture that fools the human eye, but it doesn’t capture
the essence of the wavelengths given off by different materi-
als. What you’d really like would be a spectrum of thousands
of colors instead of just three. This would allow you to tell the
difference between green paint on a car and a green leaf on
a bush.” But with thousands of colors at each of millions of
pixels, data compression becomes a serious issue.

Figure 6. A schematic diagram of the “one-pixel camera.” The “DMD” is the grid of micro-mirrors that
reflect some parts of the incoming light beam toward the sensor, which is a single photodiode. Other
parts of the image (the black squares) are diverted away. Each measurement made by the photodiode is
a random combination of many pixels. In “One is Enough” (p.114), 1600 random measurements suffice
to create an image comparable to a 4096-pixel camera. (Figure courtesy of Richard Baraniuk.)

What’s Happening in the Mathematical Sciences 125

Original resolution: d = 64× 64 = 4096.
Compressed: k = 1600 measurements.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
3

Example: Single pixel camera (3)

How does it work? (see figure):

I uses an array of bacteria-sized mirrors to acquire a random
sample of the incoming light and project it on a single
photodiode.

I Each mirror can be tilted in one of two ways, either to reflect
the light toward the single sensor or away from it. The
photodiode thus receives a linear combination of the images on
all the mirrors that are “on”.

I Thus the light that the sensor receives is a weighted average of
many different pixels, all combined into one pixel.

I One configuration wi of the mirrors gives rise to one linear
measurement of our signal.

I Repeat this procedure for k different mirror configurations
w1, ..., wk and store the k measurements the photodiode
receives.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
4

Example: Single pixel camera (4)

Cool result: By taking of the order Θ(s log(d/s)) snapshots, with a
different random selection of pixels each time, the single-pixel
camera is able to acquire a recognizable picture with a resolution
comparable to d pixels.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
5

Example: Single pixel camera (5)

One is Enough. A photograph taken by the “single-pixel camera” built by Richard Baraniuk and Kevin
Kelly of Rice University. (a) A photograph of a soccer ball, taken by a conventional digital camera at
64 × 64 resolution. (b) The same soccer ball, photographed by a single-pixel camera. The image is de-
rived mathematically from 1600 separate, randomly selected measurements, using a method called
compressed sensing. (Photos courtesy of R. G. Baraniuk, Compressive Sensing [Lecture Notes], Signal
Processing Magazine, July 2007. c⃝2007 IEEE.)

114 What’s Happening in the Mathematical Sciences

One is Enough. A photograph taken by the “single-pixel camera” built by Richard Baraniuk and Kevin
Kelly of Rice University. (a) A photograph of a soccer ball, taken by a conventional digital camera at
64 × 64 resolution. (b) The same soccer ball, photographed by a single-pixel camera. The image is de-
rived mathematically from 1600 separate, randomly selected measurements, using a method called
compressed sensing. (Photos courtesy of R. G. Baraniuk, Compressive Sensing [Lecture Notes], Signal
Processing Magazine, July 2007. c⃝2007 IEEE.)

114 What’s Happening in the Mathematical Sciences

One is Enough. A photograph taken by the “single-pixel camera” built by Richard Baraniuk and Kevin
Kelly of Rice University. (a) A photograph of a soccer ball, taken by a conventional digital camera at
64 × 64 resolution. (b) The same soccer ball, photographed by a single-pixel camera. The image is de-
rived mathematically from 1600 separate, randomly selected measurements, using a method called
compressed sensing. (Photos courtesy of R. G. Baraniuk, Compressive Sensing [Lecture Notes], Signal
Processing Magazine, July 2007. c⃝2007 IEEE.)

114 What’s Happening in the Mathematical Sciences

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
6

Example: Single pixel camera (6)

Nice blog discussion by Terrence Tao on this topic:
https://terrytao.wordpress.com/2007/04/13/

compressed-sensing-and-single-pixel-cameras/

https://terrytao.wordpress.com/2007/04/13/compressed-sensing-and-single-pixel-cameras/
https://terrytao.wordpress.com/2007/04/13/compressed-sensing-and-single-pixel-cameras/

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
7

Key steps in compressed sensing

1. We design k “linear measurements” w1,, wk ∈ Rd (in
applications, this is done by specific hardware, see later).

2. Nature picks an unknown signal x ∈ Rd (d large)

3. We directly receive the measurement results
x̃1 = 〈w1, x〉, x̃2 = 〈w2, x〉, ..., resulting in the measurement
vector x̃ ∈ Rk (k reasonably small).

4. We are now supposed to reconstrct x ∈ Rd from x̃ ∈ Rk .

Note: The goal is to design a single (!) set of measurement vectors
w1, ..., wk that works well for all (!) signals x in the sense that we
are able to reconstruct with little error.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
8

Compressed sensing

Another way to describe it:

I We don’t measure the signal x directly, but just a
“compressed” version of it, namely we measure

x̃ = Wx ∈ Rk

where W is a k × d-matrix with k � d. The matrix is known
to us, we choose it before we see any data.

I Now we want to reconstruct the high-dimensional signal x
from the low-dimensional representation x̃.

WHAT WOULD BE THE NAIVE WAY OF RECONSTRUCTION?
WHY DOESN’T IT WORK?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

8
9

Compressed sensing (2)

I To reconstruct, we would need to solve the linear system
x̃ = Wx for x.

I However, the latter is heavily underdetermined (we have k
equalities but d unkowns, with k � d). There are infinitely
many solutions to this linear system.

The trick is going to be:

I We need to make assumptions on the x we are looking for.

I In particular, we assume that x is sparse in some basis. We will
see below that this does the job.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
0

Compressed sensing main result

Theorem 50 (Compressed sensing with random
measurements)

Fix a signal length d and a sparsity level s. Let W be a k × d
matrix with k = Θ(s log(d/s)), with each of its entries chosen
independently from a standard normal distribution N(0, 1). Then,
with high probability over the choice of W , every s-sparse signal
can be efficiently recovered from x̃ = Wx by the following
optimization problem:

minimize‖x‖1 subject to x̃ = Wx

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
1

Compressed sensing main result (2)

DO YOU THINK THAT k = Θ(s log(d/s)) IS GOOD OR BAD?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
2

Compressed sensing main result (3)

I To measure a signal with sparsity s, we will definitely need at
least s measurements.

I s log(d/s) is definitely much smaller than d, it is close to s.

So it looks really great!

Some hand-waivy intutition why the result is exactly
k = Θ(s log(d/s)):

I We know that we are looking for a vector of length d which
has only s non-zero components (in some appropriate basis).
But we don’t know which are the non-zero components.

I There are
(
d
s

)
subsets of size s among the d components.

I To recover the vector we could try out all different such
subsets, and then reconstruct based on these subsets.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
3

Compressed sensing main result (4)

I Any efficient algorithm to do so would need to be able to
distinguish at least log

(
d
s

)
≈ Θ(s log(d/s)) many situations.

(This argument is similar to the proof for the lower bound in
comparison-based sorting ...)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
4

Compressed sensing main result (5)

Key steps in the proof of the theorem:

1. If we choose the matrix W such that is has the “restricted
isometry property” (RIP, see below), then any k-sparse vector
x can be reconstructed from its compressed image x̃ with only
little distortion, by an inefficient algorithm using `0-norm
optimization.

2. The reconstruction of x from x̃ can be calculated equally well
using `1-norm optimization (rather than `0-norm). This is very
suprising!

3. It is easy to find matrices W that have the RIP property: we
can use a random matrix with k = Ω(s log d) where s is the
sparsity of the signal and d the original dimension of the space.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
5

Proof step 1: define RIP matrices

Definition (Restricted Isometry Property):

A matrix W ∈ Rk×d is (ε, 2s)-RIP if for all x 6= 0 with ‖x‖0 ≤ s we
have ∣∣∣∣‖Wx‖2

2

‖x‖2
2

− 1

∣∣∣∣ ≤ ε

Intuitively:

Multiplying an RIP-matrix to a sparse vector does not considerably
change the norm of the vector, no matter which vector we choose.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
6

Proof step 1: Perfect reconstruction from RIP

using `0

The following theorem shows that RIP matrices yield a lossless
compression for sparse vectors:

Theorem 51 (Reconstruction based on 0-norm)

Let W be (ε, 2s)-RIP for some ε < 1, x with ‖x‖0 ≤ s (that is, x is
sparse in the standard basis of Rd), y = Wx the compression of x
by matrix W . Then the reconstruction

x̃ := argmin{‖v‖0 ; v ∈ Rd,Wv = y}

coincides exactly with x.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
7

Proof step 1: Perfect reconstruction from RIP

using `0 (2)

Proof of the theorem, by contradition:

I Assume that x̃ 6= x.

I By definition of x̃ we have

‖x̃‖0 ≤ ‖x‖0 ≤ s

In particular, ‖x− x̃‖0 ≤ 2s.

I Now apply the RIP property to the vector z := x− x̃. Recall
that Wx = Wx̃, hence Wz = 0.

I Then the RIP property gives∣∣∣∣‖Wz‖2
2

‖z‖2
2

− 1

∣∣∣∣ = |0− 1| = 1 > ε

�

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
8

Proof step 1: Perfect reconstruction from RIP

using `0 (3)

Note that this theorem immediately gives a first algorithm for
reconstructing x from its sparse representation x̃.

WHICH ONE? IS IT A GOOD ONE?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
0

9
9

Proof step 1: Perfect reconstruction from RIP

using `0 (4)

We need to solve an `0-optimization problem. This is
combinatorial, hard, undesirably ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
0

Proof step 2: Perfect reconstruction from RIP

using `1

Now comes the very surprising result: we get exact (!) recovery
even if we replace the `0 norm by the `1 norm:

Theorem 52 (Reconstruction based on 1-norm)

Under the same assumptions as before:

argmin{‖v‖0 ; v ∈ Rd,Wv = y} = argmin{‖v‖1 ; v ∈ Rd,Wv = y}

Proof: omitted, a nice writeup can be found in Chapter 23.3 of
Shalev-Shwartz and Ben-David.

WHY IS THIS SURPRISING? WHY IS IT INTERESTING?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
1

Proof step 2: Perfect reconstruction from RIP

using `1 (2)

The theorem gives us an pretty efficient (=polynomial) way to
exactly (!) reconstruct the original signal from the sparse one, by
solving a linear program!

Remarks:

I There exists an even stronger version of the theorem which
does not assume that the original vector is s-sparse.
Essentially, the statement says that we can perfectly recover
the s largest components.

I There also exists a version of the theorem which only assumes
that the matrix is sparse in some unknown basis (not the
original one).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
2

Proof step 3: Constructing RIP matrices

We still haven’t clarified how we actually construct the compression
matrix W :

Theorem 53 (Random matrices are RIP)

(i) Let s ≤ d an integer, ε, δ ∈]0, 1[. Choose k ≥ const · s log(d/(δε))
ε2

.
Now choose W ∈ Rk×d such that each entry is drawn randomly
from a normal distribution N(0, 1/s). Then, with probabilitiy
1−δ (over the choice of the matrix), the matrix W is (ε, s)-RIP.

(ii) More generally, if U is any d× d orthonormal matrix, then with
probability 1− δ, the matrix WU is (ε, s)-RIP.

Proof: omitted, a nice writeup can be found in Chapter 23.3 of
Shalev-Shwartz and Ben-David.

Remarks:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
3

Proof step 3: Constructing RIP matrices (2)

I This result is closely related to the theorem of
Johnson-Lindenstrauss, which is widely used in randomized
algorithms.

I The second part of the theorem takes care of the situation
that the signal is not sparse in the original basis, but a
different basis, by additionally applying a basis transformation
U to the signal.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
4

More intuition: a different way to tell the same

story

Compressed sensing is advantageous whenever

I signals are sparse in a known basis

I measurements (or computation at the sensor end) are
expensive

I but computations at the receiver end are cheap.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
5

More intuition: a different way to tell the same

story (2)

I One measures a relatively small number of random linear
combinations of the signal values — much smaller than
the number of signal samples nominally defining it.

I However, because the underlying signal is compressible, the
nominal number of signal samples is still an overestimate of
the effective number of degrees of freedom of the signal.

I As a result, the signal can be reconstructed with good
accuracy from relatively few measurements by a clever
nonlinear procedure.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
6

More intuition: a different way to tell the same

story (3)

When does it work?

Transform sparsity: The desired image should have a sparse
representation in a known transform domain (i.e., it must be
compressible by transform coding).

Incoherence of undersampling artifacts: The artifacts in linear
reconstruction caused by undersampling should be incoherent (noise
like) in the sparsifying transform domain.

Nonlinear reconstruction: The image should be reconstructed by
a nonlinear method that enforces both sparsity of the image
representation and consistency of the reconstruction with the
acquired samples.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
7

Example: time series

The following example is taken from Lustig, M., Donoho, D. L.,
Santos, J. M., Pauly, J. M. (2008). Compressed sensing MRI.
Signal Processing Magazine, IEEE, 25(2), 72-82.

Sparse signal, as it would be in the appropriate basis (say, a vector
of Fourier coefficients of a time series).

■ Transform sparsity: The desired image should have a
sparse representation in a known transform domain (i.e., it
must be compressible by transform coding).
■ Incoherence of undersampling artifacts: The artifacts
in linear reconstruction caused by k-space undersam-
pling should be incoherent (noise like) in the sparsifying
transform domain.
■ Nonlinear reconstruction: The image should be recon-
structed by a nonlinear method that enforces both sparsity of
the image representation and consistency of the reconstruc-
tion with the acquired samples.
The first condition is clearly met for MR images, as explained

above. The fact that incoherence is important, that MR acquisi-
tion can be designed to achieve incoherent undersampling, and
the fact that there are efficient and practical algorithms for
reconstruction will not, at this point in the article, be at all obvi-
ous. So we turn to a very simple example.

INTUITIVE EXAMPLE: INTERFERENCE CANCELLATION
To develop intuition for the importance of incoherence and the
feasibility of CS, consider the one-dimensional (1-D) case illus-
trated in Figure 5. A sparse signal, Figure 5(a), is sub-Nyquist
(eight-fold) sampled in k-space [Figure 5(b)]. Simply zero-filling
the missing values and inverting the Fourier transform results
in artifacts that depend on the sampling pattern. With equi-
spaced undersampling [Figure 5(d)], this reconstruction gener-
ates a superposition of shifted signal copies. In this case,
recovery of the original signal is hopeless, as each replica is an
equally likely candidate.

With random undersampling, the situation is very different.
The zero-filled Fourier reconstruction exhibits incoherent arti-
facts that actually behave much like additive random noise
[Figure 5(c)]. Despite appearances, the artifacts are not noise;
rather, undersampling causes leakage of energy away from each
individual nonzero value of the original signal. This energy

appears in other reconstructed signal coefficients, including
those which had been zero in the original signal.

It is possible, starting from knowledge of the k-space
sampling scheme and the underlying original signal, to cal-
culate this leakage analytically. This observation immedi-
ately suggests a nonlinear iterative technique which
enables accurate recovery, even though the signal in Figure
5(a) was eight-fold undersampled.

A simple heuristic recovery procedure is illustrated in Figure
5(e)–(h). It applies iterative thresholding, picking the largest
components of the signal, calculating the interference that
would be caused by the presence of those components and sub-
tracting it. After subtracting the calculated interference, smaller
components, previously submerged in interference, rise above it
and can be recovered [25].

