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Abstract

We study the problem of ordinal embedding:
given a set of ordinal constraints of the form
distance(i, j) < distance(k, l) for some qua-
druples (i, j, k, l) of indices, the goal is to con-
struct a point configuration x̂1, ..., x̂n in Rp that
preserves these constraints as well as possible.
Our first contribution is to suggest a simple new
algorithm for this problem, Soft Ordinal Embed-
ding. The key feature of the algorithm is that
it recovers not only the ordinal constraints, but
even the density structure of the underlying data
set. As our second contribution we prove that in
the large sample limit it is enough to know “local
ordinal information” in order to perfectly recon-
struct a given point configuration. This leads to
our Local Ordinal Embedding algorithm, which
can also be used for graph drawing.

1. Introduction
In this paper we consider the problem of ordinal embed-
ding, also called ordinal scaling, non-metric multidimen-
sional scaling, monotonic embedding, or isotonic embed-
ding. Consider a set of objects x1, ..., xn in some abstract
space X . We assume that there exists a dissimilarity func-
tion ξ : X ×X → R≥0 that assigns dissimilarity values ξij
to pairs of objects (i, j). However, this dissimilarity func-
tion is unknown to us. All we get are ordinal constraints

ξij < ξkl for certain quadruples of indices (i, j, k, l). (?)

Our goal is to construct an embedding x̂1, ..., x̂n in some
Euclidean space Rp of given dimension p such that all or-
dinal constraints are preserved:

ξij < ξkl ⇐⇒ ‖x̂i − x̂j‖ < ‖x̂k − x̂l‖.
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This problem has first been studied by Shepard (1962a;b)
and Kruskal (1964a;b), and lately has drawn quite some at-
tention in the machine learning community (Quist & Yona,
2004; Rosales & Fung, 2006; Agarwal et al., 2007; Shaw
& Jebara, 2009; McFee & Lanckriet, 2009; Jamieson &
Nowak, 2011a; McFee & Lanckriet, 2011; Tamuz et al.,
2011; Ailon, 2012), also in its special case of rank-
ing (Ouyang & Gray, 2008; McFee & Lanckriet, 2010;
Jamieson & Nowak, 2011b; Lan et al., 2012; Wauthier
et al., 2013).

Soft ordinal embedding. The first main contribution of
our paper is to develop a new simple and efficient method
for ordinal embedding. We propose a new “soft” objec-
tive function that not only counts the number of violated
constraints, but takes into account the amount of violation.
The resulting optimization problem is surprisingly simple:
it does not have any parameters that need to be tuned, and it
can be solved by standard unconstrained optimization tech-
niques. We develop an efficient majorization algorithm for
this purpose. The resulting ordinal embedding has the nice
feature that it not only preserves the ordinal structure of the
data, but it even preserves the density structure of the data.
This is a key feature for machine learning because the re-
sults of learning algorithms crucially depend on the data’s
density. The code of our algorithm has been published as
an official R-package (Terada & von Luxburg, 2014).

Local ordinal embedding. There exists a fundamental
theoretical question about ordinal embedding that has re-
ceived surprisingly little attention in the literature. Namely,
in how far does ordinal information as in (?) determine
the geometry and the density of an underlying data set?
It is widely believed (p. 294 of Shepard, 1966; Section
2.2 of Borg & Groenen, 2005; Section 5.13.2 of Dat-
torro, 2005) and has recently been proved (Kleindessner
& von Luxburg, 2014) that upon knowledge of the ordi-
nal relationships for all quadruples (i, j, k, l), the point set
x1, ..., xn can be approximately reconstructed up to sim-
ilarity transforms if n is large enough An even more in-
teresting question is whether we really need knowledge
about all quadruples (i, j, k, l), or whether some subset of
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quadruples is already sufficient to guarantee the uniqueness
of the embedding. Particularly interesting are local ordinal
constraints. In the metric world, the whole field of dif-
ferential geometry is based on the insight that knowledge
about local distances is enough to uniquely determine the
geometry of a set. Does such a result also hold if our local
knowledge only concerns ordinal relationships, not metric
distances? As the second main contribution of this paper,
we provide a positive answer to this question: if the sample
size n is large enough, then it is possible to approximately
reconstruct the point set x1, ..., xn if we just know who are
each point’s k-nearest neighbors (for a parameter k to be
specified later). That is, the local ordering induced by the
distance function already determines the geometry and the
density of the underlying point set.

