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Justify all your claims.

Exercise 1 (Multivariate distributions, 3+2 points).

a) Consider the joint density

f(x, y) =
1

Z
exp

(
−2x2 − y2 − x2y2

)
, x, y ∈ R,

of two real-valued random variablesX and Y , where Z =
∫
R2 exp

(
−2x2 − y2 − x2y2

)
d(x, y)

is the normalizing constant. Compute the marginal densities fX(x) and fY (y), as well as
the conditional densities fX|Y=y(x) and fY |X=x(y). What is the name of the distributions
given by the conditional densities?
Hint: Use the formula

∫
R exp(−a(x+ b)2)dx =

√
π
a for a > 0, b ∈ R.

b) Consider a positive joint density f(x, y) of two real-valued random variables X and Y .
Prove the continuous versions of Bayes’ formula and the law of total probability for all
x, y ∈ R:

fY |X=x(y) =
fX|Y=y(x)fY (y)

fX(x)
(Bayes’ formula)

and

fY (y) =

∫
R
fY |X=x(y)fX(x)dx (Law of total probability)

Exercise 2 (Concentration inequalities, 2+3+3+2 points). Let (X1, Y1), . . . , (Xn, Yn) be
i.i.d. random variables taking values in Rd × R. For a function g : Rd × R→ [0, 1], define

R(g) := E(X,Y ) [g(X,Y )] and Rn(g) =
1

n

n∑
i=1

g(Xi, Yi) .

Let G = {g1, . . . , gm} be a finite set of m ∈ N such functions. Define

gn := argmin
g∈G

Rn(g) and g∗ := argmin
g∈G

R(g) .

a) Let Z1, . . . , Zn be i.i.d random variables taking values in [0, 1] with µ = E[Z1]. Use
Hoeffding’s inequality to prove that for any ε > 0, it holds

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ ε
)
≤ 2 exp(−2nε2) .

b) Use part a) on Zi := g(Xi, Yi) to prove that for any ε > 0, it holds

P

(
sup
g∈G
|Rn(g)−R(g)| ≥ ε

)
≤ 2m exp(−2nε2)
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c) Prove that for any ε > 0, it holds

P (|R(gn)−R(g∗)| ≥ ε) ≤ P

(
sup
g∈G
|Rn(g)−R(g)| ≥

ε

2

)

Hint: prove the implication (|R(gn)−R(g∗)| ≥ ε) ⇒
(
supg∈G |Rn(g)−R(g)| ≥ ε

2

)
by

using the decomposition

R(gn)−R(g∗) = [R(gn)−Rn(gn)] + [Rn(gn)−Rn(g∗)] + [Rn(g
∗)−R(g∗)] .

d) Combine the inequalities from part b) and c) to prove that R(gn)→ R(g∗) almost surely
as n→∞.
Hint: Use the Borel-Cantelli lemma and the following characterization (compare Assign-
ment 9, Exercise 2c)

Xn −−−→
n→∞

X almost surely ⇔ ∀ε > 0 : P ({|Xn −X| ≥ ε} i.o.) = 0 .

Exercise 3 (Variance bounds, 3+2 points). The Efron-Stein inequality is stated as follows.
Let X1, . . . , Xn be independent random variables taking values in R and let Z = f(X1, . . . , Xn)
be a square-integrable function, that is, E

[
Z2
]
<∞. Moreover, let X ′1, . . . , X ′n be independent

copies of X1, . . . , Xn, that is, they are jointly independent and X ′i has the same distribution as
Xi for every i ∈ {1, . . . , n}. For every i, define Z ′i as the random variable obtained by replacing
Xi with X ′i, that is,

Z ′i = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) .

Then it holds

Var[Z] ≤
n∑
i=1

E[
(
Z − Z ′i

)2
+
] , where x+ :=

{
x, if x ≥ 0

0, otherwise
.

Now consider the following scenario. Let A ∈ Rn×n be a symmetric real matrix whose entries
Ai,j = Xi,j for 1 ≤ i ≤ j ≤ n are independent random variables taking values in [−1, 1]. Let
Z = Z(A) denote the largest eigenvalue of A.

a) For 1 ≤ i ≤ j ≤ n, let X ′i,j be an independent copy of Xi,j . Consider the symmetric matrix
A′i,j obtained by replacing Xi,j in A with X ′i,j , and let Z ′i,j denote the corresponding largest
eigenvalue. Let v = (v1, . . . , vn)

T ∈ Rn denote an eigenvector of A corresponding to the
largest eigenvalue Z with ‖v‖ = 1. Prove that

(Z − Z ′i,j)+ ≤ 4 |vivj | .

Hint: Use the fact that the largest eigenvalue Z satisfies

Z = vTAv = sup
u∈Rn : ‖u‖=1

uTAu (∗)

b) Use part a) to prove that Var[Z] ≤ 16.
Hint: You may assume that E

[
Z2
]
<∞ without a proof.
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