INCOHERENT SAMPLING IN MRI
Designing a CS scheme for MRI can now be viewed as select-
ing a subset of the frequency domain that can be efficiently
sampled and is incoherent with respect to the sparsifying
transform. Before we formally introduce the notion of inco-
herence, we note that narrow optimization of incoherence
must not be pushed too far. Some of the most powerful and
elegant results about CS assume one samples a completely
random subset of k-space, which indeed gives very low coher-
ence [15]. The motivation for random sampling can be easily
and intuitively understood using our 1-D example given earli-
er. Although random sampling is an inspiring and instructive
idea, sampling a truly random subset of k-space is generally
impractical. Any practical sampling trajectory must satisfy
hardware and physiological constraints. Therefore sampling
trajectories must follow relatively smooth lines and curves.
Sampling schemes must also be robust to nonideal, real-life
situations. Non-Cartesian sampling schemes can be highly
sensitive to system imperfections.

[FIG5] Heuristic procedure for reconstruction from undersampled data. A sparse signal (a) is 8-fold undersampled in its 1-D k-space
domain (b). Equispaced undersampling results in signal aliasing (d) preventing recovery. Pseudo-random undersampling results in
incoherent interference (c). Some strong signal components stick above the interference level, are detected and recovered by
thresholding (e) and (f). The interference of these components is computed (g) and subtracted (h), thus lowering the total interference
level and enabling recovery of weaker components.

Sampling Recovery

+
−

Ambiguity!
(a) (b)

(c) (e) (g)

(f) (h)(d)

IEEE SIGNAL PROCESSING MAGAZINE [76] MARCH 2008

Authorized licensed use limited to: Stanford University. Downloaded on June 4, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
8

Example: time series (2)

Signal in the “default basis” (say, the time series itself, not sparse):

■ Transform sparsity: The desired image should have a
sparse representation in a known transform domain (i.e., it
must be compressible by transform coding).
■ Incoherence of undersampling artifacts: The artifacts
in linear reconstruction caused by k-space undersam-
pling should be incoherent (noise like) in the sparsifying
transform domain.
■ Nonlinear reconstruction: The image should be recon-
structed by a nonlinear method that enforces both sparsity of
the image representation and consistency of the reconstruc-
tion with the acquired samples.
The first condition is clearly met for MR images, as explained

above. The fact that incoherence is important, that MR acquisi-
tion can be designed to achieve incoherent undersampling, and
the fact that there are efficient and practical algorithms for
reconstruction will not, at this point in the article, be at all obvi-
ous. So we turn to a very simple example.

INTUITIVE EXAMPLE: INTERFERENCE CANCELLATION
To develop intuition for the importance of incoherence and the
feasibility of CS, consider the one-dimensional (1-D) case illus-
trated in Figure 5. A sparse signal, Figure 5(a), is sub-Nyquist
(eight-fold) sampled in k-space [Figure 5(b)]. Simply zero-filling
the missing values and inverting the Fourier transform results
in artifacts that depend on the sampling pattern. With equi-
spaced undersampling [Figure 5(d)], this reconstruction gener-
ates a superposition of shifted signal copies. In this case,
recovery of the original signal is hopeless, as each replica is an
equally likely candidate.

With random undersampling, the situation is very different.
The zero-filled Fourier reconstruction exhibits incoherent arti-
facts that actually behave much like additive random noise
[Figure 5(c)]. Despite appearances, the artifacts are not noise;
rather, undersampling causes leakage of energy away from each
individual nonzero value of the original signal. This energy

appears in other reconstructed signal coefficients, including
those which had been zero in the original signal.

It is possible, starting from knowledge of the k-space
sampling scheme and the underlying original signal, to cal-
culate this leakage analytically. This observation immedi-
ately suggests a nonlinear iterative technique which
enables accurate recovery, even though the signal in Figure
5(a) was eight-fold undersampled.

A simple heuristic recovery procedure is illustrated in Figure
5(e)–(h). It applies iterative thresholding, picking the largest
components of the signal, calculating the interference that
would be caused by the presence of those components and sub-
tracting it. After subtracting the calculated interference, smaller
components, previously submerged in interference, rise above it
and can be recovered [25].

INCOHERENT SAMPLING IN MRI
Designing a CS scheme for MRI can now be viewed as select-
ing a subset of the frequency domain that can be efficiently
sampled and is incoherent with respect to the sparsifying
transform. Before we formally introduce the notion of inco-
herence, we note that narrow optimization of incoherence
must not be pushed too far. Some of the most powerful and
elegant results about CS assume one samples a completely
random subset of k-space, which indeed gives very low coher-
ence [15]. The motivation for random sampling can be easily
and intuitively understood using our 1-D example given earli-
er. Although random sampling is an inspiring and instructive
idea, sampling a truly random subset of k-space is generally
impractical. Any practical sampling trajectory must satisfy
hardware and physiological constraints. Therefore sampling
trajectories must follow relatively smooth lines and curves.
Sampling schemes must also be robust to nonideal, real-life
situations. Non-Cartesian sampling schemes can be highly
sensitive to system imperfections.

[FIG5] Heuristic procedure for reconstruction from undersampled data. A sparse signal (a) is 8-fold undersampled in its 1-D k-space
domain (b). Equispaced undersampling results in signal aliasing (d) preventing recovery. Pseudo-random undersampling results in
incoherent interference (c). Some strong signal components stick above the interference level, are detected and recovered by
thresholding (e) and (f). The interference of these components is computed (g) and subtracted (h), thus lowering the total interference
level and enabling recovery of weaker components.

Sampling Recovery

+
−

Ambiguity!
(a) (b)

(c) (e) (g)

(f) (h)(d)

IEEE SIGNAL PROCESSING MAGAZINE [76] MARCH 2008

Authorized licensed use limited to: Stanford University. Downloaded on June 4, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

Assume it is too costly to sample the whole time series completely.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

0
9

Example: time series (3)

Obvious first idea: equispaced undersampling.

I Just measure (“sense”) the signal at equispaced positions (in
the image on the previous slide, at the positions indicated by
the red dots at the bottom).

I Replace the remaining entries with 0.

I Go over to the sparse basis and represent the signal there.

Result: artifacts called “aliasing”. It does not work at all!

■ Transform sparsity: The desired image should have a
sparse representation in a known transform domain (i.e., it
must be compressible by transform coding).
■ Incoherence of undersampling artifacts: The artifacts
in linear reconstruction caused by k-space undersam-
pling should be incoherent (noise like) in the sparsifying
transform domain.
■ Nonlinear reconstruction: The image should be recon-
structed by a nonlinear method that enforces both sparsity of
the image representation and consistency of the reconstruc-
tion with the acquired samples.
The first condition is clearly met for MR images, as explained

above. The fact that incoherence is important, that MR acquisi-
tion can be designed to achieve incoherent undersampling, and
the fact that there are efficient and practical algorithms for
reconstruction will not, at this point in the article, be at all obvi-
ous. So we turn to a very simple example.

INTUITIVE EXAMPLE: INTERFERENCE CANCELLATION
To develop intuition for the importance of incoherence and the
feasibility of CS, consider the one-dimensional (1-D) case illus-
trated in Figure 5. A sparse signal, Figure 5(a), is sub-Nyquist
(eight-fold) sampled in k-space [Figure 5(b)]. Simply zero-filling
the missing values and inverting the Fourier transform results
in artifacts that depend on the sampling pattern. With equi-
spaced undersampling [Figure 5(d)], this reconstruction gener-
ates a superposition of shifted signal copies. In this case,
recovery of the original signal is hopeless, as each replica is an
equally likely candidate.

With random undersampling, the situation is very different.
The zero-filled Fourier reconstruction exhibits incoherent arti-
facts that actually behave much like additive random noise
[Figure 5(c)]. Despite appearances, the artifacts are not noise;
rather, undersampling causes leakage of energy away from each
individual nonzero value of the original signal. This energy

appears in other reconstructed signal coefficients, including
those which had been zero in the original signal.

It is possible, starting from knowledge of the k-space
sampling scheme and the underlying original signal, to cal-
culate this leakage analytically. This observation immedi-
ately suggests a nonlinear iterative technique which
enables accurate recovery, even though the signal in Figure
5(a) was eight-fold undersampled.

A simple heuristic recovery procedure is illustrated in Figure
5(e)–(h). It applies iterative thresholding, picking the largest
components of the signal, calculating the interference that
would be caused by the presence of those components and sub-
tracting it. After subtracting the calculated interference, smaller
components, previously submerged in interference, rise above it
and can be recovered [25].

INCOHERENT SAMPLING IN MRI
Designing a CS scheme for MRI can now be viewed as select-
ing a subset of the frequency domain that can be efficiently
sampled and is incoherent with respect to the sparsifying
transform. Before we formally introduce the notion of inco-
herence, we note that narrow optimization of incoherence
must not be pushed too far. Some of the most powerful and
elegant results about CS assume one samples a completely
random subset of k-space, which indeed gives very low coher-
ence [15]. The motivation for random sampling can be easily
and intuitively understood using our 1-D example given earli-
er. Although random sampling is an inspiring and instructive
idea, sampling a truly random subset of k-space is generally
impractical. Any practical sampling trajectory must satisfy
hardware and physiological constraints. Therefore sampling
trajectories must follow relatively smooth lines and curves.
Sampling schemes must also be robust to nonideal, real-life
situations. Non-Cartesian sampling schemes can be highly
sensitive to system imperfections.

[FIG5] Heuristic procedure for reconstruction from undersampled data. A sparse signal (a) is 8-fold undersampled in its 1-D k-space
domain (b). Equispaced undersampling results in signal aliasing (d) preventing recovery. Pseudo-random undersampling results in
incoherent interference (c). Some strong signal components stick above the interference level, are detected and recovered by
thresholding (e) and (f). The interference of these components is computed (g) and subtracted (h), thus lowering the total interference
level and enabling recovery of weaker components.

Sampling Recovery

+
−

Ambiguity!
(a) (b)

(c) (e) (g)

(f) (h)(d)

IEEE SIGNAL PROCESSING MAGAZINE [76] MARCH 2008

Authorized licensed use limited to: Stanford University. Downloaded on June 4, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
0

Example: time series (4)

The compressed sensing approach: Random undersampling

I Instead of sampling at equispaced positions, randomly pick
some entries (in the image before, this is indicated by the red
dots at the top).

I Try to represent the image in the sparse basis:

■ Transform sparsity: The desired image should have a
sparse representation in a known transform domain (i.e., it
must be compressible by transform coding).
■ Incoherence of undersampling artifacts: The artifacts
in linear reconstruction caused by k-space undersam-
pling should be incoherent (noise like) in the sparsifying
transform domain.
■ Nonlinear reconstruction: The image should be recon-
structed by a nonlinear method that enforces both sparsity of
the image representation and consistency of the reconstruc-
tion with the acquired samples.
The first condition is clearly met for MR images, as explained

above. The fact that incoherence is important, that MR acquisi-
tion can be designed to achieve incoherent undersampling, and
the fact that there are efficient and practical algorithms for
reconstruction will not, at this point in the article, be at all obvi-
ous. So we turn to a very simple example.

INTUITIVE EXAMPLE: INTERFERENCE CANCELLATION
To develop intuition for the importance of incoherence and the
feasibility of CS, consider the one-dimensional (1-D) case illus-
trated in Figure 5. A sparse signal, Figure 5(a), is sub-Nyquist
(eight-fold) sampled in k-space [Figure 5(b)]. Simply zero-filling
the missing values and inverting the Fourier transform results
in artifacts that depend on the sampling pattern. With equi-
spaced undersampling [Figure 5(d)], this reconstruction gener-
ates a superposition of shifted signal copies. In this case,
recovery of the original signal is hopeless, as each replica is an
equally likely candidate.

With random undersampling, the situation is very different.
The zero-filled Fourier reconstruction exhibits incoherent arti-
facts that actually behave much like additive random noise
[Figure 5(c)]. Despite appearances, the artifacts are not noise;
rather, undersampling causes leakage of energy away from each
individual nonzero value of the original signal. This energy

appears in other reconstructed signal coefficients, including
those which had been zero in the original signal.

It is possible, starting from knowledge of the k-space
sampling scheme and the underlying original signal, to cal-
culate this leakage analytically. This observation immedi-
ately suggests a nonlinear iterative technique which
enables accurate recovery, even though the signal in Figure
5(a) was eight-fold undersampled.

A simple heuristic recovery procedure is illustrated in Figure
5(e)–(h). It applies iterative thresholding, picking the largest
components of the signal, calculating the interference that
would be caused by the presence of those components and sub-
tracting it. After subtracting the calculated interference, smaller
components, previously submerged in interference, rise above it
and can be recovered [25].

INCOHERENT SAMPLING IN MRI
Designing a CS scheme for MRI can now be viewed as select-
ing a subset of the frequency domain that can be efficiently
sampled and is incoherent with respect to the sparsifying
transform. Before we formally introduce the notion of inco-
herence, we note that narrow optimization of incoherence
must not be pushed too far. Some of the most powerful and
elegant results about CS assume one samples a completely
random subset of k-space, which indeed gives very low coher-
ence [15]. The motivation for random sampling can be easily
and intuitively understood using our 1-D example given earli-
er. Although random sampling is an inspiring and instructive
idea, sampling a truly random subset of k-space is generally
impractical. Any practical sampling trajectory must satisfy
hardware and physiological constraints. Therefore sampling
trajectories must follow relatively smooth lines and curves.
Sampling schemes must also be robust to nonideal, real-life
situations. Non-Cartesian sampling schemes can be highly
sensitive to system imperfections.

[FIG5] Heuristic procedure for reconstruction from undersampled data. A sparse signal (a) is 8-fold undersampled in its 1-D k-space
domain (b). Equispaced undersampling results in signal aliasing (d) preventing recovery. Pseudo-random undersampling results in
incoherent interference (c). Some strong signal components stick above the interference level, are detected and recovered by
thresholding (e) and (f). The interference of these components is computed (g) and subtracted (h), thus lowering the total interference
level and enabling recovery of weaker components.

Sampling Recovery

+
−

Ambiguity!
(a) (b)

(c) (e) (g)

(f) (h)(d)

IEEE SIGNAL PROCESSING MAGAZINE [76] MARCH 2008

Authorized licensed use limited to: Stanford University. Downloaded on June 4, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

Works! If we threshold the small Fourier coefficients, we are
left with the sparse representation of the signal.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
1

Example: time series (5)

Figure 2. Reconstructing a sparse wave train. (a) The frequency spectrum of a 3-sparse signal. (b) The
signal itself, with two sampling strategies: regular sampling (red dots) and random sampling (blue dots).
(c) When the spectrum is reconstructed from the regular samples, severe “aliasing” results because the
number of samples is 8 times less than the Shannon-Nyquist limit. It is impossible to tell which frequen-
cies are genuine and which are impostors. (d) With random samples, the two highest spikes can easily
be picked out from the background. (Figure courtesy of M. Lustig, D. Donoho, J.Santos and J. Pauly,
Compressed Sensing MRI, Signal Processing Magazine, March 2008. c⃝2008 IEEE.)

Figure 3. In the situation of Figure 2, the third frequency spike can be recovered by an iterative thresh-
olding procedure. If the signal was known to be 3-sparse to begin with, then the signal can be recon-
structed perfectly, in spite of the 8-fold undersampling. In short, sparsity plus random sampling enables
perfect (or near-perfect) reconstruction. (Figure courtesy of M. Lustig, D. Donoho, J.Santos and J. Pauly,
Compressed Sensing MRI, Signal Processing Magazine, March 2008. c⃝2008 IEEE.)