Application to graph drawing. The local point of view
suggests ordinal embedding as an interesting alternative to
graph drawing algorithms. If vertex i is connected by an
edge to vertex j, but not to vertex k, we interpret this con-
stellation as a constraint of the form ξij < ξik. With this
interpretation, graph embedding (drawing) for unweighted
graphs becomes a special case of ordinal embedding.

2. Related work
Ordinal embedding. Ordinal embedding was invented
as a tool for the analysis of psychometric data by Shep-
ard (1962a;b; 1966) and Kruskal (1964a;b). An approach
based on Gram matrices, called generalized non-metric
MDS (GNMDS), was proposed in Agarwal et al. (2007).
This approach solves a relaxed version of the embedding
problem as a semi-definite program. In a similar spirit,
Shaw & Jebara (2009) introduced structure preserving em-
bedding (SPE) for embedding unweighted nearest neighbor
graphs to Euclidean spaces. In practice, both SPE and GN-
MDS have a number of disadvantages. The computational
costs of the semi-definite programs are high, and both al-
gorithms have tuning parameters that have to be chosen
by some heuristic. Moreover, as a consequence of relax-
ation it may happen that even if a perfect embedding ex-
ists, it is not a solution of the optimization problem. More
on the theoretical side, there is related work on monotone
maps and sphericity (Bilu & Linial, 2005), with focus on
the question of the minimal achievable dimension p in the
non-realizable case, and Alon et al. (2008), with the focus
on the worst case distortion guarantees for embedding arbi-
trary metrics in the Euclidean space. In the machine learn-
ing community, the work of Jamieson & Nowak (2011a)
investigates a lower bound for the minimum number of
queries of the form “Is ξij ≤ ξkl?” for realizing an ordi-
nal embedding, and similar work exists for the special case
of ranking (Jamieson & Nowak, 2011b; Ailon, 2012; Wau-
thier et al., 2013). There is also a large literature on the

special case of graph embedding and graph drawing, see
for example the recent monograph by Tamassia (2013). In
our experiments, we include some of the most well-known
graph drawing algorithms such as the one by Fruchterman
& Reingold (1991) and by Kamada & Kawai (1989).

Metric embeddings. There exists a huge body of work on
algorithms that embed data points based on metric infor-
mation. An overview over the traditional approach of met-
ric multidimensional scaling is available in Borg & Groe-
nen (2005). Many of the recent embedding algorithms fol-
low the paradigm that it is enough to preserve local dis-
tances: Isomap (Tenenbaum et al., 2000), locally linear
embeddings (Roweis & Saul, 2000), Laplacian eigenmaps
(Belkin & Niyogi, 2003), stochastic neighbor embedding
(SNE; Hinton & Roweis, 2002), t-SNE (van der Maaten &
Hinton, 2008), and so on. Related theoretical work includes
the one of metric k-local embeddings, where the target is a
Johnson-Lindenstrauss-type theorem under the assumption
that only local distances have to be preserved (Gottlieb &
Krauthgamer, 2011; Bartal et al., 2011). We are not aware
of any theoretical work on local ordinal embeddings.

3. Soft ordinal embedding
3.1. A soft objective function

Consider a set of n objects with pairwise dissimilarity
scores ξij . To encode ordinal constraints, we introduce a
subset A ⊂ {1, . . . , n}4 of quadruples such that

(i, j, k, l) ∈ A ⇐⇒ ξij < ξkl.

