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Abstract

Despite the ubiquity of kernel-based cluster-
ing, surprisingly few statistical guarantees ex-
ist beyond settings that consider strong struc-
tural assumptions on the data generation pro-
cess. In this work, we take a step towards
bridging this gap by studying the statistical
performance of kernel-based clustering algo-
rithms under non-parametric mixture models.
We provide necessary and su�cient separabil-
ity conditions under which these algorithms
can consistently recover the underlying true

clustering. Our analysis provides guarantees
for kernel clustering approaches without struc-
tural assumptions on the form of the compo-
nent distributions. Additionally, we establish
a key equivalence between kernel-based data-
clustering and kernel density-based cluster-
ing. This enables us to provide consistency
guarantees for kernel-based estimators of non-
parametric mixture models. Along with the-
oretical implications, this connection could
have practical implications, including in the
systematic choice of the bandwidth of the
Gaussian kernel in the context of clustering.

1 INTRODUCTION

Clustering refers to the unsupervised task of parti-
tioning a given data sample or the input space into
meaningful regions. Kernel clustering approaches such
as kernel k-means (Dhillon et al., 2004) and kernel spec-
tral clustering (Ng et al., 2002) are widely adopted by
practitioners, particularly for partitioning non-spherical
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complex cluster structures. Beyond their good prac-
tical behavior, kernel methods are appealing due to
their amenability to theoretical analysis. However,
as an anomaly, kernel clustering has been elusive to
theoretical analysis, in particular, under general non-
parametric assumptions on the data generation process.
One of the principle sources for this gap between the-
ory and practice had been the lack of a universally
accepted characterization of the quality of a cluster-
ing. One popular notion of the goodness of clustering
is defined as the one that consistently partitions the
data space. Consistency is, however, only a necessary
condition for clustering algorithms. It simply checks
if an algorithm asymptotically converges to a limiting
partition. The optimality of this limiting partition is
not studied under consistency. As an example, spectral
clustering has been shown to be consistent (Luxburg et
al., 2008) for any similarity function k. However, if one
uses a similarity function based on an uninformative
kernel such as the identity kernel, then the obtained
limiting partition is clearly not guaranteed to be a de-
sirable one. Density based clustering (Hartigan, 1975;
Hartigan, 1981; Rinaldo et al., 2010) is another popular
line of work with theoretical backing, where clusters
are defined as connected components of high-density
regions, referred to as density level sets. The impre-
cise notion of a high-density region is overcome using
the so called cluster-tree approach (Chaudhuri et al.,
2014; Sriperumbudur and Steinwart, 2012), where a
continuum of all level sets is simultaneously considered.

Another systematic approach to overcome the ambi-
guity concerning the quality of clustering lies in the
so called model-based clustering, which assumes that
the data is generated from a mixture distribution and
the goal is to partition the data in congruity with the
components that generate the data. However, theoret-
ical analysis of kernel clustering methods have been
confined to settings with parametric distributions (Yan
et al., 2016; Couillet et al., 2016; Vankadara et al.,
2020). Parametric assumptions such as the Gaussian
mixture setting, where the components are assumed to
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be normally distributed, are extremely restrictive since
the data generated under such assumptions are far from
a typical dataset for which kernel clustering algorithms
are applicable. In contrast, non-parametric assump-
tions on the data-generation process can be consider-
ably less restrictive, but kernel clustering algorithms
have been elusive to theoretical analysis under such
assumptions. A primary hurdle in the analysis of clus-
tering approaches under non-parametric assumptions
is due to the issue of identifiability of non-parametric
mixture models, that is, non-parametric models may
be ambiguously defined. There is limited previous
work that presents an analysis of kernel-based cluster-
ing algorithms under non-parametric mixture models.
Schiebinger et al. (2015) provide recovery guarantees
for spectral clustering of non-parametric mixtures by
analyzing the spectral properties of the Laplacian op-
erator under the assumption that the overlap between
the components is small relative to a notion of “indi-
visibility” of the components. The analysis provided in
Schiebinger et al. (2015) is restricted to that of spectral
clustering and considerably di↵erent from the analysis
in this paper.

1.1 Contributions

Non-parameteric kernel clustering. We provide
non-parametric conditions for consistency of certain
kernel-based clustering algorithms. To the best of
our knowledge, these are among the first theoretical
guarantees to kernel-based clustering methods without
assumptions on the form of the component distribu-
tions.

1. We provide an impossibility result for kernel

k-means: there exists a mixture distribution with
arbitrarily large separation between the compo-
nents such that for finite samples from this distribu-
tion kernel k-means fails to recover the underlying
clustering.

2. We establish su�cient separability conditions

under which kernel-based algorithms such as k-
center, farthest-first k-means (FFk-means++), or
kernel linkage algorithms can consistently recover
the true partition, given finite samples from a
mixture distribution.

3. We establish necessary conditions for consis-

tency of the kernel FFk-means++ and kernel
linkage algorithms and show that these separabil-
ity conditions are optimal, that is, the su�cient
conditions match the necessary conditions.

Kernel-based data clustering as distribution

clustering. We establish a key equivalence between
kernel-based data clustering and kernel-based density
clustering. In particular:

4. We show that Gaussian kernel-based data cluster-
ing is equivalent to density clustering, where, each
data point is first represented by a Gaussian prob-
ability density function and the densities are then
clustered using the maximum mean discrepancy
metric (with respect to a Gaussian kernel).

5. In addition to theoretical implications, this con-
nection could also have practical implications in
matters such as choosing the bandwidth of the
Gaussian kernel for clustering which has not been
systematically studied in literature so far. Our
analysis reveals that the bandwidth of the ker-
nel used for clustering needs to decrease with n
but, perhaps surprisingly, asymptotically remain
non-zero.

Non-parametric estimation of mixture models.

Due to this relationship between kernel data cluster-
ing and distribution clustering, any standard Gaussian
kernel clustering algorithm can be used to define an
estimation procedure of the mixture model. There-
fore, in addition to our primary contributions to kernel
clustering, we also make contributions related to non-
parametric estimation of mixture models.

6. We provide conditions under which the estima-

tion procedures corresponding to the kernel-based
clustering algorithms can consistently estimate the
true mixture model.

2 FORMAL SETTING AND

BACKGROUND

Consider the Euclidean space Rd of dimension d as the
input domain. Let P denote the space of all Borel prob-
ability measures on Rd that are absolutely continuous
with respect to the Lebesgue measure. In our analysis,
we use the framework of mixing measures to define
mixture distributions. This is fairly standard in the
analysis of non-parametric mixture models (Aragam
et al., 2020; Holzmann et al., 2006; Kimeldorf et al.,
1970; Nguyen et al., 2013; Teicher, 1963) primarily due
to the following reasons:

• Arbitrary mixture distributions are not identifi-
able. Mixing measures allow for the specification of
true components. Section 3.1 provides a thorough
discussion on identifiability of mixture models.

• In non-parametric clustering, one typically does
not make any assumptions on the form of the
component distributions. An elegant way to ac-
complish this is to allow arbitrary component dis-
tributions from P and impose restrictions on the
set of admissible mixing measures.



Vankadara, Bordt, von Luxburg, Ghoshdastidar

Following the notation of Aragam et al. (2020), we
denote the space of all probability distributions (mixing
measures) over P supported on a finite (K) number of
elements in P by P

2
K . Formally,

P
2
K =

(
KX

k=1

�k��k : �k 2 R+, �k 2 P,
KX

k=1

�k = 1

)
,

where �� denotes the point mass concentrated at � 2 P

and [K] denotes the set {1, 2, · · ·K} for any K 2 N.
Furthermore, assume that the coe�cients (�k) of the
component measures (�k) are bounded away from 0.
Define m : P2

K ! P to be the mapping that uniquely
associates a mixing measure to a mixture distri-

bution, that is,

8 ⇤ 2 P
2
K : ⇤ =

KX

k=1

�k��k �! m(⇤) =
KX

k=1

�k�k.

The support of a mixing measure ⇤ specifies the true
components of the corresponding mixture distribution,
� = m(⇤).

We now describe the problem setup. Let ⇤ =P
k2[K] �k��k be a mixing measure in P

2
K . Con-

sider a finite sample X = {x1, x2, · · ·xn} drawn in-
dependently and identically (i.i.d) according to some

� = m(⇤) =
KP

k=1
�k�k. We denote this by X ⇠ �n.

The component measures �k are absolutely continuous
with respect to the Lebesgue measure, and therefore
admit density functions. We use fk to denote the den-
sity function corresponding to the component measure

�k and f =
KP

k=1
�kfk to denote the density function

corresponding to �. Given any density function h, we
use the term “probability distribution corresponding
to h” to denote the measure  which is defined as
 i(A) =

R
A h(x)dx, for any Borel set A ✓ Rd.

For any sample X = {x1, x2, · · ·xn}, we use a map
� : [n] ! [K] to represent a K�partition of X and
ck(�) = {xi 2 X : �(i) = k} to denote the kth cluster
according to � for all k 2 [K]. When it is clear from
context, we drop the dependence on � and simply use
ck to denote ck(�). Given any X ⇠ �n, the “planted
partition” and the “Bayes partition” are of particular
interest.

Planted partition. Observe that, drawing a sample
X = {x1, x2, · · ·xn} according to a mixing measure
⇤ =

P
k2[K] �k��k is equivalent to the following proce-

dure. For each i 2 [n],

1. sample index k 2 [K] using the weights �1, . . . ,�k,

2. generate a sample xi from �k.

We refer to the partition induced by this process as the
planted partition and use �⇤

X or �⇤

n to denote it.

Bayes partition. We refer to the mapping b⇤ : X !

[K] as the Bayes partition function, given by

�Bayes(x) = argmax
k

�kfk(x).

We use �X
Bayes to denote the Bayes partition with re-

spect to a sample X ⇠ m(⇤)n which is defined as the
Bayes partition function restricted to X.

Remark. In this work, any reference to a sample
should be understood as drawn i.i.d according to a
mixture distribution �.