What’s Happening in the Mathematical Sciences 119

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
2

Example: Images

Example taken from: MacKenzie, Dana. Compressed sensing makes
every pixel count. What is happening in the mathematical sciences
7 (2009): 114-127.

Original noisy image. Shown is the image itself and (I guess) the
coefficients in Fourier (Wavelet?) basis. Signal is sparse in this
basis (but of course, it was not recorded in this basis, here the
transform to the sparse basis happened afterwards):

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
3

Example: Images (2)

Figure 5. Compressed sensing with noisy data. (a) An image with added noise. (b) The image, under-
sampled and reconstructed using the Shannon-Nyquist approach. As in Figure 2, artifacts appear in the
reconstructed image. (d) The same image, undersampled randomly and reconstructed with a “too opti-
mistic” noise model. Although there are no artifacts, some of the noise has been misinterpreted as real
variation. (c) The same image, reconstructed from a random sample with a more tolerant noise model.
The noise is suppressed and there are no artifacts. (Figure courtesy of Michael Lustig.)

124 What’s Happening in the Mathematical Sciences

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
4

Example: Images (3)

Now use random undersampling to recored the picture, and
reconstruct based on l2-minimization:

Figure 5. Compressed sensing with noisy data. (a) An image with added noise. (b) The image, under-
sampled and reconstructed using the Shannon-Nyquist approach. As in Figure 2, artifacts appear in the
reconstructed image. (d) The same image, undersampled randomly and reconstructed with a “too opti-
mistic” noise model. Although there are no artifacts, some of the noise has been misinterpreted as real
variation. (c) The same image, reconstructed from a random sample with a more tolerant noise model.
The noise is suppressed and there are no artifacts. (Figure courtesy of Michael Lustig.)

124 What’s Happening in the Mathematical Sciences

Many artifacts.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
5

Example: Images (4)

Random undersampling, reconstruction based on `1-minimization:

Figure 5. Compressed sensing with noisy data. (a) An image with added noise. (b) The image, under-
sampled and reconstructed using the Shannon-Nyquist approach. As in Figure 2, artifacts appear in the
reconstructed image. (d) The same image, undersampled randomly and reconstructed with a “too opti-
mistic” noise model. Although there are no artifacts, some of the noise has been misinterpreted as real
variation. (c) The same image, reconstructed from a random sample with a more tolerant noise model.
The noise is suppressed and there are no artifacts. (Figure courtesy of Michael Lustig.)

124 What’s Happening in the Mathematical Sciences

Nice :-)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
6

Relation to standard information theory

Shannon sampling theorem (1949):

I A time-varying signal with no frequencies higher than d hertz
can be perfectly reconstructed by sampling the signal at
regular intervals of 1/2d seconds (that is, we sample at 2d
different time points).

I A signal with frequencies higher than d hertz cannot be
reconstructed uniquely if we sample with this rate; there is
always a possibility of aliasing (two different signals that have
the same samples).

Compressed sensing: makes stronger assumptions than Shannon:

I The achievable resolution is controlled not only by the maximal
number of frequencies (the dimension d of the space), but by
the “information content” (the sparsity s of the signal).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
7

Relation to standard information theory (2)

I If we know that among the d different frequencies only s of
them really occur, then we can reconstruct the signal from a
small number of measurements.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
8

Outlook

I Active area of research

I Lots of actual applications!!! Cameras, MRI scanning, etc

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

1
9

(*) Ranking from pairwise
comparisons

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
0

Introduction

Text books (but I don’t like both chapters so much):

I Mohri et al. chapter 9

I Shalev-Shwartz/Ben-David, Chapter 17.4

Papers: see the individual sections.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
1

Introduction, informal

I Ranking candidates for a job offering

I Ranking of the world’s best tennis players

I Ranking of search results in google

I Ranking of molecules according to whether they could serve as
a drug for a certain disease

IN WHICH SENSE ARE THESE PROBLEMS DIFFERENT, IN
WHCIH SENSE SIMILAR?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
2

Introduction, informal (2)

I top-k ranking vs full ranking

I sampling with or without replacement

I active vs. passive selection of comparisons

I distributed or not

I ground truth exists or not

Problems run under many different names: rank aggregation,
ranking, tournaments, voting, ... and are tackled in many different
communities (machine learning, computational social choice,
theoretical computer science, etc).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
3

Introduction, more formal

I Given n objects x1, ..., xn.

I In the simplest case, we assume that there exists a “true” total
order ≺ on the objects, that is there exists a permutation π
such that xπ(1) ≺ xπ(2) ≺ ... ≺ xπ(n).

I Goal is to learn this permutation from partial observations of
the ranking. In the simplest case, observations are of the form
xk ≺ xl for certain pairs (k, l).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
4

Introduction, more formal (2)

Distance functions between permutations:

Given two permutations π and π̂ of the same set of objects. Want
to compute how different these rankings are.

I Kendall-τ distance: Count the number of pairs (i, j) that are
in different order in the two permutations:

dτ (π, π̂) :=
2

n(n− 1)

n∑
i=1

n∑
j=i+1

1{sign(π(i)−π(j)) 6= sign(π̂(i)−π̂(j))}

I Spearman-ρ distance: Count for each object by how much it
is “displaced” in one permutation with respect to the other:

dρ(π, π̂) =
n∑
i=1

|π(i)− π̂(i)|

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
5

Introduction, more formal (3)

I Top-k differences. Assume we are just interested in whether
the top k objects in the two rankings coincide. Denote by Sk
the set of first k objects in π, and by Ŝk the corresponding set
in π̂. We define the distance

dk(π, π̂) := |Sk4Ŝk| := |(Sk ∪ Ŝk) \ (Sk ∩ Ŝk)|

Note that it only looks at the unordered sets, not at the order
within the sets.

I Normalized discounted cumulative gain (NDCG): We take the
ranking π as “reference ranking”. Then we compare it to the
second ranking π̂, but we weight errors among the top items of
π more severely than errors for items at the bottom of the
ranking π. Many different ways in which this can be done ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
6

Introduction, more formal (4)

There exists a large variety of probabilistic model assumptions in
the literature. Here are some typical examples:

I We assume there exists a true ranking. When asking a user to
provide an answer to the question xi ? xj, he gives an incorrect
answer with probability p (where p is independent of xi, xj).

I We assume that the objects xi can be represented by a real
number u(xi), for example a utility score. Then we define
xi ≺ xj := u(xi) < u(xj). The likelihood to observe an
incorrect answer depends on the distance u(xi)− u(xj). Many
different versions, for example the BTL model below.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
7

Introduction, more formal (5)

I Model for paired comparisons: Bradley-Terry-Luce (BTL)
model. Each object has a score u(xi) (utility value, skill, ...).
Probability of anwers to comparisons are modeled by a logistic
model:

P (xi � xj) =
1

1 + exp(−(u(xi)− u(xj))

I Mallows model (probability distribution over all permutations):
Assume that π is the true ranking. Then the probabiltiy to
observe a ranking π̂ is chosen proportional to αdτ (π,π̂) where
α ∈]0, 1] is a parameter and dτ is the Kendall-τ distance.
Choosing α = 1 implies the uniform distribution over all
permutations, the closer α is to 0, the more the mass
concentrates around π.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
8

Introduction, more formal (6)

Default statistical approach. Given a probabilistic model, a straight
forward idea is to use a maximum likelihood estimator: Find the
permutation that maximizes the likelihood of the observed data.
However, it is often infeasible due to computational complexity
(need to have a clever way to try out all permutations).

Default algorithmic approach: Given the observations, find the
permutation that is as consistent as possible with your observations
(minimizes a loss function). For example, assume in a sports
tournament that everybody played against everybody. Now find a
ranking that violates as few outcomes as possible. This problem is
NP hard, there exists a PTAS for it (Kenyon-Mathieu and Schudy:
How to rank with few errors. STOC 2007).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

2
9

Simple but effective counting algorithm

Based on the paper:
Shah, Wainwright: Simple, robust and optimal ranking from
pairwise comparisons. Arxiv, 2015.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
0

The model

Ground truth model is very general:

I n objects

I For each pair of objects, assume a parameter pij := P (i � j).
Assume that P (i � j) + P (i ≺ j) = 1 (no ties).

I Define the score that measures the probability that object i
beats a randomly chosen object j:

τi :=
1

n

n∑
j=1

P (i � j)

This score τi can be interpreted as the probability that object i
wins against a randomly chosen object j (under the uniform
probability distribution of objects). We consider the ranking
induced by these scores as the true ranking. Note: high score
= top of the list.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
1

The model (2)

Observation model:

I Assume that the number of times that a pair (i, j) is observed
is distributed according to a binomial distribution Bin(r, pobs)
(where r ∈ N and pobs ∈ [0, 1] are global parameters
independent of i and j).

I To generate the observations we proceed as follows:
I For each pair (i, j), we draw a random variable

nij ∼ Bin(r, pobs). This is the number of times that we are
going to observe comparisons between i and j.

I Now we ask nij times independently whether i ≺ j or i � j.
We get the answers with probabilities according to pij .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
2

The model (3)

This model is very general, it encompasses most of the more
specialized models that exist in the literature.

Goal: Given a set of comparisons, find either the top-k ranking or
the full ranking.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
3

The counting algorithm

Simple counting algorithm:

I Define τ̂i as the number of times that object i has won over
another object j, based on the observed comparisons.

I Define the estimated ranking (or the top-k set) as the order
induced by the estimated scores τ̂i.

This algorithm is about the simplest thing you can come up with, it
is sometimes called Borda count or Copeland method in the
literature.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
4

Bounds for exact recovery of top-k items

Define the following parameter:

Ψk(n, r, pobs) := (τk − τk+1)︸ ︷︷ ︸
=: separation para.

·
√
n · pobs · r

log n︸ ︷︷ ︸
sampling para.

I The separation parameter measures how well-separated the
first k items are from the remaining ones.

I The sampling parameter is a complexity term that depends on
the number n of objects and the expected number n · pobs · r
of observations per object.

I We will see below that that the larger Ψk, the easier it is to
discover the true ranking. (DOES IT MAKE SENSE?)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
5

Bounds for exact recovery of top-k items (2)

Theorem 54 (Exact top k recovery)

(a) Upper bound: Denote by Sk the set of true top-k times, and
by Ŝk the estimated set of top-k items according to the
counting algorithm. If Ψk(n, r, pobs) ≥ 8, then Ŝk = Sk with
probability at least 1− 1/n14.

(b) Lower bound: If Ψk(n, r, pobs) ≤ 1/7, n ≥ 7 and
r · pobs > log n/(2n). Then there exist instances such that any
algorithm that attempts to recover the top-k items will err
with probability at least 1/7.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
6

Digesting the theorem

Let’s digest the upper bound by constructing a simple example:

Example 1:

I Assume the true ordering is o1 � o2 � ... � on, that is the best
player is o1. Our goal is to find the best player (that is, k = 1).

I Assume a noise-free setting: a better player always wins against
a worse player, that is pij = 1 if oi � oj and 0 otherwise.

I Then τi = (n− i)/n, and in particular τ1 − τ2 = 1/n.

I Consider the case where we observe each pair exactly r times
(we set pobs = 1, so the number of observations is
deterministic as well).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
7

Digesting the theorem (2)

I Upper bound in the theorem: perfect recovery works if

Ψ := (τ1 − τ2) ·
√

nr
logn
≥ const.. In our case, τ1 − τ2 = 1/n,

and solving the equation leads to r ≥ n log n. That is, the
upper bound guarantees perfect recovery if we observe each
pair (!) at least n log n times. So overall we have to make
n3 log n comparisons.

On the other side, the lower bound says the following:

I Assume that we have separation τ1 − τ2 = 1/n as in our
example. Then, if we observe less than r = n3 log n we cannot
guarantee recovery.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
8

Digesting the theorem (3)

I The point is that the lower bound is a worst case statement:
for the worst of all examples, we cannot guarantee recovery if
we observe less than n3 log n examples.

I For example, we can construct an example that has separation
1/n as well, but has lots of noise:
Example 2: Assume that for i > 2 we have
P (1 � i) = 1/2 + 2/(n− 2), P (2 � i) = 1/2 + 2/(n− 2),
and all other pairwise probabilitites are 1/2. This clearly is a
very difficult case.

Taken jointly, upper and lower bound say:

I The counting algorithm gives perfect recovery if we get to see
n3 log n comparisons (this is for the case of separation 1/n).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

3
9

Digesting the theorem (4)

I There are instances where it fails if we get to see less than this
amount of samples.

I In this sense, the couting algorithm is optimal (up to constants
in the bounds).

I But of course, the query complexity (number of comparisons
we need) is huge. The problem is not that we have a bad
algorithm (this is what the lower bound tells). The problem is
that we make too little assumptions, so there is no structure
we can exploit.

(As a side remark: the lower bound also holds if we make the
Bradely-Terry-Luce assumptions, one can construct an example
that satisfies their assumptions and still needs many
comparisons).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
0

Digesting the theorem (5)

Just as comparison: In our example 1, we are in a completely
noiseless case.

I WHAT IS THE NUMBER OF COMPARISONS WE NEED TO
SORT A SEQUENCE?

I WHAT IS THE NUMBER OF COMPARISONS WE NEED TO
FIND THE TOP ITEM IN A LIST OF ITEMS?

So we are miles away from this good performance. HOW CAN
THIS BE, WHAT IS THE DIFFERENCE?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
1

Proof sketch, upper bound

Let’s briefly look at the proof:

I For each pair (i, j), we have a certain number of independent
observations.

I The parameter τ̂i is an average over these observations.

I This average is highly concentrated around its expectation.
Applying standard concentration inequalities (Bernstein), one
can show that the deviations of the random variables are small.

I In particular, we can then bound the probability that one of
the top-k items “is beaten” (in terms of τ̂i) by one of the
not-top-k items.

See the following figure:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
2

Proof sketch, upper bound (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
3

Proof sketch, lower bound

We construct one particular example in a clever way:

I For each a in {k-1, k, k+1, ..., n} let
S∗(a) := {1, 2, ..., k − 1} ∪ {a}. This is supposed to be the
true top-k set.

I Define the probabilities

Pa(i � j)


1/2 if i, j ∈ S∗(a) or i, j 6∈ S∗(a)

1/2 + δ if i ∈ S∗(a) and j 6∈ S∗(a)

1/2− δ if i 6∈ S∗(a) and j ∈ S∗(a)

I Note that the true τ -values give the correct top-k set.

I Our goal is to identify the true permutation based on
observations, that is we want to find the correct parameter a
that has been used.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
4

Proof sketch, lower bound (2)

To construct the lower bound, we now want to show that no matter
which algorithm we use to estimate the correct top-k set in our
example, it always errs with a constant probability.

To this end we use a tool from information theory: Fano’s
inequality. Essentially it says that if we want to recover a certain
parameter, we need to receive a certain amount of “signal” or
“information”.

I Assume that a is chosen uniformly from k, ..., n. Then we
sample observations according to the model Pa.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
5

Proof sketch, lower bound (3)

I Fano’s inequality now states that any algorithm that estimates
a by some â has to make an error of at least

P (a 6= â) ≥ 1− I(a, observation) + log 2

log(n− k + 1)

So we need to bound the mutual information
I(a, observation), which boils down to a sum of
Kullback-Leibler divergences D(Pa||Pb). They can be
computed by stanard methods.