Note that at this point the set A is allowed to be any subset
of {1, . . . , n}4. For given ordinal information A and given
dimension p, the aim of ordinal embedding is to find a p-
dimensional embedding X = (xis)n×p that preserves the
given ordinal information as well as possible. Denote by
dij(X) := ‖xi − xj‖ the Euclidean distances between the
embedded points xi and xj . The most natural objective
function for ordinal embedding is

Errhard(X | A) :=
∑

(i,j,k,l)∈A 1[dij(X) ≥ dkl(X)].

However, this objective function is discrete and difficult
to optimize. Moreover, it does not take into account the
“amount” by which a constraint is violated. This has al-
ready been observed by Johnson (1973), who suggested the
alternative penalty function∑

(i,j,k,l)∈Amax
[
0, d2ij(X)− d2kl(X)

]2∑
(i,j,k,l)∈A(d2ij(X)− d2kl(X))

.

The numerator is a continuous version of Errhard and the
denominator’s purpose is to prevent the degenerate solu-
tion X ≡ 0. However, since the denominator depends on
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X , this objective function is cumbersome to optimize. In
particular, no majorization algorithm exists for this type of
stress function (nor for similar stress functions such as (1)
in Kruskal, 1964a;b or (2) in Kruskal, 1968).

We now suggest an alternative approach. To overcome
the problem of degeneracy, we introduce a scale parame-
ter δ > 0 and propose the objective function

Errsoft(X | p, δ) :=∑
i<j

∑
k<l oijkl max [0, dij(X) + δ − dkl(X)]

2
, (1)

where oijkl = 1 if (i, j, k, l) ∈ A and oijkl = 0 other-
wise. We call the problem of minimizing Errsoft the soft
ordinal embedding problem (SOE). Note that in the realiz-
able case, where the original point set comes from Rp, the
true point configuration is a global minimum of the objec-
tive function Errsoft. The following proposition shows that
the parameter δ > 0 just controls the scale of the embed-
ding and has no further effect on the solution (the proof is
straightforward and can be found in the supplement).

Proposition 1 (Scale parameter). Let δ1, δ2 > 0. If
Xδ1 := arg min Errsoft(X | p, δ1) is an optimal solution
for parameter δ1, then (δ2/δ1)Xδ1 is an optimal solution
of argmin Errsoft(X | p, δ2) for parameter δ2.

3.2. Majorization Algorithm for SOE

In order to minimize the objective function Errsoft, we pro-
pose a majorization algorithm. Let us briefly recap this
general method. Let X be a non-empty set and f : X → R
a real-valued function. A function g : X × X → R is a
majorizing function of f if it satisfies

(i)f(x0) = g(x0, x0) for all x0 ∈ X ,
(ii) f(x) ≤ g(x, x0) for all x0, x ∈ X .

For given x0 ∈ X , let x̃ ∈ X be such that g(x̃, x0) ≤
g(x0, x0). This implies f(x̃) ≤ g(x̃, x0) ≤ g(x0, x0) =
f(x0).Consequently, we can optimize the original function
by minimizing a majorizing function instead of the original
one. This can be of considerable advantage if the majoriz-
ing function g is easier to handle than the original function
f . The update step of a majorization algorithm for mini-
mizing f is xt+1 = arg minx∈X g(x, xt−1).

To construct a majorizing function for our objective func-
tion Errsoft, we take inspiration from Groenen et al. (2006).
Given any current candidate point configuration Y , we con-
sider the following quadratic majorizing function:

Proposition 2 (Majorizing function). A majorizing func-
tion for each component of Errsoft is given by

oijkl max [0, dij(X) + δ − dkl(X)]
2

≤ αijkl‖xi − xj‖2 + α∗ijkl‖xk − xl‖2

− 2βijkl(xi − xj)T (yi − yj)

− 2β∗ijkl(xk − xl)T (yk − yl) + γijkl. (2)

The parameters αijkl, α∗ijkl, βijkl, β
∗
ijkl, and γijkl only

depend on Y . Their closed form expressions are provided
in the supplement of the paper.