We now describe the main objective of this work: clus-
tering of non-parametric mixture models.

Non-parametric clustering. Given a finite sample

X = {x1, x2, · · ·xn} drawn i.i.d according to �n
, the

central objective of non-parametric, model-based

clustering is to recover the planted partition up to a

permutation over the labels, [K].

Alternatively, one could also be interested in the con-
sistent estimation of the Bayes partition (Aragam et
al., 2020). We present our results with respect to the
former notion and they can easily be extended to the
latter by means of a simple modification of the algo-
rithms. We discuss this in more detail in Section 5.
The primary objective of this paper is to understand
the performance of kernel clustering algorithms under
the framework of non-parametric clustering. A brief
background on kernels is thus warranted for further
discourse on our analysis.

Background on kernels. Every symmetric positive
definite (p.d) kernel function g : Rd

⇥ Rd
! R is as-

sociated with a feature map � : Rd
! Hg, where Hg

is a Hilbert space with the inner product h·, ·iHg such
that h�(x),�(y)iHg = g(x, y), 8x, y 2 Rd. Hg is a
reproducing kernel Hilbert space (RKHS) if the
mapping f 7! f(x) is continuous for every x 2 Rd,
where f 2 Hg. The Hilbert space Hg corresponding
to a kernel g is of independent interest while deal-
ing with probability measures since it admits feature
representations referred to as the kernel mean em-

beddings. For any probability measure P 2 P, the
kernel mean embedding with respect to kernel g is
defined as µP (·) =

R
x2Rd g(x, ·)dP , which is an el-

ement of Hg. The RKHS norm k·kHG⇣
associated

with Hg can be used to define a (semi-)metric be-
tween the probability measures. Formally, the max-
imum mean discrepancy (MMD) between two prob-
ability measures P,Q 2 P with respect to the ker-
nel g is given by ⇢(P,Q) = kµP � µQkHG⇣

. If g is
a characteristic kernel, such as the Gaussian kernel,
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then ⇢ is a metric on the space of probability mea-
sures P (Fukumizu et al., 2008; Sriperumbudur, Gret-
ton, et al., 2010). In our analysis, we consider the
space P metrized by the MMD corresponding to a
Gaussian kernel function, g⇣ : Rd

⇥ Rd
! R, where

g⇣(x, y) = exp
⇣
�

kx�yk2

⇣

⌘
8x, y 2 Rd with band-

width ⇣ > 0. The MMD metric enjoys several valu-
able properties, from both a theoretical and practical
point of view (Gretton et al., 2012; Muandet et al.,
2016). Kernel density estimation is a popular non-
parametric approach for density estimation. Given
any X = {x1, x2, · · ·xn} ⇠ �n, the kernel density esti-
mate (KDE) of the density function f , with respect to
Gaussian kernel g� with bandwidth � > 0, is given by

bf(x) = 1

n

nX

i=1

efi (x) ; efi(x) =
exp

⇣
�

kx�xik
2

2�2

⌘

(2⇡�2)d/2
. (1)

Let b�, i 2 P be the probability distributions corre-
sponding to f, efi respectively. Under the following
conditions on the bandwidth parameter �,

� ! 0,
n�d

log n
! 1 as n ! 1, (2)

the kernel density estimate f̂n converges to the true
density f in the l1 norm (Giné et al., 2002; Einmahl
et al., 2005).

3 RECOVERY GUARANTEES FOR

KERNEL-BASED DATA

CLUSTERING

Identifiability. A key theoretical question concerning
both estimation and clustering under non-parametric
mixture models is that of identifiability, that is, any
mixture distribution can be decomposed in infinitely
many ways into component distributions (Teicher, 1963;
Holzmann et al., 2006; Vandermeulen et al., 2015; Miao
et al., 2016; Aragam et al., 2020). Therefore, non-
parametric clustering and estimation of mixture models
are ill-defined, even if the number of components K
is assumed to be known. The framework of mixing
measures as discussed earlier allow for the specification
of the “true components” and the “true planted/Bayes
partitions”. For any set of mixing measures L ✓ P

2
K ,

let m(L) denote the set of mixture distributions cor-
responding to L. Clearly, the mapping L 7! m(L) is
not injective on the whole space L = P

2 due to gen-
eral non-identifiability. This motivates the following
definition.

Definition 3.1 (Identifiablility). A subset L ✓ P
2
K

is called identifiable if the map L 7! m(L) is injective.

The most common approach to deal with identifiabil-
ity is to make restrictive parametric assumptions on
the form of the component distributions, for example,
Gaussianity, which renders the mixture model identifi-
able (Bruni et al., 1985; Teicher, 1963). Recent work
by Aragam et al. (2020) uses regularity and separa-
bility criteria to achieve identifiability. Our analysis,
inspired by Aragam et al. (2020), also uses separabil-
ity criterion to deal with identifiability. However, our
analysis di↵ers from theirs on several fronts since we
do not impose any regularity conditions on the mix-
ing measures and also consider a statistical approach
to identifiability. Moreover, the focus of their paper
(identifiability of non-parametric mixture models) is
very di↵erent from ours, which is providing recovery
guarantees for kernel-based clustering approaches.

Any non-parametric analysis of model-based clustering
(or estimation) is typically preceded by an identifia-
bility analysis for the mixture models. We do not
explicitly study identifiability, that is, identifying a set
L 2 P

2
K for which only one mixing measure can gener-

ate a mixture distribution. Instead, given finite samples
from the mixture distribution, we provide conditions
under which a particular algorithm (is biased toward
and hence) recovers the true mixing measure/partition.
In our analysis of kernel-based clustering algorithms,
we show that under appropriate separability condi-
tions, certain algorithms can consistently recover the
planted partition. Specifically, we present and analyze
the asymptotic behavior of four di↵erent kernel-based
clustering algorithms.

Algorithms. We present a brief description of the
algorithms here for completeness and include detailed
descriptions in the supplementary. Consider a finite
sample X = {x1, x2, · · ·xn} ⇠ �n.

• k-means (KMN). The objective is to find a
partition b� : [n] ! [K] such that the sum of
squared within cluster distances onX is minimized.
We consider the optimal solution to the NP-Hard,
k-means problem in our analysis.

• FFk-means++ (FFK). This algorithm is a vari-
ant of k-means++ where the initial centers are
chosen in a deterministic, farthest-first order.

• k-center (CTR). The objective seeks to obtain
a k-partition of X such that the maximal radius
of the clusters is minimized. The optimal solution
to the NP-Hard k-center problem is analyzed.

• Agglomerative linkage (LNK). Given a simi-
larity function (single, average or complete link-
age), these algorithms generate a dendrogram es-
tablishing a hierarchy of clusters of the data in a
bottom up approach, starting out with each point
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Figure 1: Example to show that simple separation con-
ditions do not su�ce to overcome identifiability. As
the distribution �2,2 moves arbitrarily far from the re-
maining distributions, the distance between �1 and �2
also increases arbitrarily. However, without additional
assumptions, no clustering algorithm can recover the
desirable clusters as defined by the true compo-

nents �1 and �2.

as its own cluster and progressively combining
them into larger clusters until there is a single
cluster that contains the entire data.

Given a positive definite kernel g : Rd
⇥ Rd

! R, the
kernelized versions of these algorithms are defined by
replacing the Euclidean inner product by the inner
product h·, ·ig induced by g on the input space Rd,
which is given by

hxi, xjig = g(xi, xj).

In this paper, we provide necessary and su�cient sepa-
rability conditions for the kernel-based clustering algo-
rithms KMN, FFK, CTR, and LNK.

Main results. For a finite sample X =
{x1, x2, · · ·xn} ⇠ �n, recall that  xi refers to the prob-

ability distribution corresponding to efi as defined in
(1) with bandwidth parameter � > 0. Given a partition
� : [n] ! [K] of probability distributions { i}

n
i=1, we

use b�k,� to denote the mean of the kth cluster according
to �, that is,

b�k,� =
1

|ck(�)|

X

xi2ck(�)

 xi .

Let ⇢ denote the MMD corresponding to the Gaussian
kernel g⇣ with respect to a bandwidth parameter ⇣ > 0
and let g denote the Gaussian kernel function with
the bandwidth parameter (4�2 + ⇣). For readability,
when it is clear from context, we ignore the dependence
on the partition function, � in the notation. We now
present one of our key results which establishes the
impossibility of cluster recovery for kernel k-means.
The result states that there is always a mixing measure
with arbitrarily large MMD separation between the
component distributions for which, given finite samples
from this mixture, kernel k-means fails to recover the
planted clustering.

Theorem 1 (Impossibility of clustering recovery

by KMN). Fix ⇣ > 0. Let � be any sequence of band-

width parameters and let g be the Gaussian kernel with

bandwidth parameter 4�2 + ⇣. For all C > 0, there

exists a mixing measure ⇤ 2 P
2
2 such that

⇢(�1, �2) > C sup
x2Xn

⇢( x, b��⇤(x),�⇤) (3)

holds within all finite samples and yet KMN with kernel

g w.h.p. fails to recover the planted partition �⇤
.

Even though kernel k-means fails to provably recover
the planted partition for arbitrarily large separation
between the components, there is a su�cient separation
between the components beyond which kernel-based
k-center, FFk-means++, and hierarchical linkage al-
gorithms can provably and consistently recover the
planted partition.

Theorem 2 (Su�cient conditions for consis-

tency of CTR, FFK, and LNK). Fix ⇣ > 0. Let
� be any sequence of bandwidth parameters satisfying

(2) and let g be the Gaussian kernel with bandwidth

parameter 4�2 + ⇣. For any ⇤ 2 P
2
K , if there exists

✏ > 0 such that

PXn

✓
inf
k 6=k0

⇢(�k, �k0) > 4 sup
x2Xn

⇢( x, b��⇤(x),�⇤) + ✏

◆

n!1
�! 1, (4)

then the algorithms ACTR, AFFK, and ALNK with ker-

nel g can w.h.p. recover the planted partition �?
.