Details skipped.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
6

Exact recovery of full ranking

The bound for top-k ranking can immediately be turned into a
bound of exact full ranking. The main observation is that a ranking
is correct if the top-k rankings for all k = 1, ..., n− 1 are correct.
This immediately leads to:

Theorem 55 (Upper bound, full permutation)

Let π̂ be the permutation induced by the estimated scores τ̂ , and π
the one by the true scores τ . If Ψk(n, r, pobs) ≥ 8 for all
k = 1, ..., n− 1, then P (π̂ = π) ≥ 1− 1/n13

Proof: union bound with the previous theorem (union bound leads
to power 13 instead of 14).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
7

Approximate recovery

Result looks surprisingly similar. Just the separation term now not
depends just on τk − τk+1, but on all τ -values in a certain
neighborhood of k (where the size of the neighborhood depens on
the error we are allowed to make).

We still get the same kind of worst case query complexity.

Details skipped.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
8

Discussion

I On a high level, the theorem shows two things:
I Ranking from noisy data is difficult if we don’t make any

assumptions.
I You cannot improve on the counting algorithm — unless you

do make more assumptions.

I In practice, the query complexity of n3 log n is completely out
of bounds, there is no way you can collect that many
comparisons in a realistic setting. So what is obviously needed
are algorithms that work well with less queries in realistic
settings (assumptions).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

4
9

Learning to rank

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
0

Learning to rank

I Objects x1, ..., xn.

I Observations of the form xi ≺ xj. Encode this as follows:
I Consider the space S of all unordered pairs of objects.

I Output variable yij =

{
+1 if xi ≺ xj
−1 otherwise

I Goal: learn a classifier that makes as few mistakes as possible.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
1

Naive idea: ERM

The first naive algorithm we can think of is to perform empricial
risk minimization on the set of permutations: that is we pick the
permutation that agrees most with our observations.

We have mentioned already that this is NP hard to do
(computational complexity), but let’s look at how many queries we
would need (query complexity).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
2

Generalization bounds for learning to rank

Proposition 56 (VC dim of permutations)

Consider a set V of n objects, and the set S of all unordered pairs
of objects. Denote by Π the set of permutations of V . Each
permutation π induces a classifier fπ : S → {−1, 1} on the set S
(as described above). Then the space F := {fπ | π ∈ Π} has
VC-dimension n− 1.

Proof: Step 1: Prove that V C < n. To this end, consider any
subset S ′ ⊂ S with |S ′| = n. Want to show that it cannot be
shattered by the function class F . We construct a proof by
contradiction.

I Assume we have a set S ′ ⊂ S of n pairs of objects that can be
shattered by F .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
3

Generalization bounds for learning to rank (2)

I Consider the comparision graph of S ′: Vertices = all n objects;
undirected edge from object i to j if {i, j} ∈ S ′.

I The graph has n vertices and n edges by construction, so it
needs to contain an undirected cycle. Now observe that we
cannot shatter the pairs in S ′ that correspond to the
edges in the cycle: we cannot realize the function that
corresponds to xi ≺ xj ≺ ... ≺ xl ≺ xi, because the latter
implies xi ≺ xi. �

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
4

Generalization bounds for learning to rank (3)

Step 2: Prove that V C ≥ n− 1. To this end, need to find at least
one subset S ′ ⊂ S with |S ′| = n− 1 that can be shattered. Using
the same construction as above, we simply choose S ′ such that the
graph is a tree. Can always be done. This does it.

Remark: naively, the set Π consists of n! many permutations, so
the shattering coefficient is n!. The log-shatttering coefficient is
then log(n!) = n log n, So the first natural guess is that the VC
dim might be n log n. We now see that it is even n− 1.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
5

Generalization bounds for learning to rank (4)

Our standard VC-generalization bound for a class with
VC-dimension d over a sample of m comparisons is that with
probability at least 1− δ, any permutation π satisfies

R(f) ≤ Rn(f) + 2

√
d log(2em/d)− log(δ)

m
.

As a rule of thumb: how many sample points to you need to
achieve an error of about ε at most? Here is the argument:

I Ignore all log terms and constants.

I Then the error ε is of the order ε :=
√
d/m. Solving for m

tells us that we need to observe of the order d/ε2 comparisons.
In our case with d = n this means that we need to observe
about m := n/ε2 comparisons to achieve an error of at most
ε, with high probability.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
6

Generalization bounds for learning to rank (5)

Seems pretty good!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
7

Generalization bounds for learning to rank (6)

Comparison to the bound in the Shah/Wainwrigth approach
(simple counting algorithm):

I Note: the bound in the Shah/Wainwright approach was:
recovery works if we see about n3 log n3 comparisons (with
similar results for approximate recovery and recovery of the full
ranking).

I Now we have a VC bound that says that of the order n
examples are enough for good classification performance.

I Both approaches make only minimalistic / no assumptions
whatsoever on the structure of the numbers we want to sort.

WHERE IS THE CATCH?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
8

Generalization bounds for learning to rank (7)

I Note that the Shah/Wainwright bound talks about identifying
the correct ranking, while the VC bound just talks about
predicting the outcome of comparisons.

I Consider an example that is difficult in the Shah / Wainwright
framework: all πij-values close to 1/2, so the τ -values are very
similar to each other.
I Shah/Wainwright: need many samples to find the actual

ranking.
I Learning to rank: the bound only considers the estimation

error of the classifier, when applied to predict unobserved
comparisons. [As a side remark: in the given example even
the Bayes classifier would have a poor performance close to
random guessing. The generalization bound just tells us that
we need not so many comparisons to come close to the
performance of the actual Bayes classifier.]

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

5
9

Generalization bounds for learning to rank (8)

I So the bounds are difficult to compare, neither the estimation
error of the predictor nor its approximation error are directly
related to the difficulty of the ranking problem.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
0

SVM ranking

As ERM is infeasible computationally, we could use a linear SVM
instead:

I Encode an ordered pair of objects by a feature vector
xij := ei − ej ∈ Rn and the outcome yij as described above.

I Get training points of the form (xij, yij).

I Classify using a linear hyperplane (that is, find a vector
w ∈ Rn) such that sign(〈w, zij〉) makes as few errors as
possible. Use an SVM to find this hyperplane.

I In particular, the predicted ordering can then be recovered by
the ordering of the coordinates of w.

Can also prove margin-type generalization bounds for SVM ranking,
skipped.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
1

Application: distance completion problem

This is a topic we are actually working on right now in my research
group.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
2

Setup: Triplet comparisons

A scenario beyond simple ranking:

I Points X1, ..., Xn from Rd

I We don’t know any numeric information such as vector
representations or distance values

I We just get to see binary variables that compare distances:

d(Xi, Xj) < d(Xk, Xl) = true or false

So in the ranking language, we get a partial ranking between the
distances of the objects.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
3

Setup: Triplet comparisons (2)

Why is this interesting?

It is often easy to say that things “are pretty similar” or “not similar
at all”, but it is hard to come up with good ways to quantify this.

Example user ratings: easier to compare

dist(,) < dist(,)

... than to give numeric distance values:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
4

Setup: Triplet comparisons (3)

dist(,) = 0.1

dist(,) = 0.7

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
5

Setup: Triplet comparisons (4)

In the following we consider:

I Triple questions: d(Xi, Xj)
?

≤ d(Xi, Xk)

I Quadruple questions: d(Xi, Xj)
?

≤ d(Xk, Xl)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
6

Distance completion problem

Distance comparison problem:

I n objects from Rd

I All we observe are a subset of all triple comparisons of the
form d(Xi, Xj) < d(Xi, Xk).

I Want to estimate the full ranking between all distances dij.

The full distance ranking can then for example be used to find the
nearest neighbors of each data points, and then we can apply
classification algorithms, regression algorithms, clustering
algorithms, etc.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
7

Query complexity of the distance completion

problem

Given n objects, how many randomly chosen triple comparisons do I
need in order to estimate the true distance ranking reliably?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
8

Query complexity, first observations

First observations about ranking m objects.

I There are of the order m := n2 distances. A comparison-based
sorting algorithm would need Θ(m logm)Θ(n2 log n2) many
(actively chosen !) comparisons. In the noiseless case, it would
produce the perfect ranking.

I If we use ERM to recover an approximate ranking, we would
just need m/ε2 = n2/ε2 many queries to learn the ranking up
to error ε (ignoring that the computational complexity is much
too high).

I If we apply the simple counting algorithm by
Shah/Wainwright, we also get a query complexity of
m3 logm = n6 log n (of randomly chosen comparisons).
Would also work in a noisy case.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

6
9

Query complexity, first observations (2)

In any application in real-world, query complexities of order n2 are
prohibitive ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
0

Query complexity, first observations (3)

However:

I Observe that the three approaches I mentioned above do not
make any assumption on the objects that need to be ordered,
it can be any arbitrary collection of numbers.

I We know more about our data: the things we want to order
are Euclidean distances. Can we exploit this in some way?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
1

Query complexity, exploit structure

The answer is yes: we can exploit the structure of the problem.

I Consider the set of points X1, ..., Xn ∈ Rd, and a certain
subset of triple questions.

I Observe that a triple comparison gives a relationship in form of
a hyperplane: dij < dik is equivalent to saying: if we consider
the hyperplane between point Xj and Xk, then point Xi is on
the same side as Xj.

I We can now build equivalence classes of point sets: the ones
that satisfy the same hyperplane conditions.

I It is now possible to “count” the number of equivalence classes
(non-trivial!). The result is: there are of the order 2dn logn such
equivalence classes (where d is the dimension of the space).

I This means that the log-shattering coefficient of the set of all
Euclidean (!) distance completions is just dn log n.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
2

Query complexity, exploit structure (2)

I So we the standard shattering-coefficient generalization bound
says that with high probability, if we want to approximate the
correct distance ranking up to error ε, we need of the order
dn log n/ε2 many triple questions, close to linear!!!

I Note that this is much better than the n2 log n requirements
we had without making any assumption.

This is a very nice example to demonstrate that exploiting the
structure in the problem helps (at least in theory).

And this is also a nice example for the type of questions we work in
in my group - we just proved this result a couple of weeks ago...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
3

Query complexity, exploit structure (3)

Outlook:

I Note that while this shows that in theory we only need few
triples to recover the full distance ranking for Euclidean points,
we don’t know how to do it in practice.

I We would need to have an algorithm that does ERM on the
set of equivalence classes ...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
4

Spectral ranking

Based on the following paper:
Fogel, d’Aspremont, Vojnovic: SerialRank: Spectral ranking using
seriation. NIPS 2014.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
5

Spectral ranking

Setting as before: we observe pairwise comparison, want to output
a ranking.

Define the comparison matrix:

Cij =


1 if i � j

−1 if i ≺ j

0 if no data exists

Define a similarity matrix as follows:

Sij :=
n∑
k=1

1 + Ci,kCj,k
2

(counts the number of matching comparisons of i and j with other
items k)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
6

Spectral ranking (2)

SpectralRanking algorithm:

I Compute the similarity matrix S based on the observed data

I Construct the unnormalized Laplacian L and compute its
second eigenvector.

I Rank all items according to the corresponding entries in this
eigenvector.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
7

Spectral ranking (3)

There are lots of theoretical results on this algorithm:

I Assume we get to see all pairwise comparisons, answered
truthfully, and there are no ties. Then SpectralRanking
recovers the correct ranking perfectly.
(not interesting from an algorithmic point of view, we could
just do topological sort in this case).

I Given a comparison matrix for n objects, with at most m
corrupted entries (selected uniformly at random). Then if
m = O(

√
δn), then the SerialRank algorithm will produce the

ground truth ranking with probability at least 1− δ.
This is the interesting statement.

Proofs are based on some old work by Atkinson 1998, we skip them.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
8

Google page rank

The setting here is not a pairwise-comparison setting. But no
student should leave this university without knowing google page
rank, so let’s discuss it anyway.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

7
9

The setting

Want to build a search engine:

I Query comes in

I First need to find all documents that match the query

I Then need to decide which to display on the top of the list. So
we need to rank the search results according to their
“relevance”.

Early attempts looked at the content of the documents (count how
often the keyword occurs, etc).

The new idea by the google founders was to instead look at the link
structure of the webpages.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
0

Page Rank

Published by Brin, Page, 1998.

Main idea:

I A webpage is important if many important links point to that
page.

I A link is important if it comes from an page that is important.

Results of a search query should then be ranked according to
importance.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
1

Page Rank (2)

Given a directed graph G = (V,E), potentially with edge weights
sij, define:

I Out-degree: dout(i) =
∑
{k|i→k} sik

I In-degree: din(j) =
∑
{k|k→j} skj

Define the ranking function r for all vertices:

r(j) =
∑

i∈parents(j)

r(i)

dout(i)
(∗)

This is an implicit definition. We need to find a way to solve this
for r(j), for all j.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
2

Page Rank (3)

Define the matrix A with entries

aij =

{
1/dout(i) if i→ j

0 otherwise

and the vector r with the relevance scores as entries.

Observe that (rt · A)j =
∑

i riaij, so we can rewrite (∗) as

rt = rt · A

So r is a left eigenvector of A with eigenvalue 1.

The page rank idea consists of ranking vertices according to this
eigenvector.
In the following we will consider two things:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
3

Page Rank (4)

I Interpretation as a random surfer model

I How to compute the eigenvector.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
4

Random walks on a graph

To give the random surfer interpretation to pagerank, we first need
to learn about random walks on a graph:

I Consider a directed graph G = (V,E) with n vertices.

I A random walk on the graph is a time-homogenous,
discrete-time Markov chain. At each point in time, we
randomly jump from one vertex to a neighboring vertex. The
probability to end in one of the neighbors only depends on the
current vertex, not on the past beyond this.

I It is fully described by transition matrix P with entries

pij = P (Xt+1 = vj|Xt = vi).

For a weighted graph with similarity edge weights sij, have

pij = sij/di and in particular P = D−1S.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
5

Random walks on a graph (2)

Initial distribution:

At time point 0, we start the random walk at a random vertex
according to probability row vector µ = (µ1, ..., µn) with µi ≥ 0,∑
µi = 1. The special case where we start at a deterministic vector

corresponds to the case where µ = (0, ..., 0, 1, 0, ..., 0).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
6

Random walks on a graph (3)

k-step distribution:

I At time t = 0, the state distribution is µ, our initial
distribution.

I At time t = 1, the distribution is µP .

I At time t = 2, the distribution is (µP)P = µP 2. Note that
entry ij of the matrix P 2 describes all possible ways to get
with exactly 2 steps from vertex i to j.

I In general, the matrix P k describes the k-step transition
probabilities.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
7

Random walks on a graph (4)

Stationary distribution:

Intuition: if the random walk runs for a long time, it will converge
to an equilibrium distribution. It is called the stationary distribution
or the invariant distribution.

Definition of a stationary distribution: If we start in a stationary
distribution π and perform one step of the random walk, we have
again the stationary distribution. In formulas: π is a stationary
distribution of P if

πP = π

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
8

Random walks on a graph (5)

Convergence to the stationary distribution:

Consider a graph G that is weighted, undirected, connected, and
not bipartite. Denote by P the transition matirx. Then:

I The stationary distribution of P is given as the (normalized)
degree vector: πi = di/(

∑
j dj) (CAN YOU SEE WHY?)