The proof of this proposition is provided in the supplemen-
tary material, as well as the pseudocode for solving the soft
ordinal embedding problem based on this majorizing func-
tion. For the special case of local ordinal embedding we
explicitly state the majorization algorithm below.

4. Local ordinal embedding
The problem. The potential number of ordinal constraints
of the form (?) is of the order O(n4), much too large to be
practical. It is an interesting question whether it is possi-
ble to significantly reduce this number of constraints, with-
out giving up on embedding quality. In particular, we are
interested in the case of “local” ordinal constraints. By
kNN(i) ⊂ {1, ..., n} we denote the set of indices of the
nearest neighbors of point xi. Note that such a set encodes
a particular subset of ordinal constraints:

j ∈ kNN(i) and l 6∈ kNN(i) =⇒ ξij < ξil (??)

It is well known from the area of manifold algorithms that
we can reconstruct a set of points if we know the distances
of each point to its k-nearest neighbors. We now want to
show the surprising fact that we do not even need to know
the distances — it is enough to know the indices in the sets
kNN(i) to reconstruct the point set.

It is convenient to formalize the neighborhood information
in the form of the k-nearest neighbor graph, in which each
point is connected to its k nearest neighbors by a directed,
unweighted edge. We define the problem of local ordinal
embedding (LOE) as follows: Given a directed, unweighted
kNN graph G, construct an embedding x̂1, ..., x̂n ∈ Rp

such that the kNN graph of the new points coincides with
the given graph G.

Our algorithm. Consider a directed, unweighted kNN-
graph with adjacency matrix A = (aij)i,j=1,...,n. With the
notation a∗ijk := aij(1−aik), our objective for local ordinal
embedding is a special realization of Errsoft, namely

Errlocal(X | p, δ) :=
n∑
i=1

n∑
j 6=i

n∑
k 6=i

a∗ijk max [0, dij(X) + δ − dik(X)]
2
. (3)

Based on Proposition 2, we obtain the following majorizing
function for Errlocal:

Errlocal(X | p, δ) ≤
p∑
s=1

[
xTsMxs − 2xTs Hys

]
+ γ,
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where xs = (x1s, . . . , xns)
T , ys = (y1s, . . . , yns)

T , M =
(mij)n×n, H = (hij)n×n, γ =

∑n
i=1

∑n
j 6=i
∑n
k 6=i γijk,

mij =

{
1
2

∑
j 6=i(mij +mji) if i = j,

−2(αiji· + α∗i·ij) if i 6= j,

hij =

{∑
j 6=i(hij + hji) if i = j,

−(βiji· + β∗i·ij + βjij· + β∗j·ji) if i 6= j.

Note that the diagonal elements of M are positive. For
given Y and xjs (j 6= i), we can optimize the majorization
function with xis by the following update rule:

xis :=
2
∑n
j=1 hijyjs −

∑
j 6=i(mij +mji)xjs

2mii
. (4)

The pseudocode of the resulting majorization algorithm is
presented in Algorithm 1, called LOE-MM in the follow-
ing. The computational complexity of each of its itera-
tions is O(kn2). Compare this to the complexity of struc-
ture preserving embedding (SPE), an algorithm that has
been designed explicitly for the purpose of embedding k-
nearest neighbor graphs: here, the complexity of each iter-
ation is O(n3 + c3) with the number of ordinal constraints
c = (n−k)kn, soO(k3n6) altogether. A similar complex-
ity bound applies to the GNMDS algorithm.

As a final remark, note that local ordinal embedding applies
in a straightforward manner to general graph embedding
problems. Given a graph G = (V,E), we formulate the
constraints that ξij < ξik if (i, j) ∈ E and (i, k) 6∈ E.
Then we continue as above. In the supplementary mate-
rial we demonstrate that LOE works gracefully for visual-

Algorithm 1 LOE-MM: Majorization minimization algo-
rithm for local ordinal embedding

1: Set δ > 0 to a scale parameter and set X0 to some
initial n× p coordinate matrix.