The result states that, for recovery, the distance be-
tween any two component distributions in MMD (⇢)
needs to be larger than about twice the maximal within
cluster distance in the feature space: the RKHS (Hg)
corresponding to the kernel g, for clustering defined by
the planted partition. The conditions provided here
might appear to be weak, but perhaps more consequen-
tially, in Theorem 3 we show that under no additional
assumptions the constant 1/4 is in fact necessary and
hence cannot be improved for both FFK and LNK.

Theorem 3 (Necessary conditions for FFK and

LNK to consistently recovery the planted par-

tition). Fix ⇣ > 0. Let � be any sequence of bandwidth

parameters and let g be the Gaussian kernel with band-

width parameter 4�2 + ⇣. For any ✏ > 0, there exists

⇤ 2 P
2
2 such that

PXn

✓
⇢(�1, �2) > 4 sup

x2Xn

⇢( x, b��⇤(x),�⇤)� ✏

◆
n!1
�! 1

(5)
and the algorithms AFFK and ALNK with kernel g fail

to recover the planted partition �⇤
with probability ap-

proaching
1
2 and 1, respectively, as n ! 1.

The proofs for the results appear in the supplementary.
For the kernel k-center problem, we can indeed show



Recovery Guarantees for Kernel-based Clustering under Non-parametric Mixture Models

Figure 2: Illustration of the equivalence between kernel-based data clustering and distribution clustering. For
Gaussian kernel clustering algorithm A using a bandwidth parameter ⌘ > 0, decompose ⌘ to obtain any � > 0
and ⇣ > 0 satisfying 4�2 + ⇣ = ⌘. Then A can equivalently be reformulated as a kernel-based density clustering
procedure as shown in the figure.

that the constant in the su�cient conditions (4) can
further be improved to 1/3 when K = 2. However,
we believe that for any arbitrary K, the conditions
provided in (4) cannot be further improved. This can
be shown for a linear kernel and we leave the more
general case of the Gaussian kernel as a conjecture.
Our results not only show that certain kernel-based
clustering algorithms can exploit separability to recover
the planted clustering but also clearly show that under
no additional assumptions very strong separability con-
ditions are necessary to obtain recovery guarantees for
kernel-based clustering. Furthermore, due to reasons
of identifiability, simple separation conditions between
the component distributions do not su�ce to derive
consistent recovery guarantees. For instance consider a
simple example of a mixture distribution shown in Fig-
ure 1. As �2,2 moves arbitrarily far from the remaining
distributions, the distance between the two component
distributions, �1, �2 becomes arbitrarily far. However,
without additional assumptions, it is not possible for a
clustering algorithm to recover the desirable clustering
even if we see infinite amount of data. Therefore, the
separability conditions on the component distributions
are necessarily dependent on the geometric properties
of the distribution and not merely on the sample size
or the dimension of the input space as it often is in the
parametric setting. Our results, providing necessary
and su�cient recovery conditions for kernel-based data
clustering algorithms (Theorems 1, 2 , and 3), are ob-
tained by analyzing an equivalent density/distribution
clustering procedure which is considerably easier to
analyze. Specifically, this equivalence allows us to ex-
ploit the metric geometry of the space of probability
measures on the Euclidean space. We now describe
this relationship between kernel-based data clustering

and kernel-based density clustering.

4 EQUIVALENCE BETWEEN

KERNEL-BASED DATA

CLUSTERING AND

DISTRIBUTION CLUSTERING

In this section, we present a density clustering proce-
dure and describe its close relationship to kernel-based
data clustering. Given a finite sample X, the density
clustering procedure clusters the component probability
distributions ( i) of the kernel density estimate with
respect to X using MMD as the metric between the
distributions. This procedure is illustrated in Figure 2.
As shown in Figure 2, the partition obtained by this
density clustering procedure can be used to define a
partition on the sample X. This partition can alterna-
tively be obtained by using a simple kernel-based data
clustering procedure. We now describe this density
clustering procedure, which we denote by AKDE.

Kernel-based density clustering AKDE. Consider
Gaussian kernel g⇣ for some ⇣ > 0. Given sample
X ⇠ �n:

• Estimate the density of � by bf = 1
n

nP
i=1

efi as in (1)

with a bandwidth parameter � > 0.

• Consider MMD corresponding to the Gaussian
kernel g⇣ as the metric between the distributions.
Cluster the probability distributions { i}

n
i=1 corre-

sponding to
n
efi
on

i=1
by means of a distance based

clustering algorithm (for example, k-means) to
obtain a partition function b�.
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Figure 3: Illustration of the estimation procedure defined with respect to a kernel clustering algorithm. Any
Gaussian kernel clustering algorithm can be used to define a partition on component density functions { i}

n
i=1

which can in turn be used to define an estimator of the mixing measure ⇤.

This procedure is also illustrated in Figure 2. We
show that for appropriately chosen bandwidth parame-
ters, any kernel-based data clustering algorithm can be
equivalently formulated as a density clustering proce-
dure (AKDE). Recall that � and ⇣ are the bandwidth
parameters of the Gaussian kernels used in AKDE for
kernel density estimation and for defining the MMD
respectively. Then, let g : Rd

⇥ Rd
! R be the Gaus-

sian kernel with bandwidth parameter 4�2 + ⇣. The
following lemma shows that the maximum mean dis-
crepancy between the component distributions ( i) is
closely related to kernel evaluations on the input data.

Lemma 1 (MMD between components is closely

related to kernel evaluations between input

data.). Given any sample X 2 Rd
, let the compo-

nent KDE distributions ( i) be defined in the usual

way. For all xi, xj 2 X,

⇢2( i, j) = C�,⇣,d(1� g(xi, xj))

where C�,⇣,d is a constant dependent on the bandwidths

�, ⇣ and the input dimension d.

We obtain this result by explicitly computing the MMD
between the component distributions. Theorem 4 is
then an immediate consequence of Lemma 1, which
states that every kernel based data-clustering algorithm
can equivalently be formulated as a kernel-based density
clustering procedure (see Figure 2).

Theorem 4 (Equivalence between kernel data–

clustering and AKDE). Any Gaussian kernel-based

(data) clustering algorithm can equivalently be formu-

lated as a clustering of the component KDE distribu-

tions with respect to the MMD metric corresponding to

a Gaussian kernel for appropriately chosen bandwidth

parameters.

This simple result is consequential for practical consid-
erations such as in the choice of bandwidth parameter
for kernel data clustering (see Section 6) as well as for
theoretical considerations. As it turns out, the density
clustering procedure (AKDE) of the component KDE
distributions can be used to define an estimator of the
true mixing measure, that is, true component distribu-
tions and the corresponding weights. The equivalence

between the two procedures, therefore, allows us to
derive consistency guarantees for the estimators by
analyzing the corresponding kernel-based clustering
algorithms.

5 CONSISTENCY OF ESTIMATING

MIXTURE MODELS

Estimation procedure. By an estimation procedure,
we refer to any algorithm that takes a sample X drawn
according to some mixing measure ⇤, that is, X ⇠

m(⇤)n and provides an estimate b⇤ of ⇤.

Identifiability. Identifiability is also a key issue for
estimation. Similar to our analysis of non-parametric
clustering, we circumvent an explicit analysis of identi-
fiability. Moreover, in the preceding discussion, iden-
tifiability is defined as a deterministic property of a
set of mixing measures. We introduce a statistical
notion of identifiability which can be defined as a prop-
erty of either a mixing measure or a set of mixing
measures. Additionally, in contrast to identifiability,
statistical identifiability is defined with respect to an
algorithm and therefore, it is a more intuitive and nat-
ural definition in the analysis of estimation procedures.
Intuitively, the set of all mixing measures which are
identifiable with respect to an estimation procedure E

encodes the inductive bias of E .

Definition 5.1 (Statistical identifiability). Let %
be some metric defined on the space of all mixing
measures P2

K . A mixing measure ⇤ is statistically iden-
tifiable with respect to an estimation procedure E if the

sequence of mixing measures
n
b⇤n = E(Xn)

o
converges

in probability to ⇤, where given Xn ⇠ m(⇤)n.

Furthermore, a set of mixing measures L ⇢ P
2
K is said

to be statistically identifiable with respect to estima-
tion procedure E if every mixing measure ⇤ 2 L is
statistically identifiable with respect to E .

Remark. The convergence of the mixing measures
can be defined with respect to any metric on P

2
K . In

our results, we show convergence with respect to the
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Wasserstien distance between mixing measures (see the
supplementary for a definition).

Estimation procedure based on kernel-based

data clustering. We describe the procedure to define
an estimator of the true mixing measure ⇤. This pro-
cedure is illustrated in Figure 3. As usual, for some
�, ⇣ > 0, denote the Gaussian kernel with bandwidth
parameter 4�2 + ⇣ > 0 by g. The component probabil-
ity distributions of the KDE  i are also defined in the
usual way with respect to the bandwidth parameter
� > 0. Given a sample Xn ⇠ m(⇤)n,

(a) By means of a kernel-based data clustering pro-
cedure, with respect to g, obtain a partition
b� : [n] ! [K] of Xn.

(b) Use b� to define a partition of component KDE
distributions { i}

n
i=1.

(c) The estimator is defined as b⇤n =
KP
i=1

b�k,b��b�k,b� ,

where b�k,b� = 1
|ck|

P
xi2ck

 i and b�k,b� = |ck|
n .

Let ECTR, EFFK, and ELNK denote the estimation pro-
cedures corresponding to the kernel data clustering
algorithms, CTR, FFK, and LNK respectively: the
estimation procedure that uses the respective kernel
clustering algorithm to obtain a partition b� in (a).
Theorem 5 then immediately follows from the recov-
ery guarantees for the corresponding kernel-based clus-
tering algorithms (Theorem 2) and the equivalence
between kernel data clustering and density clustering
established in Theorem 4. We show that any mixing
measure satisfying the conditions provided in (4) is
statistically identifiable with respect to the estimation
procedures corresponding to CTR, FFK, and LNK.