I limt→∞ P (Xt = vi) = πi
I The matrix P t converges to the matrix 1π with constant

columns π. The speed of convergence depends on the
eigengap between the first and second eigenvalue of P :
I Largest eigenvalue is always 1, second largest eigenvalue λ2

satisfies λ2 < 1 (note: it might not be real-valued!). Note
that right and left eigenvalues are the same, just the
eigenvectors differ.

I Perron-Frobenius theorem: P t = 1π +O(nc|λ2|t).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

8
9

The random surfer model

Recall the definition of the matrix A for pagerank. Observe:

I the matrix A is the transition matrix of a ranodm walk on the
graph of the internet.

I the ranking vector r is its stationary distribution.

If done naively, two big problems:

I dangling nodes (e.g., pdf pages).

I disconnected components

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
0

The random surfer model (2)

Solution to both problems:
we introduce a random restart (“teleportation”):

I with probability α close to 1, we walk along edges of the graph.

I With probability 1− α, we teleport: we jump to any other
random webpage.

Transition matrix is then given as

αP + (1− α)
1

n
1

where n is the number of vertices and 1 the constant one matrix.

The ranking is then the stationary distribution of this matrix.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
1

How to compute it: the power method

Need to compute an eigenvector of a matrix of size n× n where n
is the number of webpages in the internet (2014: one billion
webpages).

Computing an eigenvector of a symmetric matrix has worst case
complexity of about O(n3) (and btw, our current matrix is not
symmetric).

IS THERE ANY REASON TO BELIEVE THAT THIS MIGHT
WORK?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
2

How to compute it: the power method (2)

The simplest way to compute eigenvectors: the power method

I Let A be any diagonalizable matrix.
I Goal: want to compute eigenvector corresponding to the

largest eigenvalue.
I Observe: Denote by v1, ..., vn a basis of eigenvectors of matrix
A. Consider any vector v =

∑
i aivi. Then

Av = A(
∑
i

aivi) =
∑
i

ai(Avi) =
∑
i

aiλivi

If we apply A k times, then:

Akv =
∑
i

aiλ
k
i vi = a1λ

k
1

(
v1︸ ︷︷ ︸

dominates

+
n∑
i=2

ai
a1

λki
λk1
vi︸ ︷︷ ︸

vanishes

)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
3

How to compute it: the power method (3)

The Power Method, vanilla version:

1 Initialize q0 by any random vector with ‖q0‖ = 1
2 while not converged
3 z(k) := Aq(k)

4 q(k) := z(k)/‖z(k)‖

Caveat:

I Won’t work if q0 ⊥ first eigenvector

I Does not necessarily converge if the multiplicity of the largest
eigenvalue is larger than 1.

I Speed of convergence depends on the gap between the first
and second eigenvalue, namely λ2/λ1.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
4

How to compute it: the power method (4)

Implementation of page rank is a simple power iteration:

I We Initialize with constant vector r = e = (1, ..., 1)t.

I We iterate until convergence:

rtk+1 = rtk(αA+ (1− α)evt

= αrtkA+ (1− α) rtke︸︷︷︸
=1

vt

= α rtkA︸︷︷︸
sparse

+(1− α)vt

Comments:

I v is the “personalization vector” (≈ probability over all
webpages of whether the surfer would like to see that page)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
5

How to compute it: the power method (5)

I 1− α is the teleportation parameter.

I in the last line, we essentially have to perform one sparse
matrix-vector multipication, this can be done in parallel.

I Speed of convergence depends on the gap between first and
second eigenvalue. Personalization adds speed because if the
spectrum of P is {1, λ2, λ3, ...}, then the spectrum of the
personalize matrix is {1, αλ2, αλ3, ...}.
Thus we have a tradeoff: α large ; small gap, slow
convergence, but structure of the web graph well represented.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
6

Meta ML: How does
research work? In general,

and in Tübingen

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
7

Publications and reviewing in ML

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
8

Publication culture in Computer Science

Keywords to discuss:

I Reviewed or not reviewed

I Typically reviewed: journals, good conferences,

I Not seriously reviewed: workshop papers, lecture notes, arxiv,
technical reports

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
1

9
9

Publication culture in Computer Science (2)

Top conferences in general Machine Learning: NeurIPS, ICML,
ICLR, AISTATS, ...

Conferences dedicated to smaller subfields, for example COLT
(learning theory)

Top journal in Machine Learning: JMLR

Top journal in Statistics: Annals of Statistics

As opposed to other scientific fields, Nature or Science are not
important in ML.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
0

Reviewing: the process itself

... in journals:

Keywords to discuss:

I blind, double-blind,

I editor (in chief, associate)

I how the whole process works: submission, editor, associate
editor, 3 reviewers, associate editor, decision (accept,
minor/major revision, reject), notification

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
1

Reviewing: the process itself (2)

... in conferences:

Keywords are:

I program chair = editor in chief

I area chair = associate editor (mainly in large conferences)

I programm committee: sometimes this means reviewer,
sometimes area chair.

I Biggest issue: scaling! (NeurIPS 2020: 10.000 submissions,
400 area chairs, need 10.000 * 3 / 6 = 5.000 Reviewers who
reach review 6 papers)

I How the process works: submission, program chairs, bidding +
paper assignment to reviewers, reviews come in, discussion
among reviewers, discussion among area chairs/program
chairs, decision (accept/reject).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
2

Points to address in a review

Two different parties are addressed in a review:

I Authors: want constructive and fair feedback about their paper

I Editors: need arguments for their decision

Points typically addressed in a review:

I Quality. Is the paper technically sound? Are claims
well-supported? Is this a complete piece of work, or merely a
position paper? Are the authors careful (and honest) about
evaluating both the strengths and weaknesses of the work?

I Clarity. Is the paper clearly written? Is it well-organized?
Does it adequately inform the reader? (A superbly written
paper provides enough information for the expert reader to
reproduce its results.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
3

Points to address in a review (2)

I Originality. Are the problems or approaches new? Is this a
novel combination of familiar techniques? Is it clear how this
work differs from previous contributions? Is related work
adequately referenced?

I Significance. Are the results important? Does the paper
address a difficult problem in a better way than previous
research? Does it advance the state of the art? Does it
provide unique data, unique conclusions on existing data, or a
unique theoretical or pragmatic approach?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
4

Points to address in a review (3)

Typical structure of a review:

I Summarize what you believe are the main contributions of
the paper, in own words (about 1 paragraph), and summarize
your opinion about the paper (few sentences)

I Give detailed evaluation: address the four points (quality,
clarity, originality, significance), and summarize pros / cons.

I Give minor comments to the authors (typos, unclear
formulations, parts that cannot be understood, wrong
formulas, etc

I Private comments to the editor (not seen by the authors).
Here one can declare conflicts of interests, whether one knows
the authors, how thoroughly one has done the review (eg,
checked proof details).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
5

How to find a good PhD position?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
6

Finding a PhD position

Look at the potential supervisor (but attention, all these thing
differ a lot between junior and senior persons, and both of that
might be fine!):

I Your supervisor should have published regularly during the last
couple of years, in good conferences / journals.

I citation numbers, h-index (not: impact factors, they are
bogus!)

I prizes

I is he/she in editorial boards, program committee/area chair for
conferences,

Note: if you apply in a junior research group (group leader is not
yet a professor), these numbers might not yet tell a lot — but these
people can be great supervisors because the still have enough time
for a tight supervision, and your fate is also really important to
them.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
7

Finding a PhD position (2)

Look at the group:

I How large is the group? Only PhD students or also some
postdocs?

I If the group is large, find out who would supervise you (not
formally, but on a regular basis), because it won’t be the head
of the group.

I Check how much and where all the other PhD students publish.

I To which conferences the people in the group go regularly.

I Are there any regular activities going on? Reading groups,
seminars, invited guests, ...?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
8

Finding a PhD position (3)

Ask during the interview, general situation:

I How is the supervision organized in the group?

I Find out how much freedom the people have in selecting what
they want to work on.

I How much time do people have for research, what other
obligations are there (teaching, project work, ...)?

I How long does a PhD in that group take, usually.

I Opportunities to travel to conferences, travel money?

I

I Ask before the job interview whether you will get the
opportunity to talk to another PhD student in the group.
Listen to what they say “between the lines”. Ask all the
questions above to the head of the group, and once more to
the PhD student.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

0
9

Finding a PhD position (4)

Ask during the interview, regarding you personal position:

I Where does the funding for your position would come from? If
not university / public sector, then ask about constraints
regarding publications.

I Any kind of duties attached to the contract, and if yes, how
much? (Teaching, project work,)

I Who would be your supervisor? How often would you meet?

I Ultimately, you also need to have the impression that you like
the place and get along with your potential supervisor...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
0

How does research funding work? In general,

and in Tübingen

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
1

Research funding for university groups

I Professor’s salary is payed by the university

I Typically, the university provides funds to employ between 1
and 3 PhD students per group.

I Whenever a group is larger than this, the funding has to be
aquired by the professor.

I It is considered an important part of the work of a professor to
aquire such funding, and the ranking of a university depends to
a significant amount on the amount of additional funding that
is being aquired.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
2

Research funding for university groups (2)

Research funding can come from various sources:

I National research funding agencies by the state of
Germany. This is the German Research Foundation, DFG,
and the Bundesministerium BMBF. There exist individual
grants you can apply for, and larger consortia (Forschergruppe,
Sonderforschungsbereich, Exzellenzcluster). It is expected that
you publish all your results.

I Foundations such as Volkswagen-Stiftung,
Robert-Bosch-Stiftung, Friedich-Ebert-Stiftung. There exist a
large number of such foundations, and many of them act as a
“charity” and provide money for (sometimes unusual) research
projects. It is expected that you publish all your results.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
3

Research funding for university groups (3)

I Industrial funding, which comes in many different variants.
The typical construction is that a company and a professor
agree on a joint research project, and then the professor gets
the money to employ PhD students. There exist various types
of contracts for such projects. In some of them there are
restrictions on publications in the sense that any publication
would need to be approved by the company. In others,
researchers can publish freely.

In all cases, the money is being routed through the university. It
never ends on a professor’s bank account, nor in other secret
accounts.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
4

ML Research in Tübingen

Institutions:

I University of Tübingen

I Max Planck Institute for Inteligent Systems

I Max Planck Institute for Biological Cybernetics

On the next few slides I introduce the largest funding initiatives in
Tuebingen:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
5

ML Research in Tübingen (2)

Cluster of Excellence: “Machine Learning: New Persepectives for
Science”’

I The aim of this cluster is to enable machine learning to take a
central role in all aspects of scientific discovery and to
understand how such a transformation will impact the
scientific approach as a whole.

I Funded by the DFG (German Research Fondation) out of the
exellence initiative

I https:

//uni-tuebingen.de/en/research/core-research/

cluster-of-excellence-machine-learning/research/

research/research-areas/

https://uni-tuebingen.de/en/research/core-research/cluster-of-excellence-machine-learning/research/research/research-areas/
https://uni-tuebingen.de/en/research/core-research/cluster-of-excellence-machine-learning/research/research/research-areas/
https://uni-tuebingen.de/en/research/core-research/cluster-of-excellence-machine-learning/research/research/research-areas/
https://uni-tuebingen.de/en/research/core-research/cluster-of-excellence-machine-learning/research/research/research-areas/

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
6

ML Research in Tübingen (3)

Cyber Valley Initiative, https://cyber-valley.de

I Goal: Partners from science and industry are building bridges
between curiosity-driven basic research and applied research.

I Who? The state of Baden-WÃ¼rttemberg, the Max Planck
Society with the Max Planck Institute for Intelligent Systems,
the Universities of Stuttgart and TÃ¼bingen, as well as
Amazon, BMW AG, Daimler AG, IAV GmbH, Dr. Ing. h.c. F.
Porsche AG, Robert Bosch GmbH, and ZF Friedrichshafen AG
are the founding partners of this initiative. Moreover,
Fraunhofer Gesellschaft recently joined Cyber Valley as an
associated partner. Cyber Valley also receives support from the
Christian Buerkert Foundation, the Gips-Schuele Foundation,
the Vector Foundation, and the Carl Zeiss Foundation.

https://cyber-valley.de

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
7

ML Research in Tübingen (4)

I Funding to a large part by the public sector, to a smaller part
by the industrial partners

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
8

ML Research in Tübingen (5)

Tue.AI Competence Center

I Mission: We are setting up a novel public research institution
to attract the best scientists to advance AI, train a student
population of around 250, and generate positive impact in
medicine, science, and technology.

I Funded by the BMBF (German Ministry for Research(

I https://tuebingen.ai/

https://tuebingen.ai/

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

1
9

ML Research in Tübingen (6)

Ellis initiative (European Laboratory for Learning and Intelligent
Systems):

I European initiative to connect many of the good ML places in
Europe, setting up networking and potentially joint PhD
projects.

I In progress ...

I https://ellis.eu/

https://ellis.eu/

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
0

ML Research in Tübingen (7)

Max Planck Graduate School for Intelligent Systems

I https://imprs.is.mpg.de/

https://imprs.is.mpg.de/

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
1

Mathematical Appendix

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
2

Recap: Probability theory

Literature:

I In general, any book on probability theory

I On the homepage you can also find the link to a probability
recap writeup for a CS course at Stanford University (written
by Arian Maleki and Tom Do).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
3

Discrete probability theory

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
4

Discrete probability measure

I Ω = space of “elementary events”, “sample space”.
This space is called “discrete” if it has finitely many elements.

I “Space of events”: In the discrete case this is simply the power
set P(Ω) of Ω, that is all possible subsets of Ω.
(In general it is more complicated, the space of events has to
be a “σ-algebra”).

I Probability measure: P : P(Ω)→ [0, 1] such that the following
three rules are satisfied (“Axioms of Kolomogorov”)
I P (A) ≥ 0 for all events A ⊂ P(Ω)
I P (Ω) = 1
I “sigma-additivity”: Let S1, S2, ... ⊂ Ω be at most countably

many disjoint sets. Then P (S1 ∪ S2 ∪ ...) =
∑

i P (Si)

Note: in the discrete case, the probability measure is uniquely
defined on all of P(Ω) if we know P (ω) for all elementary events
ω ∈ Ω.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
5

Discrete probability measure (2)

Example: throwing a die

I Elementary events: {1, 2, ..., 6}
I Probability of the elementary events:
P (1) = P (2) = ... = P (6) = 1/6.

I Probabilities of all other subsets of Ω can be computed based
on the elementary events due to the sigma-additivity.
Example: P (1, 2, 5) = P (1) + P (2) + P (5) = 3 · 1/6 = 1/2.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
6

Conditional probabilities

Define the probability of event A under the condition that event B
has taken place:

P (A
∣∣ B) =

P (A ∩B)

P (B)

Example with a die: compute the probability P ({3}
∣∣ “uneven”).