2: Set iteration counter t := 0 and X−1 := X0.
3: Set ε > 0 to a small value as the convergence criterion

(e.g., ε = 10−5).
4: while t = 0 or Errlocal(Xt−1 | p, δ) − Errlocal(Xt |
p, δ) ≥ ε do

5: t := t+ 1.
6: Set Y := Xt−1.
7: Compute M and H .
8: for i = 1 to n do
9: for s = 1 to p do

10: Update xis by the formula (4).
11: end for
12: end for
13: Set Xt := X .
14: end while

izing moderately sized graphs and can outperform standard
graph drawing algorithms.

5. Local ordinal embedding: consistency
In this section, we prove that local ordinal embedding is
statistically consistent: in the large sample limit, it recov-
ers the original point position up to a small error. This es-
tablishes that local ordinal information is indeed sufficient
to reconstruct the geometry and density of a point set. To
be able to state the theorem, we first need to introduce a
distance function between sets of points X and Y :

∆(X,Y ) :=
∑n
i=1(xi − yi)T (xi − yi)

∆sim(X,Y ) := inf
a>0,b∈Rp,

O: orthonormal

∆(X, a ·OY + 1bT ),

where 1 = (1, . . . , 1)T is the p-dimensional one-vector.

Theorem 3 (Consistency of LOE). Assume that X ⊂ Rp is
compact, connected, convex, has a smooth boundary, and
has full dimensionality in the sense that there exists some
ε > 0 such that the set Xε := {x ∈ X | d(x, ∂X ) > ε}
is nonempty and connected. Let f be a probability density
function with support X . We assume that f is continuously
differentiable and is bounded away from 0. LetX1, ...,Xn

be an i.i.d. sample from f , and X̂1, ..., X̂n ∈ Rp be a
global optimum of the LOE objective function Errlocal.
Then, as n → ∞, k → ∞ such that k/n → 0 and
kp+2/(n2 logp n)→∞, we have that ∆sim(X, X̂LOE)→
0 in probability.

Proof sketch. In Proposition 4 below we prove that upon
knowledge of the unweighted, directed kNN graph it is pos-
sible to consistently estimate all pairwise Euclidean dis-
tances ‖Xi −Xj‖, up to a global multiplicative constant
and a small additive error ε. Consequently, the distance ma-
trix of any point configurationZ1, ...,Zn that has the same
kNN graph as the original setX1, ...,Xn, has to agree with
the original distance matrix (up to error ε and a global con-
stant). But it is well known in the context of classic multidi-
mensional scaling that if two distance matrices agree up to
entry-wise deviations of ε, then the ∆sim-distance between
the two corresponding point configurations is bounded by
ε2 times a constant (Sibson, 1979). Taken together, any
point configuration X̂1, ..., X̂n that is a solution of LOE
has to agree with the original point set, up to similarity
transforms and an error converging to 0.

The key ingredient in this proof is the following statement.

Proposition 4 (Estimating distances from kNN). Under
the assumptions of Theorem 3, consider the unweighted, di-
rected kNN graph on the sample X1, ...,Xn. Then we can
construct estimates d̂ij such that with probability 1 − pn
the following holds: There exists an unknown constant Cn,
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a scaling constant sn > 0 and an εn > 0 such that for all
i, j ∈ {1, ..., n}, we have |Cn ·sn ·d̂ij−‖Xi−Xj‖ | ≤ εn.
In particular, if n → ∞, k → ∞, k/n → 0, and
kp+2/(n2 logp n) → ∞, then εn → 0 and pn → 0, hence
the distance estimates converge to the true Euclidean dis-
tances uniformly in probability.