Theorem 5 (Statistical identifiability with re-

spect to ECTR, EFFK, and ELNK). Let ⇣ and �
be bandwidth parameters satisfying the conditions pro-

vided in Theorem 2. Then any ⇤ 2 P
2
K satisfying the

conditions provided in (4) is statistically identifiable

with respect to ECTR, EFFK, and ELNK.

Estimating the Bayes partition. For theoretical
considerations, it might be of interest to analyze con-
ditions under which kernel-clustering algorithms can
consistently estimate the Bayes partition. Given a
finite sample X = {x1, x2, · · ·xn}, let b� denote the
partition generated by a kernel clustering algorithm
A. We can define an estimator of the Bayes partition
function b�b : Rd

! [K] in the natural way:

b�b(x) = arg sup
k2[K]

X

j:b�(j)=k

G�(x, xj)
(⇤)
= arg sup

k2[K]

b�k,b� bfk,b�(x)

(6)

where (⇤) follows from Lemma 1. Due to the equiva-
lence between kernel clustering and density-based clus-
tering, we can show that if a kernel-based algorithm A

can consistently recover the planted partition, then by
means of a single reassignment step given by (6), the
algorithm consistently recovers the Bayes partition.

Exceptional set. Given ⇤ =
P

k2[K] �k��k , for any
t > 0, we define the exceptional set

E(t) =
[

k 6=k0

�
x 2 Rd : |�kfk(x)� �k0fk0(x)|  t

 
.

Theorem 6 (Estimating the Bayes partition).
Let ⇣, and � be bandwidth parameters satisfying the

conditions provided in Theorem 2. Let ⇤ 2 P
2
K sat-

isfying the conditions provided in (4). For X =
{x1, x2, · · ·xn} ⇠ m(⇤)n and let b�b,n be the partition

function obtained by CTR, FFK or LNK followed

by the reassignment step in (6). Then, w.h.p over the

samples, there exists a sequence {tn}
n!1
�! 0 such that

b�n(x) = �Bayes(x) for all x 2 Rd
� E0(tn).

6 DISCUSSION AND FUTURE

WORK

We show in this work that certain kernel-based clus-
tering algorithms can exploit separability conditions
to overcome identifiability. Our results also show that
strong separability conditions are indeed necessary for
provable recovery guarantees for clustering methods
under non-parametric conditions. To further elabo-
rate, we highlight a conceptually interesting insight
from our results, which is surprising on the first glance.
Even though kernel-based FFk-means++, which is a
relaxation of the NP-Hard kernel k-means can provably
recover the true clusters under the su�cient separa-
bility conditions (Theorem 2), our impossibility result
(Theorem 3) shows that the NP-Hard kernel k-means
algorithm fails to (provably) do so. This clearly shows
that for better recovery guarantees for a clustering al-
gorithm A, in the non-parametric setting, it is essential
to thoroughly characterize the inductive bias of the A,
that is, the set of mixing measures for which A can
recover the true clustering.

We also established a key connection between kernel
data clustering and distribution clustering when using
Gaussian kernels and MMD as a metric between the
distributions. As a consequence, we can interpret any
standard Gaussian kernel clustering algorithm as a
distribution clustering procedure. This is particularly
useful in theoretical analysis since, for instance, we can
analyze kernel clustering algorithms by analyzing the
corresponding distribution clustering procedure and
vice versa. This connection could also have practical
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implications on matters such as bandwidth selection
for kernel clustering.

Extending our results beyond the Gaussian ker-

nel. We believe that the relationship between kernel
data clustering and density clustering can indeed be
established for a larger class of kernel functions. For
instance, choosing kernel functions from conjugate fam-
ilies is one way in which the analysis could possibly be
extended to other kernels, that is, choosing the MMD
kernel function as the conjugate prior of the kernel
function used for density estimation. It would also be
of significant interest to characterize the class of kernels
for which the equivalence can be established. However,
a detailed study in this direction is reserved for future
work.

Bandwidth. There is little to no literature that pro-
vides a systematic approach to bandwidth selection
for kernel-based clustering. In contrast to kernel clus-
tering, bandwidth selection is a well studied problem
in the context of kernel density estimation (Giné et
al., 2002; Einmahl et al., 2005; Goldenshluger et al.,
2011; Chacón et al., 2013). By appropriating band-
width selection strategies from this work, we provide
the following guidance in bandwidth selection for

kernel-based data clustering. As it would be ex-
pected, our analysis suggests that the bandwidth pa-
rameter used for kernel-clustering (4�2 + ⇣) needs to
decrease with n since our su�cient conditions for re-
covery require that �

n!1
�! 0. Interestingly, however, it

suggests that the bandwidth parameter can asymptot-
ically remain non-zero since ⇣ is chosen to be a fixed
parameter greater than 0. We note that these condi-
tions are asymptotic and a more thorough analysis of
the convergence rates of the estimators is necessary
to provide the rate at which the bandwidth needs to
reduce with sample size. Moreover, the range of the
bandwidth parameter, which depends on the constant
terms, could be be data-dependent. We conducted
few small-sample experiments, and observed that the
dependence of clustering performance on bandwidth is
complex and requires more thorough investigation. We
leave this analysis for future work.
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Supplementary to Non-parametric kernel clustering

A Equivalence between Kernel-based data clustering and Kernel-
based density clustering.

A.1 Proof of Lemma 1

Lemma 1 (MMD between components is closely related to kernel evaluations between

input data.). Given any sample X 2 Rd
, let the component kde distributions ( i) be defined in the

usual way. For all xi, xj 2 X,

⇢
2( i, j) = C�,⇣,d(1� g(xi, xj))

where C�,⇣,d is a constant dependent on the bandwidths �, ⇣ and the input dimension d.

Proof. Squared MMD ⇢
2( i, j) with respect to the Gaussian kernel g⇣ can be decomposed as follows:

⇢
2( i, j) = ||µ i ||

2
Hg⇣

+ ||µ j ||
2
Hg⇣
� 2hµ i , µ j iHg⇣

, (1)

where µ j denotes the kernel mean embedding of  i with respect to the Gaussian kernel function g⇣

which can be computed in closed form as shown in (2).

µ j (·) =

Z

Rd

1

(2⇡�2)d/2
exp

 
�kx� ·k

2

⇣

!
exp

 
�kxj � ·k

2

2�2

!
dx

= (
⇣

⇣ + 2�2
)d/2 exp

 
�
kxj � ·k

2

2�2 + ⇣

! (2)

By means of theorem 1 which provides a spectral characterization of the Gaussian RKHS and the
inner-product within, we compute hµ i , µ j iHg⇣

, 8i, j 2 [n]. The computation uses the closed form
expressions of Fourier transforms of the kernel function and the kernel mean embeddings of the
component kde distributions given in (3). The closed form expression for the inner product between
the kernel mean embeddings of any two component kde distributions is given in Equation (4).

F [g⇣ ](!) = (
⇣

2
)d/2 exp

 
�k!k

2
⇣

4

!
.

F [µ i ](!) = (
⇣

2
)d/2 exp

 
�k!k

2 (2�2 + ⇣)

4

!
exp

0

@i

X

l2[d]

x
l
i!

l

1

A,

(3)

1



where i denotes the imaginary unit and satisfies i2 = �1.

hµ i , µ j iHg⇣
=

1

(2⇡)d/2

Z
F [µ i ](!)F [µ i ](!)

F [g⇣ ](!)
d!

=

✓
⇣

4�2 + ⇣

◆d/2

exp

 
�kxi � xjk

2

4�2 + ⇣

! (4)

Substituting the values of hµ i , µ j iHg⇣
for any i, j 2 [n] we obtain

⇢
2( i, j) = 2

✓
⇣

4�2 + ⇣

◆d/2

(1� g(xi, xj)) (5)

The following result given by Kimeldorf et al. (1970) and Wendland (2004) provides a spectral
characterization of the RKHS corresponding to any translation-invariant kernel.

Theorem 1 (Spectral characterization of RKHS. (Kimeldorf et al., 1970; Wendland,

2004)). Let k be a translation-invariant kernel on Rd
such that k(x, y) :=  (x � y) where � 2

C(Rd) \ L1(Rd). Then the corresponding RKHS H is given by

H =

⇢
f 2 L2(Rd) \ C(Rd) : kfk2

HG⇣
=

1

(2⇡)d/2

Z
|F [f ](!)|2

F [ ](!)
d! <1

�
, (6)

where | · | denotes the magnitude of the enclosed quantity and F [f ](!) denotes the Fourier transform of

the function f . The inner product on H is defined as hf, giH = 1
(2⇡)d/2

R
F [f ](!)F [g](!)

F [ ](!) d!, f, g 2 H,

where F [g](!) denotes the complex conjugate of F [g](!).

A.2 Proof of Theorem 4

Theorem 4 immediately follows from Lemma 1. For any data clustering algorithm with respect
to the Gaussian kernel ⌘ > 0, decompose ⌘ into any two positive quantities �, ⇣ > 0 satisfying
⌘ = 4�2 + ⇣. Due to Lemma 1, the kernel clustering algorithm equivalently defines a clustering of
the component kde distributions { i}

n
i=1 .

B Algorithms

For completeness, we briefly describe the kernel-based clustering algorithms (KMN, CTR, FFK, and
LNK) here. In each of the algorithms, we describe the standard kernel data clustering procedure as
well as the equivalent kernel density clustering procedures (see Theorem 4). The component kde
distributions are defined in the usual way with respect to the bandwidth parameter � > 0 and ⇢ is
defined with respect to the Gaussian kernel with bandwidth parameter ⇣ > 0.

2



B.1 Kernel k-means (KMN)

Algorithm - Kernel k-means

• Given: A sample X = {x1, x2, · · ·xn} ⇢ Rd and for some �, ⇣ > 0 the Gaussian kernel function
g : Rd

⇥ Rd
! R with bandwidth parameter 4�2 + ⇣.