Solution:
A = {3}, B = {1, 3, 5}, P (A ∩B) = P ({3}) = 1/6, P (B) = 1/2,
this implies P ({3}

∣∣ “uneven”) = (1/6)/(1/2) = 1/3.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
7

Important formulas

I Union bound. Let A1, ..., Ak be any events. Then

P (A1 ∪ A2 ∪ ... ∪ Ak) ≤
k∑
i=1

P (Ai)

Intuitive reason:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
8

Important formulas (2)

I Formula of total probability. Let B1, ..., Bk be a disjoint
decomposition of the probability space, that is all Bi are
disjoint and B1 ∪ ... ∪Bk = Ω. Then:

P (A) =
k∑
i=1

P (A ∩Bi)=
k∑
i=1

P (A
∣∣ Bi)P (Bi)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

2
9

Important formulas (3)

I Bayes’ formula:

P (B
∣∣ A) =

P (B ∩ A)

P (A)
=
P (A

∣∣ B) · P (B)

P (A)

Example:
The probability that a woman has breast cancer is 1%. The
probability that the disease is detected by a mammography is
80 % (true positive rate). The probability that the test detects
the disease although the patient does not have it is 9.6% (false
positive rate). If a woman at age 40 is tested as positive, what
is the probability that she indeed has breast cancer?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
0

Important formulas (4)

Define the following events:
A := mammography is positive
B := woman has breast cancer

Given:
I P (B) = 0.01
I P (A

∣∣ B) = 0.80
I P (A

∣∣ ¬B) = 0.096
I Need to compute P (A). Here we use the total probability:

P (A) = P (A|B)P (B) + P (A|¬B)P (¬B)

= 0.8 · 0.01 + 0.096 · 0.99 = 0.103

Now we plug this into Bayes theorem and obtain

P (B|A) =
0.80 · 0.01

0.103
= 0.078

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
1

Random variables

A random variable is a function X : Ω→ R.
Example:

I We have 5 red and 5 black balls in an urn

I We draw 3 balls randomly without replacement

I Random variable X = number of red balls we got

A random variable is called discrete if its image is discrete (it can
take at most finitely many values).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
2

Random variables (2)

A random variable X : Ω→ R induces a probability distribution PX
on its image: for any (measurable) set A ⊂ R we define

PX(A) = P (X ∈ A)

The measure PX is called the distribution of the random variable.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
3

Important discrete probability distributions

I Bernoulli distribution: we throw a biased coin once. It takes
value 1 with probability p and value 0 with probability (1− p).

I Binomial distribution B(n, p). We throw a biased coin n
times independently from each other. The binomial random
variable counts how often we got 1. It is defined as

P (X = k) =

(
n

k

)
pk(1− p)n−k

It has expected value np and variance np(1− p).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
4

Important discrete probability distributions (2)

I Poisson distribution Pois(λ).

P (X = k) =
λke−λ

k!

The Poisson distribution counts the occurrence of “rare
events” in a fixed time interval (like radioactive decay), λ is
the intensity parameter.

It has expected value λ and variance λ.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
5

Independence

Two events A, B are called independent if
P (A ∩B) = P (A) · P (B).

Note that this implies that P (A
∣∣ B) = P (A).

Two random variables X, Y : Ω→ R are called independent if for
all events A,B we have that
P (X ∈ A, Y ∈ B) = P (X ∈ A) · P (Y ∈ B).

Example:

I Throw a coin twice. X = result of the first toss, Y = result of
the second toss. These two random variables are independent.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
6

Independence (2)

I Throw a coin twice. X = result of the first toss, Y = sum of
the two results. These two random variables are not
independent.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
7

Expectation

For a discrete random variable X : Ω→ {r1, ..., rk} its expectation
(mean value) is defined as

E(X) :=
k∑
i=1

ri · P ({X = ri})

Intuition: the expectation is the “average result”, where the results
are weighted according to their probabilities.
Examples:

I We throw a die, X is the result. Then
E(X) =

∑6
i=1 i · 1

6
= 3.5.

I We throw a biased coin, heads occurs with probability p, tais
with probability 1− p. We assign the random variable X = 1
for heads and X = 0 for tails. Then
E(X) = 0 · (1− p) + 1 · p = p.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
8

Expectation (2)

Important formulas and properties:

I The expectation is linear: for random variables X1, ..., Xn and
real numbers a1, ..., an ∈ R,

E(
n∑
i=1

aiXi) =
n∑
i=1

aiE(Xi)

I Expectation and independence: If X, Y are independent, then

E(X · Y) = E(X) · E(Y).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

3
9

Variance

The variance of a random variable is defined as

Var(X) = E
(
(X − E(X))2

)
= E(X2)−

(
E(X)

)2

For a discrete random variable with possible values r1, ..., rn, it is
given as

Var(X) =
n∑
i=1

(ri − E(X))2 · P (X = ri)

The variance measures how much the random variable “varies”
about its mean.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
0

Variance (2)

Example:

I We throw a biased coin, heads occurs with probability p, tails
comes with probability 1− p. We assign the random variable
X = 1 for heads and X = 0 for tails.

I We have already seen: E(X) = p.

I Now let’s compute the variance:

Var(X) = (1− p)2p+ (0− p)2(1− p) = (1− p)p

Important properties of the variance:

I Var(X) ≥ 0.

I For random variables X and scalars a, b ∈ R we have
Var(aX + b) = a2 Var(X)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
1

Variance (3)

I If X, Y are independent random variables, then

Var(X + Y) = Var(X) + Var(Y).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
2

Standard deviation

The standard deviation of a random variable is just the square root
of the variance:

std(X) =
√

Var(X)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
3

Covariance and correlation

The covariance of two real-valued random variables X and Y is
defined as

Cov(X, Y) = E
(
(X − E(X))(Y − E(Y))

)
= E(XY)− E(X)E(Y)

It provides (one particular) measure of how related the two random
variables are: whether we can use a linear (!) function to predict
one of them from the other one.

Properties:

I Cov(X, Y) = Cov(Y,X)

I Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y).
I If Cov(X, Y) = 0, the random variables are called

uncorrelated.
I X, Y independent =⇒ X, Y uncorrelated (but not vice versa)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
4

Covariance and correlation (2)

The correlation coefficient is defined as

Cor(X, Y) := ρ(X, Y) := Cov(X, Y)/(std(X)std(Y))

I rescales the covariance to a number between −1 and 1

I ρ = 1 iff Y = aX + b for a > 0, b ∈ R
I ρ = −1 iff Y = aX + b for a < 0, b ∈ R

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
5

Covariance and correlation (3)

Examples (point sets and their correlation coefficient, taken from
wikipedia):

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
6

Covariance and correlation (4)

(*) Covariance and correlation cares about linear relationships:

(*) Even if Y is a deterministic function of X, the covariance can
be 0

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
7

Covariance and correlation (5)

Exercise: onsider a symmetric random variable X (such that the
distribution of X and −X are the same), and define Y = X2.
Then Cov(X, Y) = 0

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
8

(*) Important inequalities

I Markov’s inequality: Let X be a non-negative random variable
and t > 0. Then

P (X ≥ t) ≤ E(X)

t

I Chebyshev’s inequality:

P (|X − E(X)| ≥ t) ≤ Var(X)

t2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

4
9

Joint, marginal and product distribution

We want to look at the “joint distribution” of two random variables.
Example:

I We “sample” people: Ω = set of all people

I X = their weight (in kg), Y = their height (in cm).

I The joint distribution measures how the pair of random
variables (X, Y) : Ω→ R2 is distributed.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
0

Joint, marginal and product distribution (2)

I The distribution of X is called the marginal distribution of X,
similarly for Y .

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
1

Joint, marginal and product distribution (3)

I Note that for given marginal distributions, there exist many
joint distributions that respect the marginals!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
2

Joint, marginal and product distribution (4)

A particular joint distribution is the product distribution: it gives
the joint distribution of X and Y if they are independent of each
other:

I Consider two discrete random variables X, Y : Ω→ R.

I Define the product distribution
P ((X, Y) = (x, y)) = P (X = x) · P (Y = y).

The construction works analogously for a product of finitely many
spaces.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
3

(*) Conditional independence

Consider three discrete random variables X, Y, Z : Ω→ R. We say
that X and Y are conditionally independent given Z if

P (X ∈ A, Y ∈ B
∣∣ Z ∈ C)

= P (X ∈ A
∣∣ Z ∈ C) · P (Y ∈ B

∣∣ Z ∈ C)

for all sets A,B,C ⊂ Ω with P (Z ∈ C) > 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
4

Variance and covariance of multivariate random

variables

Variance and covariance for 1-dim random variables X ∈ R:

Var(X) = E((X − E(X))2)

Cov(X, Y) = E
(

(X − E(X))(Y − E(Y))
)

They can be estimated from sample points x1, ..., xn and y1, ..., yn
as follows:

x̄ := 1/n
n∑
i=1

xi

V̂ar(X) = 1/n
n∑
i=1

(xi − x̄)2

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
5

Variance and covariance of multivariate random

variables (2)

ˆCov(X, Y) = 1/n
n∑
i=1

(xi − x̄)(yi − ȳ)

Note that for variance and covariance, one sometimes normalizes
the estimator V̂ar resp. ˆCov with the factor of 1/(n− 1) instead of
1/n to achieve an unbiased estimate (we skip this issue here).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
6

Variance and covariance of multivariate random

variables (3)

Now consider d-dim random variables: X = (X(1), ..., X(d))′.
The expectation E(X) of a d-dim random variable is the vector
that contains the coordinate-wise expectations.
The overall variance over all d dimensions is the sum of the
variances of the individual dimensions:

Vard(X) =
d∑
i=1

E(‖X(i) − E(X(i))‖2)

The covariance matrix of X is a d× d-matrix C which encodes the
covariances between the individual dimensions of the distribution:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
7

Variance and covariance of multivariate random

variables (4)

Ckl = Cov(X(k), X(l))

EXAMPLE: SHOE SIZE / HEIGHT / AGE OF A PERSON

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
8

Variance and covariance of multivariate random

variables (5)

These quantities can be estimated from the data:

V̂ard(X) = 1/n
d∑

k=1

n∑
i=1

(x
(k)
i − x̄(k))2

(Ĉ)kl =
1

n

n∑
i=1

(x
(k)
i − x̄(k))(x

(l)
i − x̄(l))

I Ĉ is called the empirical covariance matrix or the sample
covariance matrix.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

5
9

Variance and covariance of multivariate random

variables (6)

I If the data points are centered, and we define matrix X
containing the points as rows, then the empirical covariance
matrix Ĉ coincides with X′X because

Ckl =
∑n

i=1X
(k)
i X

(l)
i = (X ′X)kl

I In the following, we often drop the “hat” and the word
“empirical”...

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
0

(*) Conditional expectation

Example:

I X, Y two independent throws of a die, Z = X + Y .

I Want to compute the expectation of Z under the condition
that X was 3.

I We write E(Z
∣∣ X = 3)

If we don’t fix the outcome value of X, then we write E(Z
∣∣ X),

this is a random variable (because we don’t know the random
outcome of X).

Formally, this is a pretty complicated mathematical object. For
those who have not seen it before, we just treat it in an intuitive
manner.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
1

Continuous probability theory

Probability theory gets more complicated once we go beyond the
discrete regime. In this class, we try to keep it on a somewhat
intuitive level.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
2

Density and cumulative distribution

Consider a random variable X : Ω→ R. We say that X has density
function p : R→ R if for all (measurable) subsets A ⊂ R we have

P (X ∈ A) =

∫
A

p(x)dx

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
3

Density and cumulative distribution (2)

I Intuitively, a density is something like a “continuous
histogram”.

I Sometimes the density is abbreviated as “pdf” (“probability
density function”) in the literature.

I Density functions are always non-negative and integrate to 1.
They don’t have to be continuos.

I Not every random variable can be described by a density, but
in this course we won’t discuss this.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
4

(*) Cumulative distribution function

A real-valued random variable can always be described by its
cumulative distribution function (sometimes abbreviated as “cdf” in
the literature).
For a random variable X : Ω→ R it is defined as

g : R→ R, g(x) = P (X ≤ x)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
5

Uniform distribution

The uniform distribution on [0, 1]: for 0 ≤ a < b ≤ 1 we define

P (X ∈ [a, b]) = b− a

Its density is constant.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
6

Normal distribution (univariate)

The most important continuous distribution on R is the normal
distribution, abbreviated N(µ, σ2).

I It has two parameters: its expectation µ and its variance σ2.
I µ controls the location of the distribution
I σ controls the “width” of the distribution

I The density function of N(µ, σ2) is given as

fµ,σ(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
I The special case of mean 0 and variance 1 is called the

“standard normal distribution”. Sometimes the normal
distribution is also called a Gaussian distribution.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
7

Normal distribution (univariate) (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
8

Multivariate normal distribution

The multivariate normal is defined for the d-dimensional space Rd,
it is abbreviated by N(µ,Σ).

I It has two parameters: the expectation vector µ ∈ Rd, and the
covariance matrix Σ ∈ Rd×d. The covariance matrix is always
positive definite.

I The density function is defined as follows:

fµ,Σ(x) =
1√

2π det(Σ)
exp

(
− 1

2
(x− µ)′Σ−1(x− µ)

)
I The eigenvectors and eigenvalues of the covariance matrix

control the shape of the Gaussian.

I Each of the marginal distributions is a univariate normal
distribution.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

6
9

Multivariate normal distribution (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
0

Multivariate normal distribution (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
1

Mixture of Gaussians

When generating toy data for machine learning applications, one
often uses a mixture of Gaussian distributions:

Given mean vectors µ1, ..., µk ∈ Rd, postivite definite covariance
matrices Σ1, ...,Σk ∈ Rd×d, and mixing coefficients α1, ..., αk > 0
with

∑
αi = 1, the density function of the mixture of Gaussians as

follows:

f(x) =
k∑
i=1

αifµi,Σi

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
2

Mixture of Gaussians (2)

−3 −2 −1 0 1 2 3−2

0

2

0.05

0.1

0.15

density

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
3

Mixture of Gaussians (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
4

Expectation

In the continuous domain, sums are going to be replaced by
integrals. For example, the expectation of a random variable X
with density function p(x) is defined as

E(X) =

∫
R
x · p(x)dx

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
5

Recap: Linear algebra

Literature:

I In general, any introductory book on linear algebra

I On the homepage you can also find the link to a short linear
algebra recap writeup (by Zico Kolter and Chuong Do).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
6

The maths

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
7

Vector space

A vector space V is a set of “vectors” that supports the following
operations:

I We can add and substract vectors: For v, w ∈ V we can build
v + w, v − w

I We can multiply vectors with scalars: For v ∈ V , a ∈ R we can
build av.

I These operations satisfy all kinds of formal requirements
(associativity, commutativity, identity element, inverse element,
and so on).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
8

Vector space (2)

Most prominent example: V = Rd.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

7
9

Basis

A basis of a vector space is a set of vectors b1, ..., bd ∈ V that
satisfies two properties:

I Any vector in V can be written as a linear combination of
basis vectors:
For any v ∈ V there exist a1, ..., ad ∈ R such that

v =
∑d

i=1 aibi

I The vectors in the basis cannot be expressed in terms of each
other, they are linearly independent:∑d

i=1 aibi = 0 =⇒ ai = 0 for all i = 1, ..., d.

The number of vectors in a basis is called the dimension of the
vector space.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
0

Basis (2)

Example:

I e1 := (1, 0) and e2 := (0, 1) form a basis of R2

I v1 := (1, 1) and v2 := (1, 2) form a basis of R2

I v1 := (1, 1) and v2 := (2, 2) do not form a basis of R2.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
1

Linear mappings

A linear mapping T : V → V satisfies
T (av1 + bv2) = aT (v1) + bT (v2) for all a, b ∈ R, v1, v2 ∈ V .
Typical linear mappings are: stretching, rotation, projections, etc.,
and combinations thereof.