Proof sketch. It has been proved in von Luxburg & Alam-
gir (2013) that if we are given an unweighted, directed
k-nearest neighbor graph on a sample of points, then un-
der the conditions stated in the proposition it is possible
to consistently estimate the underlying density f(Xi) at
each data point, that is there exist estimates f̂i such that
f̂i → f(Xi) a.s., uniformly over all sample points. We
now use these estimates to assign edge weights to the pre-
viously unweighted kNN graph: if edge (i, j) exists, it gets
the weight rn,k(i) := (1/f̂i)

1/p. The key is now to prove
that the shortest path distances in the re-weighted kNN
graph converge to the underlying Euclidean distances. As-
sume first that we knew the underlying density values, that
is f̂i = f(Xi). Then under the conditions on n and k stated
in the proposition, the distance between a point Xi and its
k-nearest neighbor is highly concentrated around its expec-
tation, and this expectation is proportional to rn,k(i). To
see that ‖Xi−Xj‖ is lower bounded by the rescaled short-
est path distance between i and j, we take the straight line
betweenXi andXj and chop it into small pieces [al,al+1]
of length proportional to rn,k (this length varies with the
density as we go along the line). Now we replace each
of the intermediate points al by its closest sample point
bl. With some care we can ensure that bl is connected to
bl+1 in the graph, and in this case the length of the path
Xi, b1, b2, ...,Xj is an upper bound for the rescaled short-
est path distance between Xi and Xj in the re-weighted
graph. The other way round, consider a shortest path in
the re-weighted graph. It is straightforward to see that
its length is approximately proportional to the sum of Eu-
clidean distances between subsequent vertices, which is an
upper bound on the Euclidean distance between Xi and
Xj . The same analysis holds if f̂i does not coincide with
f(Xi), but consistently converges to f(Xi) up to a con-
stant. In this case, the matrix of pairwise shortest path
distances approximates a constant times the original Eu-
clidean distance matrix.

For an illustration of Proposition 4, we provide a number
of simulations in the supplementary material. They show
the convergence behavior of the shortest path distance in
the re-weighted graph.

Choice of k. Theorem 3 states that statistical consis-
tency of local ordinal embedding occurs if k/n → 0 but
k/n2/(p+2) → ∞ (ignoring log factors). This requirement
is inherited from von Luxburg & Alamgir (2013), but we
believe that this condition on k can be significantly low-
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Figure 1. Relationship between the number of constraints and
the embedding error, on the data described in Section 6.2 (with
n = 500). The “difference from the original embedding” refers
to the squared Frobenius distance between the original coordinate
matrix and the procrustes transformed LOE embedding.

ered to k some power of log n (this is ongoing work).
A natural question is whether the quality of the embedding
increases dramatically if we increase k. Note that the num-
ber of ordinal constraints of the type (??) that are encoded
in a kNN graph is nk(n−k), which takes its maximum for
k = n/2. However, Figure 1 shows empirically that once
we passed some reasonably small value of k, the error of
the embedding stays about the same for a wide range of k,
and only increases when k gets extremely large again. Fur-
ther figures illustrating the behavior of LOE with respect to
the choice of k can be found in the supplementary material.

We should contrast our number of constraints with the re-
sults in Jamieson & Nowak (2011a). Here the authors
showed that at least Ω(n log n) actively chosen queries are
necessary to uniquely determine a point embedding. They
conjecture that there is also a matching upper bound. In our
case, however, we are not interested in the case of arbitrary
comparisons of type (?), but in the particular case of local
comparisons of type (??). So even if their conjecture turns
out to be true, this is not in conflict with our results.

6. Experiments with local ordinal embedding
In our experiments we focus on the case of local ordinal
embedding (experiments for more general soft ordinal em-
bedding are provided in the supplementary material).

6.1. Evaluation criterion: Graph adjusted rand index

To measure a recovery rate of ordinal information in an
unweighted graph, we need an appropriate criterion. Let
An := (aij)n×n be a given adjacency matrix and Ân :=
(âij)n×n be a recovered adjacency matrix. The naive ap-
proach would be to consider the error function

Err(Ân, An) :=
1

n(n− 1)
‖Ân −An‖2F .
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Figure 2. Two-dimensional embeddings of different methods in the realizable case. Our LOE algorithm is the only one that captures the
density information of the original data.