• Find the partition

b� = argmax
�:[n]![K]

X

k2[K]

X

i,j2ck

g(xi, xj) = argmin
�:[n]![K]

X

k2[K]

X

i2ck

⇢(µ i ,
1

|ck|

X

j2ck

µ j )
2 (7)

B.2 FFk-means++ (FFK)

Algorithm - Farthest first Kernel k-means ++

Phase one: Initializing the centers

• Given: A sample X = {x1, x2, · · ·xn} ⇢ Rd and for some �, ⇣ > 0 the Gaussian kernel function
g : Rd

⇥ Rd
! R with bandwidth parameter 4�2 + ⇣.

• Choose an initial center c1 uniformly at random and set C = {c1} .

• While t < K :

– let C = {c1, c2, · · · ct�1} be the current set of centers,

– for each x 2 X, compute d(x) = min
c2C

k(x, c) = max
c2C

⇢( x, c)

– pick the new center ct = argmax
x2X

d(x), and set C = C [ {ct} .

• For each k 2 [K] :

– set
Ck = {x 2 X : k(x, ck) � k(x, ck0) 8k 6= k

0
2 [K]}

=
n
x 2 X : ⇢( x, ck)  ⇢( x, c0k

) 8k 6= k
0
2 [K]

o

Phase two: Standard kernel k-means algorithm

1. For each k 2 [K], set Ck = {x 2 X : condition (8) holds}

1

|Ck|
2

X

y,z2Ck

k(x, z)�
1

|Ck|

X

y2Ck

k(y, x) 
1

|Cl|
2

X

y,z2l

k(y, z)�
1

|Cl|

X

y2Cl

k(y, x) 8l 6= k 2 [K]. (8)

(8) () ⇢( x,
1

|Ck|

X

x02Ck

 x0)  ⇢( x,
1

|Cl|

X

x02Cl

 x0) 8l 6= k 2 [K]. (9)

2. Repeat step (1) until convergence, that is, the set of centers C do not change anymore.
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B.3 Kernel K-center(CTR)

Algorithm - Kernel K-center

• Given: A sample X = {x1, x2, · · ·xn} ⇢ Rd and for some �, ⇣ > 0 the Gaussian kernel function
g : Rd

⇥ Rd
! R with bandwidth parameter 4�2 + ⇣.

• Find the partition

b� = argmax
�:[n]![K]

inf
l2[n]

�1

|clk|
2

X

i,j2clk

k(xi, xj) +
1

|clk|

X

i2clk

k(xi, xl)

= argmin
�:[n]![K]

max
i2[n]

⇢( i, b��(i),�)

B.4 Agglomerative hierarchical clustering (LNK)

Given a sample X = {x1, x2, · · ·xn} ⇢ Rd and a similarity function S : Rd
⇥ Rd

! R, hierarchical
clustering algorithms seek to generate a cluster tree (dendrogram) establishing a hierarchy of
relationships between the elements of the sample. Aggolomerative methods, in contrast to divisive
methods, seek a bottom up approach, starting out with each point as its own cluster and progressively
combining them into larger clusters until there is a single cluster that contains all the elements of
the sample X. The criterion for merging hinges on the underlying similarity function, which in our
case is the kernel matrix computed on the sample for a given kernel function k : Rd

⇥ Rd
! R. We

discuss two of the popular hierarchical clustering algorithms that exist in literature: single linkage

and complete linkage methods. The distinguishing factor across the two methods is the choice of
the criterion C used to merge any two clusters c, c0 ⇢ X (c \ c

0 = ?), which are given below in 10.

C(c, c0) = max
x2c,y2c0

k(x, y) = min
x2c,y2c0

⇢( x, y)

| {z }
Single linkage

, and min
x2c,y2c0

k(x, y) = max
x2c,y2c0

⇢( x, y)

| {z }
Complete linkage

. (10)

By substituting the di↵erent criterion C(c, c0) to merge any two clusters c, c
0 in Algorithm 1, we

obtain variants of the corresponding algorithms.

C Impossibility of recovery by kernel k-means(Proof of The-
orem 1)

Proof. Fix the kernel bandwidth parameter ⇣ > 0. Consider the following example in R, where
U([a, b]) denotes the uniform distribution on the real interval [a, b]. Let

�1 = m

✓
1

2
U([�✏, ✏]) +

1

2
U([r � ✏, r + ✏])

◆
(11)

and
�2 = U([Dr � ✏, Dr + ✏]). (12)
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Algorithm 1: Agglomorative hierarchical kernel-clustering.

Given: A sample X = {x1, x2, · · ·xn} ⇢ Rd and for some �, ⇣ > 0 the Gaussian kernel
function g : Rd

⇥ Rd
! R with bandwidth parameter 4�2 + ⇣ ;

Let S = {s1, . . . sn} be a collection of singleton trees with the root node of si = {i} .

while |S| > 1 do

Let sq, sr 2 S be the pair of trees such that C(root(sq), root(sr)) is maximal ;
Generate sqr s.t, root(sqr) = root(sq) [ root(sr), left, right(sqr) = sq, sr ;
Add sqr and remove sq and sr from S ;

end

�̂  Partition function obtained by cutting the only element in S, a dendrogram at a level
such that the resulting partition contains K clusters ;
return �̂ ;

The mixing measure is given by ⇤ = �1�1 + �2�2. The constants D � 2� r � ✏ and �1 � �2 are
to be chosen later. The idea is that the interval [Dr � ✏, Dr + ✏] is separated from the rest of the
distribution via a large constant D, but the points in [Dr � ✏, Dr + ✏] will nevertheless be clustered
with the points in [r � ✏, r + ✏] because �2 is so small. We first show that ⇤ satisfies the condition in
the theorem, namely that

⇢
2(�1, �2)

sup
x2Xn

⇢2( x, b��⇤(x),�⇤)
> K

2
. (13)

Therefore, consider the numerator, which is simply the squared MMD between �1 and �2. We have

⇢
2(�1, �2) = EX⇠�1,X̃⇠�1

g(X, X̃) + EY⇠�2,Ỹ⇠�2
g(Y, Ỹ )� 2EX⇠�1,Y⇠�2g(X,Y )

�
1

(2✏)2

Z

[�✏,✏]2
e
�|x�y|2/⇣

dx dy �
2

(2✏)2

Z

[�✏,✏]2
e
�|(D�1)r+x�y|2/⇣

dx dy.

At this point, assume that ✏ is su�ciently small compared to the kernel bandwidth parameter ⇣,
namely that 4✏2 < ⌘. This allows us to lower bound the first integral by 1

e . Similarly, choosing D

large enough in comparison to r allows us to make the second term arbitrarily small, whence we
conclude that

⇢
2(�1, �2) �

1

e
�

1

2e
�

1

2e
,

i.e. the numerator is at least 1
2e . Now consider the denominator, which is the maximum squared

MMD between an empirical cluster mean and a sampled point belonging to that cluster. This is at
most the squared MMD between any two points belonging to the same cluster

sup
x2Xn

⇢
2( x,

1

|�⇤(x)|

X

y2�⇤(x)

 y)  sup
x,y2Xn,�⇤(x)=�⇤(y)

⇢
2( x, y) (14)

which can be bound, independently of the sample Xn, by

⇢
2( 0, r+2✏) = 2

s
⇣

4�2 + ⇣

✓
1� e

�(r+2✏)2

4�2+⇣

◆

 2
(r + 2✏)2

⇣
+ o(r4).

(15)
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Here r + 2✏ is the maximum distance of any two points belonging to the same cluster and we used
(5). Thus, choosing a small r allows us to make the denominator arbitrarily small, and the fraction
in (13) can become larger than any fixed K

2.
Now, we show that k-means does w.h.p. not recover the planted partition. The idea is to choose
�1 � �2. In our sample Xn from m(⇤), denote the number of points within [�✏, ✏] by N1, the
number of points within within [r� ✏, r+ ✏] by N2, and the number of points within [Dr� ✏, Dr+ ✏]
by N3. Assume that n is large enough s.t. N1, N2, N3 > 0. We rely on the equivalence between
kernel-based data clustering and kernel-based density clustering and directly consider the MMD
between component distributions  xi (compare section B.1). That is we consider k-means w.r.t. the
norm k · k2 =< ·, · >Hg⇣

. The k-means objective of the planted partition is at least

N1

�����µ ✏�
N1 µ �✏ +N2 µ r�✏

N1 +N2

�����

2

+N2

�����µ r�✏�
N1µ ✏ +N2µ r+✏

N1 +N2

�����

2

�
N1N2

N1 +N2

���µ ✏�µ r�✏

���
2
+O(✏).

Similarly, the k-means objective of the alternative partition where the points in [r � ✏, r + ✏] and
[Dr � ✏, Dr + ✏] form a cluster is at most

N1

���µ 0 � µ 2✏

���
2
+N2

�����µ r�✏ �
N2µ r+✏ +N3µ Dr+✏

N2 +N3

�����

2

+N3

�����µ Dr+✏ �
N2µ r�✏ +N3µ Dr�✏

N2 +N3

�����

2

N1

���µ 0 � µ 2✏

���
2
+

N2N3

N2 +N3

���µ r�✏ � µ Dr+✏

���
2
+O(✏).

Thus, k-means will choose the alternative partition if

N1

���µ 0 � µ 2✏

���
2
+

N2N3

N2 +N3

���µ r�✏ � µ Dr+✏

���
2
+O(✏) 

N1N2

N1 +N2

���µ ✏ � µ r�✏

���
2

()

���µ r�✏ � µ Dr+✏

���
2

���µ ✏ � µ r�✏

���
2 +O(✏) 

N1

N3

N2 +N3

N1 +N2
�

N1(N2 +N3)

N2N3

���µ 0 � µ 2✏

���
2

���µ ✏ � µ r�✏

���
2

()

���µ r�✏ � µ Dr+✏

���
2

���µ ✏ � µ r�✏

���
2 +O(✏) 

N1

N3

0

B@
N2 +N3

N1 +N2
�

✓
1 +

N3

N2

◆
���µ 0 � µ 2✏

���
2

���µ ✏ � µ r�✏

���
2

1

CA .