Note: to figure out what a linear mapping does, it is enough to
know what it does on the basis vectors: for v =

∑
i aibi we know

by linearity that T (v) = T (
∑

i aibi) =
∑

i aiT (bi)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
2

Matrices

m× n-matrix A:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
3

Matrices (2)

Transpose of a matrix , written as At or A′ is the matrix where we
exchange rows with columns (that is, instead of aij we have aji).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
4

Matrices (3)

We can multiply to matrices if their “dimensions” fit:
X = m× n-matrix, Y n× k matrix. Then Z : X · Y is a
m× k-matrix with entries

zij =
n∑
s=1

xisysk

66 Algorithms

Therefore, after two split operations on average, the array will shrink to at most three-
fourths of its size. Letting T (n) be the expected running time on an array of size n, we get

T (n) ≤ T (3n/4) + O(n).

This follows by taking expected values of both sides of the following statement:
Time taken on an array of size n

≤ (time taken on an array of size 3n/4)+ (time to reduce array size to ≤ 3n/4),
and, for the right-hand side, using the familiar property that the expectation of the sum is the
sum of the expectations.
From this recurrence we conclude that T (n) = O(n): on any input, our algorithm returns

the correct answer after a linear number of steps, on the average.

The Unix sort command
Comparing the algorithms for sorting and median-finding we notice that, beyond the com-
mon divide-and-conquer philosophy and structure, they are exact opposites. Mergesort splits
the array in two in the most convenient way (first half, second half), without any regard to
the magnitudes of the elements in each half; but then it works hard to put the sorted sub-
arrays together. In contrast, the median algorithm is careful about its splitting (smaller
numbers first, then the larger ones), but its work ends with the recursive call.
Quicksort is a sorting algorithm that splits the array in exactly the same way as the me-

dian algorithm; and once the subarrays are sorted, by two recursive calls, there is nothing
more to do. Its worst-case performance is Θ(n2), like that of median-finding. But it can be
proved (Exercise 2.24) that its average case is O(n log n); furthermore, empirically it outper-
forms other sorting algorithms. This has made quicksort a favorite in many applications—
for instance, it is the basis of the code by which really enormous files are sorted.

2.5 Matrix multiplication
The product of two n×nmatrices X and Y is a third n×n matrix Z = XY , with (i, j)th entry

Zij =
n∑

k=1

XikYkj.

To make it more visual, Zij is the dot product of the ith row of X with the jth column of Y :

X Y Z

i

j

(i, j)
× =

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
5

Matrices (4)

Special case where Y is a vector of length n× 1 is called
matrix-vector-multiplication:

z = Xy with zi =
∑
j

xijyj

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
6

Linear mappings correspond to matrices

Linear mappings correspond to matrices:
Intuition: the columns of the matrix contain the images of the basis
vectors:

I Matrix-vector multiplication is then the same as applying the
mapping to the vector.

I Multiplication of two matrices is the same as applying the
mappings one after the other.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
7

The rank of a matrix

Many equivalent definition: The rank of a matrix is ...

I ... the largest number of independent columns in the matrix

I ... the largest number of independent rows in the matrix

I ... the dimension of the image space of the linear mapping
that corresponds to the matrix

I ... in case the matrix is symmetric: the rank is the number of
non-zero eigenvalues of the matrix (see below).

A n× n-matrix is said to have full rank if it has rank n.

A n× n-matrix is said to have low rank if its rank is “small”
compared to n (this is not a formal definition, it is often used
informally).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
8

Inverse of a matrix

I For some matrices A we can compute the inverse matrix A−1.
It is the unique matrix that satisfies

A · A−1 = A−1 · A = Id

where Id is the identity matrix (1 on the diagonal, 0
everywhere else).

I A matrix is called invertible if it has an inverse matrix.

I A square matrix is invertible if and only if it has full rank.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

8
9

Norms and scalar products

Some vector spaces have additional structure: norms or even scalar
products. In particular, this is true for Rd.

Given two vectors v = (v1, ..., vn)t and w = (w1, ...wn)t ∈ Rn, their
scalar product is defined as 〈v, w〉 =

∑n
i=1 viwi.

The norm ‖v‖ of a vector v ∈ Rd is defined as ‖v‖2 = 〈v, v〉.

Intuition:

I The scalar product is related to the angle between the two
vectors:
I 〈v, w〉 = 0 ⇐⇒ v ⊥ w (vectors are orthogonal)
I If v and w have norm 1, then 〈v, w〉 is the cosine of the angle

between the two vectors.

I The norm is the length of a vector.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
0

Norms and scalar products (2)

A matrix A is called orthogonal if all its columns are orthogonal to
each other. It is called orthonormal if additionally, all its columns
have norm 1.

For orthogonal matrices, we always have At = A−1.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
1

Eigenvalues and eigenvectors

A vector v ∈ Rn, v 6= 0 is called an eigenvector of A ∈ Rn×n with
eigenvalue λ if Av = λv.

Intuition: in the direction of v, the linear mapping corresponding to
A is stretching by factor λ.

Taken together, all eigenvectors with eigenvalue λ form a subspace
called the eigenspace associated to eigenvalue λ. The dimension of
this subspace is called the geometric multiplicity of λ.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
2

Eigenvalues and eigenvectors (2)

Just for completeness:

Eigenvectors can also be defined as the roots of the characteristic

polynomial f(λ) := det(A− λI)
!

= 0. The degree of this
polynomial is d (the dimension of the space). The multiplicity of
this root is called the algebraic multiplicity of λ.

The algebraic multiplicity is always larger or equal to the geometric
one. In case of strict inequality, the matrix cannot be diagonalized.

Simple example where the two multiplicities do not agree:
the nilpotent matrix [0, 1; 0, 0] has eigenvalue 0 with geometric
multiplicity 1, but algebraic multiplicity 2. It cannot even be
diagonalized over C.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
3

Eigenvalue decomposition of a symmetric matrix

Diagonalization:

I A matrix A is called diagonalizable if there exists a basis of
eigenvectors.

I In this case, we can write the matrix in the form

A = V DV t

where V is an orthonormal matrix that contains the
eigenvectors as columns, and D is a diagonal matrix containing
the eigenvalues.

I One can also write the matrix in the form

A =
d∑
i=1

λiviv
t
i

where λi are the eigenvalues and vi the eigenvectors.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
4

Eigenvalue decomposition of a symmetric matrix

(2)

I Intuitively, a matrix is diagonalizable if it performs “Strecken
und Spiegeln”, but no rotation.

Symmetric matrices are always diagonalizable and have real-valued
eigenvalues. Their eigenvectors (of different eigenvalues) are always
perpendicular to each other

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
5

(*) Singular Value Decomposition (SVD)

If a matrix is not square, we cannot compute eigenvalues. But there
exists a closely related concept, the singular values:

Any matrix Φ ∈ Rn×d can be decomposed as follows:

Φ = UΣV t

where

I U ∈ Rn×n is orthogonal. Its columns are called
left singular vectors.

I Σ ∈ Rn×d is a diagonal matrix containing the singular values
σ1, ..., σd on the diagonal

I V ∈ Rd×d is an orthogonal matrix. Its columns are called
right singular vectors.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
6

(*) Singular Value Decomposition (SVD) (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
7

(*) Singular Value Decomposition (SVD) (3)

There is a close relation between the singular values of Φ and the
eigenvalues of the (symmetric!) matrices ΦΦt and ΦtΦ:

I The left singular vectors of Φ are the eigenvectors of ΦΦt.
CAN YOU SEE WHY?
ΦΦt = (UΣV t)(UΣV t)t = UΣV V tΣU t = UΣ2U t.

I The right singular vectors of Φ are the eigenvectors of ΦtΦ.

I The non-zero singular values of Φ are the square roots of the
non-zero eigenvalues of both ΦtΦ and ΦΦt.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
8

(*) Singular Value Decomposition (SVD) (4)

Note in particular:

I An SVD exists for any matrix!

I The singular values are unique.

I The singular vectors are “as unique” as in an eigenvector
decomposition (that is, up to scalar multiplication, and in case
of higher multiplicity the singular vectors span a whole space).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
2

9
9

Positive Definite Matices

A symmetric matrix A is called positive semi-definite if all its
eigenvalues are ≥ 0. In case of strict inequality it is called positive
definite.

Equivalent formulations:

I Positive definite ⇐⇒ vtAv > 0 for all v ∈ Rn \ {0}.
I Positive semi-definite ⇐⇒ vtAv ≥ 0 for all v ∈ Rn \ {0}.
I Positive semi-definite ⇐⇒ we can decompose the matrix in

the form A = XX t.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
0

(*) Generalized inverse

Consider a symmetric matrix A ∈ Rd×d.

I Let λ1, ..., λd the eigenvalues and v1, ..., vd a corresponding set
of eigenvectors of A. We can write A in the spectral
decomposition as

A =
d∑
i=1

λiviv
t
i

I In case the matrix has rank d, all its eigenvalues are non-zero.
Then we can write the inverse of A as

A−1 =
d∑
i=1

1

λi
viv

t
i

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
1

(*) Generalized inverse (2)

I In case the matrix is not of full rank, it is not invertible.
However, we can define the Moore-Penrose generalized inverse
as

A+ :=
∑
i:λi 6=0

1

λi
viv

t
i

(intuitively, this is the inverse of the matrix A restricted to the
subspace orthogonal to its nullspace).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
2

(*) Generalized inverse (3)

Properties of the generalized inverse:

In general we don’t have that AA+ = I or A+A = I.

But we have the following slightly weaker properties:

I AA+A = A and A+AA+ = A+

I (A+)+ = A

I A+A and AA+ are both symmetric.

I If A is invertible, then A−1 = A+.

I AA+ is an orthogonal projection on the ran(A) (the image of
the matrix A), and A+A is an orthogonal projection on
ran(At).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
3

(*) Generalized inverse (4)

Some intuition:
Consider a linear operator A that is a projection on some
lower-dimensional subpace. As example, consider the projection of
the three-dim space to the two-dim plane:

A(x1, x2, x3)t := (x1, x2)t ∈ R2

Call the projection A and consider a “reconstruction” operator Arec.

I Note that from the result of the projection, it is impossible to
reconstruct the original point exactly (this is why the matrix A
is not invertible).

I However, I can reconstruct another point that would give the
same projection result: for example, I can simply define

Arec(x1, x2) := (x1, x2, 17) ∈ R3

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
4

(*) Generalized inverse (5)

I Note that if I apply the projection again after reconstruction, I
get the same result as after the first projection: I have

AArecA = A

The Moore-Penrose pseudoinverse is one particular such
reconstruction operator.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
5

(*) Rayleigh principle

Proposition 57 (Rayleigh principle)

Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 ≥ ... ≥ λn
and eigenvectors v1,, vn. Then

λ1 = max
v∈Rn

vtAv

‖v‖2 = max
v∈Rn:‖v‖=1

vtAv.

The eigenvector v1 is the vector for which this maximum is attained.
Moreover,

λk+1 = max
v⊥{v1,...,vk}:‖v‖=1

vtAv.

This theorem holds analogously for minimization problems. In this case,
the solution is given by the smallest eigenvalue / vector.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
6

(*) Rayleigh principle (2)

Proof intuition.

I Let λ be any eigenvalue with eigenvector v. Then
vtAv = vt(λv) = λ (because vtv = 1).

I So among all eigenvectors v1, ..., vn, the eigenvector v1 leads
to the largest value λ1.

I Now consider an arbitrary unit vector w ∈ Rn. Because A is
symmetric, there exists a basis of eigenvectors v1, ..., vn. In
particular, there exist coefficients ci such that w =

∑
i civi and

‖c‖ = 1.

I Then wtAw = ... =
∑n

i,j=1 cicjv
t
iAvj

I But for i 6= j we get vtiAvj = vtiλvj = 0 (because different
eigenvectors are perpendicular to each other).

I so wtAw =
∑

i c
2
i v
t
iAvi =

∑
i c

2
iλi.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
7

(*) Rayleigh principle (3)

I Among all c with ‖c‖ = 1, the maximum of this expression is
attained for c1 = 1, c2 = ... = cn = 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
8

Projections

A linear mapping P : E → E between vector spaces is a projection
if and only if P 2 = P .
It is an orthogonal projection if and only if it is a projection and
nullspace(P) ⊥ image(P).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

0
9

Projections (2)

We always have two points of view of a projection:

View 1: represent the projected points still as elements of the
original space, that is P : Rd → Rd.

View 2: Represent the projected points just as elements of the
low-dim space, that is π : Rd → R`

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
0

Projections (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
1

Projections (4)

View 2, Projection on a one-dimensional subspace:
The orthogonal projection on a one-dimensional space spanned by
vector a can be expressed as

π : Rd → R, π(x) = atx

View 2, Projection on an `-dimensional subspace:
Want to project on an `-dim subspace S with ONB v1, ..., v`.

Define the matrix V with the vectors v1, ..., v` as columns. Then
compute the low-dim representation as

π : Rd → R`, x 7→ V tx

View 1:
Define P := V V t (with V as above) and set

π : Rd → Rd, x 7→ Px

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
2

Projections (5)

Affine projections:

Linear projections always map 0 to 0. If we want to perform an
orthogonal projection on an affine (= shifted) space S̃ = S + µ, we
need to express the mapping as Tx = P (x− µ) + µ.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
3

(*) Matrix norms

There are many different ways in which one can define a norm of a
matrix:

I Operator norm, spectral norm: Consider a matrix as linear
operator on a normed vector space V with norm ‖ · ‖. Then
define

‖A‖ = sup
{x∈V ;‖x‖=1}

‖Ax‖

If A is normal (that is, AA∗ = A ∗ A), then the operator
coincides with

max{|λ|;λ eigenvalueof A}.

This is sometimes called the spectral norm.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
4

(*) Matrix norms (2)

I Frobenius norm, Hilbert-Schmidt norm, nuclear norm:

‖A‖F :=

√∑
ij

a2
ij =

√
trace(A ∗ A) =

√∑
i

σ2
i

where σi are the singular values of the matrix.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
5

Some numerical procedures you should know

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
6

The power method

I Let A be any diagonalizable matrix.

I Goal: want to compute eigenvector corresponding to the
largest eigenvalue.

I Observe: Denote by v1, ..., vn a basis of eigenvectors of matrix
A. Consider any vector v =

∑
i aivi. Then

Av = A(
∑
i

aivi) =
∑
i

ai(Avi) =
∑
i

aiλivi

If we apply A k times, then:

Akv =
∑
i

aiλ
k
i vi = a1λ

k
1

(
v1︸ ︷︷ ︸

dominates

+
n∑
i=2

ai
a1

λki
λk1
vi︸ ︷︷ ︸

vanishes

)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
7

The power method (2)

The Power Method, vanilla version:

1 Initialize q0 by any random vector with ‖q0‖ = 1
2 while not converged
3 z(k) := Aq(k)

4 q(k) := z(k)/‖z(k)‖

Caveat:

I Won’t work if q0 ⊥ first eigenvector

I Does not necessarily converge if the multiplicity of the largest
eigenvalue is larger than 1.

I Speed of convergence depends on the gap between the first
and second eigenvalue, namely λ2/λ1.