(16)

First note that the norms in equation (16) are deterministic quantities that depend on ✏, r and
D. The Ni are Binomial random variables parametrized by �1 and �2, i.e. N1 ⇠ Binom(n,�1/2),
N2 ⇠ Binom(n,�1/2) and N3 ⇠ Binom(n,�2). All terms involving N

0

is w.h.p. concentrate around
their expectation. Thus, choosing �1 � �2 allows us to make the fraction N1

N3
w.h.p. arbitrarily

large. Choosing ✏ small enough (in comparison to r) ensures that the O(✏) term on the LHS is small
enough, and that the bracketed term on the RHS is at least 1

4 .
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D Su�cient conditions for Consistency of CTR, FFK, and
LNK. (Proof of Theorem 2)

Proof of Theorem 2: Consistency of CTR. Let ⇤ be any mixing measure for which there
exists some ✏ > 0 such that,

PXn

⇣1
4

inf
k 6=k0

⇢(�k, �k0) < sup
x2Xn

⇢( x, b��⇤(x),�⇤) + ✏

⌘
n!1
�! 0. (17)

Then, with high probability (w.h.p) over the samples Xn,

inf
k 6=k0

⇢(�k, �k0) > 4 sup
x2Xn

⇢( x, b��⇤(x),�⇤) + 4✏. (18)

If the bandwidth parameter � is chosen according to (19),

� ! 0,
n�

d

log n
!1 as n!1, (19)

it is known that the corresponding kernel density estimate f̂n converges to the true density f in
the l1 norm (Giné et al., 2002; Einmahl et al., 2005). Observe that the density functions bfk,�⇤

corresponding to the planted partitions b�k,�⇤ are the kernel density estimates of the density functions
corresponding to the component distributions �k. Furthermore by assumption, we have that the
corresponding component weights �k are bounded away from 0. Thus, for each k 2 [K], we have

sup
x2Rd

| bfk,�⇤ � fk|
P
�! 0 as n!1.

An application of Sche↵e’s theorem (or Reiz’s theorem) (Sche↵é, 1947) implies that the corresponding
probability measures b�k,�⇤ also converge weakly to �k. Simon-Gabriel, Barp, et al. (2020, Theorem
4.2) provide a characterization of the class of kernels that metrize the weak convergence of probability
measures on locally compact domains (e.g., Rd). Following Simon-Gabriel and Schölkopf (2016,
Corollary 3) and Sriperumbudur et al. (2010, Proposition 5), one can verify that the Gaussian kernel
belongs to this class of kernel functions. Therefore, weak convergence of probability measures b�k,�⇤

to �k is equivalent to convergence in MMD with respect to (w.r.t) a Gaussian kernel, that is, for
every ✏ > 0,

P(⇢(b�k,�⇤ , �k) > ✏)
n!1
�! 0. (20)

Let t = 4✏/2 and � = 1/n. Then, for every k 2 [K], there exists some Nt 2 N such that 8 n > Nt,k,

P(⇢(b�k,�⇤ , �k) > 4✏/2) <
1

n
. (21)

Let Nt = supk2[K] Nt,k. For all n > Nt, with high probability (w.h.p) over the samples Xn,

inf
k 6=k0

⇢(�k, �k0) > 4 sup
x2Xn

⇢( x, b��⇤(x),�⇤) + 2⇢(b�k,�⇤ , �k). (22)

By assumption, we have that �k is bounded away from 0 for all k 2 [K]. Therefore,

P( min
k2[K]

|(�⇤)�1(k)| > 0) =
KY

k=1

P(|(�⇤)�1(k)| > 0). (23)
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For any k 2 [K], observe that |(�⇤)�1(k)| is a binomial random variable, Bin(n,�k). Using Hoe↵ding’s
inequality for binomial random variables,

P(|(�⇤)�1(k)|  t) < exp (�2n(�k �
t

n
)2) (24)

Setting t = 0, for large enough n such that n/ log n > 1/�k, w.p.a.l 1� 1/n

|(�⇤)�1(k)| > 0

So w.h.p over the samples,

min
k2[K]

|(�⇤)�1(k)| > 0

From Propositions 1, 2, and 3, we then have that w.h.p over Xn, the algorithms CTR, FFK, and
LNKcan recover the planted partition �⇤ (upto a permutation over the labels).

D.1 Su�cient conditions for consistency of kernel k-center clustering
CTR

Proposition 1 (Conditions for recovery of the true partition by kernel k-center algo-

rithm). For any ⇤ 2 P
2
K , let � = m(⇤). Let X = {x1, x2, · · ·xn} ⇠ �n

. Define b� =
nP

i=1

1
n i as the

probability measure associated with the kde in the usual way. For any partition � : [n]! [K] such
that the following condition holds:

inf
k 6=k0

⇢(�k, �
0

k) > 4 sup
i2[n]

⇢( i, b��(i),�) + 2 sup
k2[K]

⇢(b�k,�, �k,�), (25)

and

inf
k2[K]

|�
�1(k)| > 0 (26)

� can be recovered by the kernel k-center algorithm on the sample kernel matrix G (defined in section

4 of the main paper).

Proof of Proposition 1. For any sample X = {x1, x2, · · ·xn} and a partition �0, let

r = sup
i2[n]

⇢( i, b��0(i),�0) (27)

We first show that for any mixing measure satisfying the conditions provided in Equation (25) w.r.t
a sample X and a partition �0, then for any i 6= j 2 [n],

⇢( i, j)  2r () �
0(i) = �

0(j)

⇢( i, j) > 2r () �
0(i) 6= �

0(j)

1) �
0(i) = �

0(j) =) ⇢( i, j)  2r. For any i 2 [n], by definition,

⇢( i, b��0(i),�0)  r (28)

Therefore, for any i, j 2 [n],

�
0(i) = �

0(j) =) ⇢( i, j)  ⇢( i, b��0(i),�0) + ⇢(b��0(i),�0 , j)  2r (29)
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2) �
0(i) 6= �

0(j) =) ⇢( i, j) > 2r. Let �0(i) = k 6= k
0 = �

0(j). Then, by triangle inequality,

⇢( i, j) � ⇢(�k, �k0)� ⇢(�k, b�k,�0)� ⇢(b�k,�0 , i)� ⇢( j , b�k0,�0)� ⇢(b�k0,�0 , �k0) > 2r (30)

Combining Equations (29) and (30), its easy to verify that

⇢( i, j)  2r () �
0(i) = �

0(j)

⇢( i, j) > 2r () �
0(i) 6= �

0(j)

For any partition �, let
L(�) = sup

i2[n]
⇢( i, b��(i),�). (31)

Then the partition b� generated by the kernel k-center clustering algorithm is given by

b� = argmin
�:[n]![K]

L(�). (32)

Then, by definition,
L(b�)  L(�0) = r (33)

Therefore, from (33),

⇢(b��0(i),�0 , b�b�(i),b�)  ⇢(b��0(i),�0 , i) + ⇢(b�b�(i),b�)  2r (34)

To show that the partitions �0 and b� coincide up to a permutation, we show that, for any i, j 2 [n],
�
0(i) = �

0(j) =) b�(i) = b�(j) and �0(i) 6= �
0(j) =) b�(i) 6= b�(j).

Consider i, j 2 [n] such that �0(i) 6= �
0(j). If b�(i) = b�(j), then from triangle inequality and (34),

⇢(b��0(i),�0 , b��0(j),�0)  ⇢(b��0(i),�0 , b�b�(i),b�) + ⇢(b��0(j),�0 , b�b�(i),b�)  4r. (35)

However, from (25) we have that

⇢(b��0(i),�0 , b��0(j),�0) � ⇢(��0(i), ��0(j))� ⇢(b��0(i),�0 , ��0(i))� ⇢(b��0(j),�0 , ��0(j)) > 4r, (36)

which is a contradiction. Therefore, for any i, j 2 [n] such that

�
0(i) 6= �

0(j) =) b�(i) 6= b�(j). (37)

Consider any i, j 2 [n] such that �0(i) = �
0(j) but b�(i) 6= b�(j). From (34) we know that

b�b�(i),b� 2 B(b��0(i),�0 , 2r) and b�b�(j),b� 2 B(b��0(i),�0 , 2r) (38)

where B(x, r) = {y : ⇢(x, y)  r} denotes the ball of radius r centered at x.

From the condition (44) that the clusters are non-empty, for each k 2 [K], there exists ak such that
�
0(ak) = k. Then, for each k 2 [K], we know that

b�b�(ak),b� 2 B(b��0(ak),�0 , 2r) = B(b�k,�0 , 2r) (39)

Furthermore, observe that for all k 6= k
0
2 [K],

B(b�k,�0 , 2r) \B(b�k0,�0 , 2r) = ?, (40)
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since otherwise there exists some x 2 B(b�k,�0 , 2r) \B(b�k0,�0 , 2r), i.e.,

⇢(x, b�k,�0)  2r and ⇢(x, b�k0,�0)  2r,

=) ⇢(b�k,�0 , b�k0,�0)  ⇢(x, b�k,�0) + ⇢(x, b�k0,�0)  4r,

which is a contradiction.

Moreover, by definition, �0(ak) 6= �
0(ak0) for all k, k0 2 [K], from (37), we have

b�(a1) 6= b�(a2) · · · 6= b�(aK) (41)

Since there are only K centers, (39), (40) and (41) imply that

• For any i 2 [n], there exists some k 2 [K] such that b�(i) = b�(ak), and

• b�b�(ak),b� 2 B(b��0(i),�0 , 2r) =) b�b�(ak0 ),b� /2 B(b��0(i),�0 , 2r) for all k0 6= k 2 [K].

So, from (38),
�
0(i) = �

0(j) =) b�b�(i),b� = b�b�(j),b� =) b�(i) = b�(j), (42)

since, if b�(i) 6= b�(j), then ⇢(b�b�(i),b�, b�b�(j),b�) > 4r.

Therefore, the partitions �0 and b� coincide up to a permutation over the labels.

D.2 Su�cient conditions for kernel kmeans++ algorithm - proofs

Proposition 2 (Su�cient conditions for recovery by kernel k-means ++). For any ⇤ 2 P
2
K ,

let � = m(⇤). Let X = {x1, x2, · · ·xn} ⇠ �n
. Define b� =

nP
i=1

1
n i as the probability measure associated

with the kde in the usual way. For any partition �
0 : [n] ! [K] such that the following condition

holds:

inf
k 6=k0

⇢(�k, �
0

k) > 4 sup
i2[n]

⇢( i, b��0(i),�0) + 2 sup
k2[K]

⇢(b�k,�0 , �k,�0), (43)

and

inf
k2[K]

|(�0)�1(k)| > 0 (44)

� can be recovered by a (deterministic) kernel k-means++ algorithm on the sample kernel matrix G.

Proof of Proposition 2. Let,

r = sup
i2[n]

⇢( i, b��0(i),�0), and Bk = B(b�k,�0 , r) 8k 2 [K]. (45)

Claim: Let C be the set of centers initialized in phase one of the k-means ++ algorithm as described.
Then, for each k 2 [K],

ck 2 Bk (46)

Proof: For every i 2 [n], by definition,

⇢( i, b��0(i),�0)  r =)  i 2 B�0(i). (47)
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Therefore, without loss of generality (W.L.O.G), let c1 2 B1. For any t < K, assume that Ct =
{c1, c2, · · · ct} and ck 2 Bk 8k 2 [t] (upto a permutation over the labels). Note that Bk is non-empty
for every k 2 [K].
From the proof of Proposition 1, for any mixing measure satisfying the conditions provided in (43),

⇢( i, j)  2r () �
0(i) = �

0(j) (48)

⇢( i, j) > 2r () �
0(i) 6= �

0(j) (49)

Therefore, since ck 2 Bk for all k 2 [K], d( i) = ⇢
2( i, ck)  2r for all �0(i) = k. Therefore,

d( i) is

(
 2r 8 i 2 Bk, and k  t,

> 2r otherwise.
(50)

Since ct+1 = argmax
 i

d( i), ct+1 2 Bs for some s /2 Ct.

⌅
Claim: Kernel k-means algorithm does not a↵ect the centers obtained in Phase one of the algorithm.
Proof: From claim 1, in phase one of the algorithm, the centers C = {c1, c2, · · · cK} are obtained such
that ck 2 Bk for all k 2 [K]. For each k 2 [K], clusters {C1, C2, · · ·CK} are then defined as follows.

Ck =
�
i 2 [n] : ⇢2(ck, i) � ⇢

2(ck0 , i) 8k 6= k
0
2 [K]

 
(51)

From (48), we have that

⇢
2( i, ck)  4r2 if �0(i) = k

⇢
2( i, ck) > 4r2 otherwise .

Therefore, the partition obtained in the Phase 1 of the algorithm coincides with �0 up to a permutation
over the labels, that is,

Ck = { i 2 X : �0(i) = k} , (52)

and X

i:�0(i)=k

 i = b�k,�0 2 Bk. (53)

Clearly,
⇢( i, b��0(i),�0)  2r  ⇢( i, b�k,�0) > 2r 8k 6= �

0(i).

Therefore, the clusters obtained in the phase 1 of the algorithm do not change in the Phase 2 of the
algorithm and the partition obtained by FFKcoincides with that of �0 up to a permutation over the
labels.

⌅

D.3 Su�cient conditions for kernel linkage clustering algorithms (Proof
of Theorem 2 - Part III)

Proposition 3 (Recovery by single linkage clustering). For any ⇤ 2 P
2
K , let � = m(⇤). Let

Xn = {x1, x2, · · ·xn} ⇠ �n
be a sample. Define b� =

nP
i=1

1
n i as the probability measure associated

with the kde in the usual way. For any partition �n such that the following condition holds:

inf
k 6=k0

⇢(�k, �
0

k) > 3 sup
k

sup
l 6=l02��1

n (k)

⇢( l, l0) + 2 sup
k2[K]

⇢(b�k,�n , �k,�n), (54)
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�n can be recovered by the kernel single (and complete) linkage clustering algorithms with respect to

the Gaussian kernel with bandwidth para using the sample kernel matrix G (defined in section 4 of

the main paper).

Proof of proposition 3. For any partition �, let

� = sup
k2[K]

sup
i,j02��1(k)

⇢( i, j).

We first show that for any partition � satisfying the conditions stated in Proposition 3,

8l, l
0
2 [n] �(l) = �(l0) () ⇢( l, l0)  �,

�(l) 6= �(l0) () ⇢( l, l0) > �.

Observe that, by definition,

8l 6= l
0
2 [n], �(l) = �(l0) =) ⇢( l, l0)  �. (55)

By subadditivity of ⇢, for any l, l
0
2 [n] such that �(l) = k, �(l0) = k

0, and k 6= k
0,

⇢(�k, �k0) < ⇢(�k, b�k) + ⇢(b�k, l) + ⇢( l, l0) + ⇢( l0 , b�k0) + ⇢(b�k0 , �k0). (56)

Substituting (54) in (56), we obtain

�(l) 6= �(l0) =) ⇢( l, l0) > �. (57)

Using the fact that ⇢(·, ·) � 0, from (55) and (57), we have

8l, l
0
2 [n] �(l) = �(l0) () ⇢

2( l, l0)  �
2
,

�(l) 6= �(l0) () ⇢
2( l, l0) > �

2
.

All three linkage algorithms based on the matrix of squared MMD evaluations between the component
distributions { l}

n
l=1 or alternatively using the sample kernel matrix G (see Lemma 1) would first

group the components within the same cluster according to � before grouping components belonging
to di↵erent clusters according to �. Therefore, thresholding the dendrogram to obtain exactly K

clusters would recover the underlying partition � upto a permutation over the labels. With a minor
modification of the proof, it is easy to see that the Proposition also holds under separbility conditions
provided in (43).

Proof of Theorem 5: Consistent recovery of the planted partition by ALNK. Let ⇤ be any
mixing measure for which there exists some ✏ > 0 such that,

PXn

0

B@ sup
x,x0

2Xn:
�⇤(x)=�⇤(x0)

⇢( x, x0) >
1

3
inf
k 6=k0

⇢(�k, �k0)� ✏

1

CA n!1
�! 0, (58)

Then, with high probability (w.h.p) over the samples Xn,

inf
k 6=k0

⇢(�k, �k0) > 3 sup
x,x0

2Xn:
�⇤(x)=�⇤(x0)

⇢( x, x0) + 3✏. (59)
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Furthermore, we know that for every ✏ > 0,

P(⇢(b�k,�⇤ , �k) > ✏)
n!1
�! 0. (60)

Let t = 3✏/2 and � = 1/n. Then, for every k 2 [K], there exists some Nt 2 N such that 8 n > Nt,k,

P(⇢(b�k,�⇤ , �k) > 3✏/2) <
1

n
. (61)

Let Nt = supk2[K] Nt,k. For all n > Nt, with high probability (w.h.p) over the samples Xn,

inf
k 6=k0

⇢(�k, �k0) > 3 sup
x,x0

2Xn:
�⇤(x)=�⇤(x0)

⇢( x, x0) + 2⇢(b�k,�⇤ , �k). (62)

From Proposition 3, we have that w.h.p over Xn, kernel single linkage clustering algorithm recovers
the true partition �⇤ (upto a permutation over the labels).

E Necessary conditions for consistency of FFK and LNK.
(Proof of Theorem 3)

E.1 Proof for AFFK

Fix the kernel bandwidth parameter ⇣ > 0. Let r, ✏ and K be small constants that satisfy
1 > r > 2K > 16✏. Consider the following example in R, where U([a, b]) denotes the uniform
distribution on the real interval [a, b]. Let

�1 = m

✓
1

2
U([�✏, ✏]) +

1

2
U([r � ✏, r + ✏])

◆
(63)

and

�2 = m

✓
1

2
U([2r �K � ✏, 2r �K + ✏]) +

1

2
U([3r �K � ✏, 3r �K + ✏])

◆
. (64)

The mixing measure is given by ⇤ = 1
2�1 +

1
2�2. The idea is that because K > 0, the two clusters

are just not separated enough.
To see that AFFK fails to recover the planted partition with probability approaching 1

2 , consider the
case where the first cluster center is initialized with a point c1 2 [r � ✏, r + ✏]. The farthest first
heuristic then chooses a second cluster center c2 2 [3r �K✏, 3r �K + ✏]. Since K > 4✏, the initial
clusters will be given by

C1 = {x : x  2r �K + ✏} and C2 = {x : x � 3r �K � ✏}.

Consequently, in the first iteration of phase two of the algorithm (compare section B.2), the new
cluster centers satisfy

c̃1 �
rN2 + (2r �K)N3

N1 +N2 +N3
� ✏ and c̃2 � 3r �K � ✏,
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where Ni denotes the number of points within the respective intervals. Now the clusters themselves
do not change if

(2r �K) + ✏� c̃1  c̃2 � (2r �K)� ✏

()
2N1 +N2

N1 +N2 +N3
r �

N1 +N2

N1 +N2 +N3
K  r � 4✏,

an event that occurs asymptotically almost surely as the Ni concentrate around their expectation.
Conditional on this event, the algorithm terminates with clusters C1 and C2, i.e. it does not recover
the planted partition. Due to symmetry, the same holds if the first cluster center is initialized with a
point in [2r�K � ✏, 2r�K + ✏]. As n!1, the probability to initialize the first cluster center with
a point in either [r � ✏, r + ✏] or [2r �K � ✏, 2r �K + ✏] approaches 1

2 .
We now show that the condition in the theorem is satisfied, namely that as n!1, it holds that

⇢(�1, �2)

sup
x2Xn

⇢( x, b��⇤(x),�⇤)
> 4� ✏̂. (65)

A simple way to evaluate the LHS is to express both numerator and denominator as sums of inner
products between Gaussians. We have

⇢(�1, �2) � ⇢(b�1,�⇤ , b�2,�⇤)� ⇢(�1, b�1,�⇤)� ⇢(�2, b�2,�⇤),

and as n!1 and � ! 0, the latter two terms converge in probability to 0. Hence, for all ✏1 > 0, it
holds that

⇢
2(�1, �2) � ⇢

2(b�1,�⇤ , b�2,�⇤)� ✏1.