I Can be implemented efficiently if matrix is sparse.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
8

Excursion to convex optimization: primal, dual,

Lagrangian

Literature:

I Appendix E in the book by Bishop

I Section 6.3 in the book by Schölkopf / Smola

I Your favorite book on convex optimization, for example:
I Boyd, S. and L. Vandenberghe. Convex Optimization.

Cambridge University Press, 2004. Comprehensive, yet easy to
read.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

1
9

Convex optimization problems: intuition

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
0

Convex optimization problems

Convex sets:

I A subset S of a vector space is called convex if for all x, y ∈ S
and for all t ∈ [0, 1] it holds that tx+ (1− t)y ∈ S.

I In words: for any two points x, y ∈ S, the straight line
connecting these two points is contained in the set S.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
1

Convex optimization problems (2)

Convex functions:

I A function f : S → R that is defined on a convex domain S is
called convex if for all x, y ∈ S and t ∈ [0, 1] we have
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

I Intuitively, this means that if we look at the graph of the
function and we connect two points of this graph by a straight
line, then this line is always above the graph.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
2

Convex optimization problems (3)

Examples:

I functions of one variable that are twice differentiable are
convex iff their second derivative is non-negative.

I Functions of several variables that are twice differentiable are
convex if their Hessian matrix is positive (semi)-definite.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
3

Convex optimization problems (4)

Observe: For convex functions g, the sublevel sets of the form
{x|g(x) ≤ 0} are convex.

(Funnily, this is not true the other way round: you can have all
sublevel sets convex, but yet the function is not convex.)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
4

Convex optimization problems (5)

Convex optimization problem:

I An optimization problem of the the form

minimize f(x)

subject to gi(x) ≤ 0 (i = 1, ..., k)

is called convex if the functions f , gi are convex.

I Sometimes one also considers equality constraints of the form
hj = 0. They can always be replaced by two inequality
constraints hj ≤ 0 and −hj ≤ 0. However, the only situation
in which hj and −hj are both convex occurs if h is a linear
function.

I Convex optimization problems have the desirable property that
any local minimum is already a global minimum.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
5

Convex optimization problems (6)

Important terms:

I The function f over which we optimize is called the objective
function

I The functions gi are called the constraints.

I The set of points where all constraints are satsified is called
the feasible set.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
6

Convex optimization problems (7)

Convex optimization without constraints: which problem is convex?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
7

Convex optimization problems (8)

Convex optimization without constraints: the problem with
non-convex domains:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
8

Convex optimization problems (9)

Convex optimization with non-convex constraints:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

2
9

Lagrangian: intuitive point of view

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
0

Convex optimization problem

We now want to derive a “recipe” by which many convex
optimization problems can be analyzed / rewritten / solved. We
don’t consider formal proofs, but just derive the concepts in an
intuitive way.

In particular, for the ease of presentation assume that all functions
are continuously differentiable (all statements hold in more general
settings as well, but one would need convex analysis for this).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
1

Recap: gradient of a function

Consider a function f : Rd → R.

I The gradient of f is the vector of partial derivatives:

∇f(x) = (∂/∂x1, ..., ∂/∂xd)
′(x)

I For each x, the gradient ∇f(x) points in the direction where
the function increases most:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
2

Recap: gradient of a function (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
3

Lagrange multiplier for equality constraints

Consider the following convex optimization problem:

minimize f(x)

subject to g(x) = 0

where f and g are convex.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
4

Lagrange multiplier for equality constraints (2)

Recall: if g is convex, then it sublevel-sets are convex:

Sublevel set: {x|g(x) ≤ c} (the green set in the figure)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
5

Lagrange multiplier for equality constraints (3)

Gradient (equality constraint): For any point x on the “surface”
{g(x) = 0} the gradient ∇g(x) is orthogonal to the surface itself.

Intuition: to increase / decrease g(x), you need to move away from
the surface, not walk along the surface.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
6

Lagrange multiplier for equality constraints (4)

Gradient (objective function): Consider the point x∗ on the
surface {g(x) = 0} for which f(x) is minimized. This point must
have the property that ∇f(x) is orthogonal to the surface.

Intuition: otherwise we could move a little along the surface to
decrease f(x).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
7

Lagrange multiplier for equality constraints (5)

Conequence: at the optimal point, ∇g(x) and ∇f(x) are parallel,
that is there exists some ν ∈ R such that ∇f(x) + ν∇g(x) = 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
8

Lagrange multiplier for equality constraints (6)

We now define the Lagrangian function

L(x, ν) = f(x) + νg(x)

where ν ∈ R is a new variable called Lagrance multiplier. Now
observe:

I The condition ∇f(x) + ν∇g(x) = 0 is equivalent to
∇xL(x, ν) = 0

I The condition g(x) = 0 is equivalent to ∇νL(x, ν) = 0.

To find an optimal point x∗ we need to find a saddle point of
L(x, ν), that is a point such that both ∇xL(x, ν) and ∇νL(x, ν)
vanish.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

3
9

Simple example

Consider the problem to minimize f(x) subject to g(x) = 0, where
f, g : R2 → R are defined as

f(x1, x2) = x2
1 + x2

2 − 1

g(x1, x2) = x1 + x2 − 1

Observe: it is hard to solve this problem by naive methods because
it is unclear how to take care of the constraints!

Solution by the Lagrange approach:

Write it in the standard form:

minimize x2
1 + x2

2 − 1

subject to x1 + x2 − 1 = 0

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
0

Simple example (2)

The Lagrangian is

L(x, ν) = x2
1 + x2

2 − 1︸ ︷︷ ︸
f(x1,x2)

+ν(x1 + x2 − 1︸ ︷︷ ︸
g(x1,x2)

)

Now compute the derivatives and set them to 0:

∇x1L = 2x1 + ν
!

= 0

∇x2L = 2x2 + ν
!

= 0

∇νL = x1 + x2 − 1
!

= 0

If we solve this linear system of equations we obtain
(x∗1, x

∗
2) = (0.5, 0.5).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
1

Lagrange multiplier for inequality constraints

Consider the following convex optimization problem:

minimize f(x)

subject to g(x) ≤ 0

where f and g are convex.

We now distinguish two cases: constraint is “active” or “inactive”:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
2

Lagrange multiplier for inequality constraints (2)

Case 1: Constraint is “active”, that is the optimal point is on the
surface g(x) = 0.

Again ∇f and ∇g are parallel in the optimal point.

But furthermore, the direction of derivatives matters:

I The derivative of g points outwards (at any point on the
surface g = 0). This is always the case if g is convex.

I Then the derivative of f is directed inwards (otherwise we
could decrease the objective by walking inside).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
3

Lagrange multiplier for inequality constraints (3)

So we have ∇f(x) = −λ∇g(x) for some value λ > 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
4

Lagrange multiplier for inequality constraints (4)

Case 2: Constraint is “inactive”, that is the optimal point is not on
the surface g(x) = 0 but somewhere in the interior.

I Then we have ∇f = 0 at the solution (otherwise we could
decrease the objective value).

I We do not have any condition on ∇g (it is as if we would not
have this constraint).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
5

Lagrange multiplier for inequality constraints (5)

We can summarize both cases using the Lagrangian again. We now
define the Lagrangian

L(x, λ) = f(x) + λg(x)

where the Lagrange multiplier has to be positive: λ ≥ 0.

I Case 1: constraint active, λ > 0.
I Need to find a saddle point: ∇xL(x, λ) = ∇λL(x, λ) = 0.

I Case 2: constraint inactive, λ = 0.

I Then L(x, λ) = f(x). Hence ∇xL(x, λ) = ∇xf(x)
!

= 0,
∇λL(x, λ) ≡ 0.

I So in both cases we have again a saddle point of the
Lagrangian.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
6

Lagrange multiplier for inequality constraints (6)

Also in both cases we have λg(x∗) = 0.

I Constraint active: λ > 0, g(x∗) = 0.

I Constraint inactive: λ = 0, g(x∗) 6= 0.

This is called the Karush-Kuhn-Tucker (KKT) condition.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
7

Simple example

What are the side lengths of a rectangle that maximize its area,
under the assumption that its perimeter is at most 1?

We need to solve the following optimization problem:

maximizex · y subject to 2x+ 2y ≤ 1

Bring the problem in standard form:

minimize(−x · y) subject to 2x+ 2y − 1 ≤ 0

Form the Lagrangian:

L(x, y, λ) = −xy + λ(2x+ 2y − 1)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
8

Simple example (2)

Saddle point conditions / derivatives:

∂L/∂x = −y + 2λ
!

= 0

∂L/∂y = −x+ 2λ
!

= 0

∂L/∂λ = 2x+ 2y − 1
!

= 0

Solving this system of three equations gives x = y = 0.25.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

4
9

Simple example (3)

Now need to see: when does this approach work, when does it not
work, what can we prove about it?

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
0

Lagrangian: formal point of view

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
1

Lagranigan and dual: formal definition

Consider the primal optimization problem

minimize f0(x)

subject to fi(x) ≤ 0 (i = 1, ...,m)

hj(x) = 0 (j = 1, ..., k)

Denote by x∗ a solution of the problem and by p∗ := f0(x∗) the
objective value at the solution.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
2

Lagranigan and dual: formal definition (2)

Define the corresponding Lagrangian as follows:

I For each equality constraint j introduce a new variable νj ∈ R,
and for each inequality constraint i introduce a new variable
λi ≥ 0. These variables are called Lagrange multipliers.

I Then define

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
k∑
j=1

νjhj(x)

Define the dual function g : Rm × Rk → R by

g(λ, ν) = inf
x
L(x, λ, ν)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
3

Dual function as lower bound on primal

Proposition 58 (Dual function is concave)

No matter whether the primal problem is convex or not, the dual
function is always concave in (λ, ν).

Proof. For fixed x, L(x, λ, ν) is linear in λ and ν and thus
concave. The dual function as a pointwise infimum over concave
functions is concave as well. ,

Note that concave is good, because we are going to maximize this
function later on.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
4

Dual function as lower bound on primal (2)

Proposition 59 (Dual function as lower bound on primal)

For all λi ≥ 0 and νj ∈ R we have g(λ, ν) ≤ p∗.

Proof.

I Let x0 be a feasible point of the primal problem (that is, a
point that satisfies all constraints).

I For such a point we have

m∑
i=1

λi︸︷︷︸
≥0

fi(x0)︸ ︷︷ ︸
≤0

+
k∑
i=1

νjhj(x0)︸ ︷︷ ︸
=0

≤ 0

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
5

Dual function as lower bound on primal (3)

I This implies

L(x0, λ, ν) = f0(x0) +
m∑
i=1

λifi(x0) +
k∑
j=1

νjhj(x0) ≤ f0(x0)

Note that this property holds in particular when x0 is x∗.

I Moreover, for any x0 (and in particular for x0 := x∗) we have

inf
x
L(x, λ, ν) ≤ L(x0, λ, ν)

I Combining the last two properties gives

g(λ, ν) = inf
x
L(x, λ, ν) ≤ L(x∗, λ, ν) ≤ f0(x∗)

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
6

Dual optimization problem

Have seen: the dual function provides a lower bound on the primal
value. Finding the highest such lower bound is the task of the dual
problem:

We define the dual optimization problem as

max
λ,ν

g(λ, ν) subject to λi ≥ 0, νj ∈ R

Denote the solution of this problem by λ∗, ν∗ and the corresponding
objective value d∗ := g(λ∗, ν∗).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
7

Dual optimization problem (2)

Dual vs Primal, some intuition:

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
8

Dual optimization problem (3)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

5
9

Weak duality

Proposition 60 (Weak duality)

The solution d∗ of the dual problem is always a lower bound for the
solution of the primal problem, that is d∗ ≤ p∗.

Proof. Follows directly from Proposition 59 above. ,

We call the difference p∗ − d∗ the duality gap.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
0

Strong duality

I We say that strong duality holds if p∗ = d∗.

I This is not always the case, just under particular conditions.
Such conditions are called constraint qualifications in the
optimization literature.

I Convex optimization problems often satisfy strong duality, but
not always.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
1

Strong duality (2)

Examples:

I Linear problems have strong duality

I Quadratic problems have strong duality (; support vector
machines)

I There exist many convex problems that do not satisfy strong
duality. Here is an example:

minimizex,y exp(−x)

subject to x/y ≤ 0

y ≥ 0

One can check that this is a convex problem, yet p∗ = 1 and
d∗ = 0.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
2

Strong duality: how to convert the solution of

the dual to the one of the primal

By strong duality: p∗ = d∗, that is we get the same objective
values. But how can we recover the primal variables x∗ that lead to
this solution, if we just know the dual variables λ∗, ν∗ of the
optimal dual solution?

EXERCISE!

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
3

Strong duality implies saddle point

Proposition 61 (Strong duality implies saddle point)

Assume strong duality holds, let x∗ be the solution of the primal
and (λ∗, ν∗) the solution of the dual optimization problem. Then
(x∗, λ∗, ν∗) is a saddle point of the Lagrangian.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
4

Strong duality implies saddle point (2)

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
5

Strong duality implies saddle point (3)

Proof.
I We first show that x∗ is a minimizer of L(x, λ∗, ν∗):

I By the strong duality assumption we have f0(x∗) = g(λ∗, ν∗).
I With this we get

f0(x∗) = g(λ∗, ν∗) = inf
x
L(x, λ∗, ν∗) ≤ L(x∗, λ∗, ν∗) ≤ f0(x∗)

(last inequality follows from Proposition 60).
I Because we have the same term on the left and side, we have

equality everywhere.
I So in particular, infx L(x, λ∗, ν∗) = L(x∗, λ∗, ν∗).

I Then we show that (λ∗, ν∗) are maximizers of L(x∗, λ, ν).
I This follows from the definition of (λ∗, ν∗) as solutions of

maxλ,ν minx L(x, λ, ν).

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
6

Strong duality implies saddle point (4)

I Taken together we get

L(x∗, λ, ν) ≤ L(x∗, λ∗, ν∗) ≤ L(x, λ∗, ν∗)

That is, (x∗, λ∗, ν∗) is a saddle point of the Lagrangian:
I It is a minimum for x (with fixed λ∗, ν∗).
I It is a maximum for (λ, ν) (with fixed x∗).

,

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
7

Saddle point always implies primal solution

Proposition 62 (Saddlepoint implies primal solution)

If (x∗, λ∗, ν∗) is a saddle point of the Lagrangian, then x∗ is always
a solution of the primal problem.

Proof. Not very difficult, but we skip it. ,

Remarks:

I This proposition always holds (not only under strong duality).

I This proposition gives sufficient conditions for optimality.
Under additional assumptions (constraint qualifications) it is
also a necessary condition.

U
lr

ik
e

vo
n

L
u

xb
u

rg
:

S
ta

ti
st

ic
a

l
M

a
ch

in
e

L
ea

rn
in

g
S

u
m

m
er

2
0

2
0

1
3

6
8

Why is this whole approach useful?

I Whenever we have a saddle point of the Lagrangian, we have a
solution of our constraint optimization problem. This is great,
because otherwise we would not know how to solve it.

I If strong duality holds, we even know that any solution must
be a saddle point. So if we don’t find a saddle point, then we
know that no solution exists.

I If your original minimization problem is not convex, at least its
dual is a concave maximization problem (or, by changing the
sign, a convex minimization problem). If the duality gap is
small, then it might make sense to solve the dual instead of
the primal (you will not find the optimal solution, but maybe a
solution that is close).

I As we will see for support vector machines, the Lagrangian
framework sometimes gives important insights into properties
of the solution.