Furthermore, since ⇢2 is bounded, for all n large enough

⇢
2(�1, �2) � E

⇥
⇢
2(b�1,�⇤ , b�2,�⇤)

⇤
� 2✏1.

A straightforward if somewhat lengthy calculation shows that

E
⇥
⇢
2(�̂1,�? , �̂2,�?)

⇤
�

2

⇣
(2r �K)2 +O(✏) + o(r4). (66)

Similarly, for the denominator,

sup
x2Xn

⇢
2( x, b��⇤(x),�⇤) 

2

⇣

1

4
r
2 +O(✏). (67)

Hence,

⇢
2(�̂1,�? , �̂2,�?)

sup
x2Xn

⇢2( x, b��⇤(x),�⇤)
�

(2r �K)2 +O(✏) + o(r4)� 2✏1
1
4r

2 +O(✏)

�
16� 2K

r +O
�
✏
r2

�
+ o(r2) + 2✏1

r2

1 +O
�
✏
r2

� .

Thus, in order to satisfy (65), we have to choose r small enough, and K, ✏ and ✏1 small enough in
comparison to r. We now derive the expression for the numerator. First define the sets I1 = {x 2
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Xn : x 2 [�✏, ✏]}, I2 = {x 2 Xn : x 2 [r� ✏, r+ ✏]}, I3 = {x 2 Xn : x 2 [2r�K � ✏, 2r�K + ✏]} and
I4 = {x 2 Xn : x 2 [3r �K � ✏, 3r �K + ✏]}. Denote Ni = |Ii|. We have

⇢
2(�̂1,�⇤

n
, �̂2,�⇤

n
) = < �̂1,�⇤

n
, �̂1,�⇤

n
> + < �̂2,�⇤

n
, �̂2,�⇤

n
> �2 < �̂1,�⇤

n
, �̂2,�⇤

n
>

=

P
x,y2I1

<  x, y > +2
P

x2I1,y2I2
<  x, y > +

P
x,y2I2

<  x, y >

(N1 +N2)2

+

P
x,y2I3

<  x, y > +2
P

x2I3,y2I4
<  x, y > +

P
x,y2I4

<  x, y >

(N3 +N4)2

� 2

P
x2I1,y2I3

<  x, y > +
P

x2I1,y2I4
+
P

x2I2,y2I3
<  x, y > +

P
x2I2,y2I4

<  x, y >

(N1 +N2)(N3 +N4)

�

s
⇣

⌘

"
N

2
1 (1�

4✏2

⌘ ) + 2N1N2(1�
(r+2✏)2

⌘ ) +N
2
2 (1�

4✏2

⌘ )

(N1 +N2)2

+
N

2
3 (1�

4✏2

⌘ ) + 2N3N4(1�
(r+2✏)2

⌘ ) +N
2
4 (1�

4✏2

⌘ )

(N3 +N4)2

� 2
N1N3(1�

(2r�K�2✏)2

⌘ ) +N1N4(1�
(3r�K�2✏)2

⌘ )

(N1 +N2)(N3 +N4)

� 2
N2N3(1�

(r�K�2✏)2

⌘ ) +N2N4(1�
(2r�K�2✏)2

⌘ )

(N1 +N2)(N3 +N4)

#
+ o(r4)

Where we used (4) and the Taylor expansion e
x = 1 + x+ o(x2). The inequality sign stems from the

fact that we have replaced the exact locations of sampled points with interval boundaries. Taking
expectations,

E
⇥
⇢
2(�̂1,�⇤

n
, �̂2,�⇤

n
)
⇤
�

s
⇣

⌘

1

⌘

"
�4✏2 � 2(r + 2✏)2 � 4✏2

4
+
�4✏2 � 2(r + 2✏)2)� ✏2

4

+ 2
(2r �K � 2✏)2 + (3r �K � 2✏)2

4
+ 2

(r �K � 2✏)2 + (2r �K � 2✏)2

4

#
+ o(r4)

=
2

⌘

s
⇣

⌘
(2r �K)2 +O(✏) + o(r4).

We now derive the expression for the denominator. By symmetry, it su�ces to consider the case
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x 2 [�✏, ✏].

⇢

0

@ x,
1

N1 +N2

0

@
X

x02[�✏,✏]

 x0 +
X

x02[r�✏,r+✏]

 x0

1

A

1

A

=
1

N1 +N2
||

X

x02[�✏,✏]

( x0 �  x) +
X

x02[r�✏,r+✏]

( x0 �  x)||


N1

N1 +N2
⇢( �✏, ✏) +

N2

N1 +N2
⇢( �✏, r+✏)

⇢( �✏, +✏) +
N2

N1 +N2
⇢( 0, r)

=

vuut2

s
⇣

⌘

⇣
1� e

�
4✏2
⌘

⌘
+

N2

N1 +N2

vuut2

s
⇣

⌘

⇣
1� e

�
r2
⌘

⌘


N2

N1 +N2
r

r
2

⌘

4

s
⇣

⌘
+O(✏)

where we used (5) and the inequality 1� e
�x
 x. It follows that asymptotically almost surely

sup
x2Xn

⇢
2( x, b��⇤(x),�⇤) 

2

⌘

s
⇣

⌘

1

4
r
2 +O(✏).

E.2 Proof for ALNK

Consider the same example as in the above proof for AFFK. At first, a hierarchical linkage algorithm
(compare section B.4) will merge all points within 2✏-intervals. This leaves us with 4 trees. Then,
the linkage algorithm does not return the planted partition if the trees belonging to the intervals
[r � ✏, r + ✏] and [2r �K✏, 2r �K + ✏] are merged in the next step. For r � K � ✏, it can be easily
seen that this is the case.

F Statistical identifiability with respect to ECTR, EFFK, and
ELNK

Proof of Theorem 5: Consistency implies statistical identifiability. Let ⇤ be
For appropriate choice of bandwidths, we know that

lim
n!1

⇢(b�k,�⇤
n
, �k)

P
= 0 and lim

n!1

|b�k,�⇤
n
� �k|

P
= 0. (68)

From Aragam et al. (2020, Lemma A.3), convergence of component measures and the corresponding

component weights implies that the sequence of estimators defined by b⇤ =
KP
i=1

b�k,�⇤
n
�b�k,�⇤

n
converges

in probability to the true mixing measure ⇤ w.r.t the Wasserstein metric.
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G Estimating the Bayes partition

Given a finite sample X = {x1, x2, · · ·xn}, let b� denote the partition generated by a kernel clustering
algorithm A. We can define an estimator of the Bayes partition function b�b : Rd

! [K] in the natural
way:

b�b(x) = arg sup
k2[K]

X

j:b�(j)=k

G�(x, xj)
(⇤)
= arg sup

k2[K]

b�k,b� bfk,b�(x) (69)

where (⇤) follows from Lemma 1. Due to the equivalence between kernel clustering and density-based
clustering, we can show that if a kernel-based algorithm A can consistently recover the planted
partition, then by means of a single reassignment step given by (69), the algorithm consistently
recovers the Bayes partition.
Exceptional set. Given ⇤ =

P
k2[K] �k��k , for any t > 0, we define the exceptional set

E(t) =
[

k 6=k0

�
x 2 Rd : |�kfk(x)� �k0fk0(x)|  t

 
.

Theorem 2 (Estimating the Bayes partition). Let ⇣, and � be bandwidth parameters satisfying

the conditions provided in Theorem 2. Let ⇤ 2 P
2
K satisfying the conditions provided in (17). For

X = {x1, x2, · · ·xn} ⇠ m(⇤)n and let b�b,n be the partition function obtained by CTR, FFK or LNK

followed by the reassignment step in (69). Then, w.h.p over the samples, there exists a sequence

{tn}
n!1
�! 0 such that b�n(x) = �Bayes(x) for all x 2 Rd

� E0(tn).

Proof of Theorem 2. The proof of this Proposition is adapted with minor changes from the proof
of Aragam et al. (2020, Theorem 5.2). For this reason, we borrow some of the notation from Aragam
et al. (2020). Since ⇤ satisfies the separability conditions given in equation (58), from Theorem 2, we
know that w.h.p over the samples the algorithms CTR, FFK, and LNKrecover the planted partition
up to a permutation over the labels, that is, b� = �

⇤. For appropriate choice of bandwidths, we know
that w.h.p over the samples,

lim
n!1

fk,�⇤
P
= fk, (70)

where the convergence is defined pointwise and uniformly over Rd.
Let,

tn = 2 sup
k2[K]

sup
x2Rd

|b�k,�⇤
n
bfk,�⇤

n
(x)� �kfk(x)| � 0. (71)

From (70), we know that tn
P
�! 0. Moreover, by definition, we have that

|�kfk(x)� �k0fk0(x)| > tn =) ��Bayes(x)f�Bayes(x)(x) > �kfk(x) + tn 8x 62 E0(tn), k 6= �Bayes(x).
(72)

Therefore, it follows that for any x 2 RD
� E0(tn) and any k 6= �Bayes(x),

b��Bayes(x),�⇤
n
bf�Bayes(x),�⇤

n
(x)

(1)
> ��Bayes(x)f�Bayes(x) �

tn

2

(2)
> �kfk(x) +

tn

2

(3)
> b�k,�⇤

n
bfk,�⇤

n
(x), (73)

where, (1) and (3) follow from (71) and (2) follows from (72). This implies that b�b(x) = arg sup
k2[K]

b�k,�⇤ f̂k,�⇤(x) =

�Bayes(x) for all x 62 E0(tn).
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