âij Total row
1 0

aij
1 mi ki −mi ki
0 ki −mi n− 1− 2ki +mi n− 1− ki

Total col ki n− 1− ki n− 1

Table 1. Contingency table of the i-th rows of An and Ân. Used
for deriving the graph adjusted rand index.

However, this function is unsuitable if n is large and k =
o(n), because then Err(Ân, An) ≤ 2k

n−1 → 0 as n →
∞. Thus, we introduce an adjusted recovery measure for an
unweighted graph, called graph adjusted rand index. Let
ki be the out-degree of vertex i and mi := #{j | aij = 1
and âij = 1}. Consider the contingency table presented
as Table 1. As with Hubert & Arabie (1985), for each i
we assume mi is drawn from a hypergeometric distribu-
tion, that is âij takes 1 or 0 randomly such that ki is fixed.
Under this assumption, we have E[mi] = k2i /(n − 1).
For Mi := (n − 1) − 2(ki − mi), we have E[Mi] =
(n − 1) + 2ki(ki − n+ 1)/(n− 1). We define the graph
adjusted rand index GARI(An, Ân) between An and Ân
as

GARI(An, Ân) :=

∑n
i=1(M̂i − E[Mi])∑n

i=1(maxMi − E[Mi])

where M̂i :=
∑
j 6=i 1[aij = âij ]. GARI is bounded from

above by 1, and GARI(An, Ân) = 1 ⇐⇒ An = Ân.
A high GARI score implies that many of the ordinal con-
straints have been satisfied by the solution. Note, however,
that GARI does not take into account the amount by which
a constraint is violated. We will see below that there exist
embeddings that have a high GARI score, but do not pre-
serve the density information. In this sense, a high GARI
score is a necessary, but not a sufficient criterion for a good
ordinal embedding.

6.2. kNN graph embedding in the realizable case

We first consider a simple case in which a perfect embed-
ding to R2 exists. We sampled n points in R2 from a dis-
tribution that has two uniform high-density squares, sur-
rounded by a uniform low density region. See Figure 2
(upper left). We then constructed the unweighted kNN
graph and embedded this graph in R2 by various embed-
ding methods, see Figure 2. We compare our approach to
Laplacian eigenmaps (LE), the Kamada and Kawai algo-
rithm (KK), the Fruchterman Reingold algorithm (FR), and
t-distributed stochastic neighbor embedding (t-SNE). We
also wanted to compare it to generalized non-metric scaling
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Figure 3. (a) Beanplots of GARI (high is good) and Err(Ân, An) (low is good) for 2-dimensional embeddings of each method with
100 datasets, (b) Two-dimensional embeddings of 5 methods for a unweighted k-NN graph with n = 1500.

GARI
4.10 4.22 4.21 9.50 4.30 5.35 3.58

LOE-2D LOE-3D

1.00
0.00

t-SNESPEGNMDSFRKKLEAdjacency

0.29 0.41 0.39 0.49 0.29 0.68 0.33

Figure 4. 2-dimensional embeddings of each method and a 3-dimensional perfect embedding (LOE-3D) for the Desargues graph.

(GNMDS) and structure preserving embedding (SPE), but
those two algorithms could not cope with this sample size
for computational reasons. Even for moderate 500 sam-
ple points, GNMDS and SPE failed due to out of memory
on a 3 GHz Intel core i7 with 8 GB of memory (we provide
their results on smaller data sets in the supplementary mate-
rial). In Figure 2 we can see that while most of the methods
get the rough point layout correct, LOE is the only method
that is capable to capture the original density and geomet-
ric structure of the data. For the Kamada and Kawai algo-
rithm we can give a theoretical explanation for the distor-
tion. This algorithm tries to find an embedding such that the
Euclidean distances between the embedded vertices corre-
spond to the shortest path distances in the graph. However,
as has been proved in Alamgir & von Luxburg (2012), the
shortest path distances in unweighted kNN graphs do not
converge to the Euclidean distances — to the opposite, any
embedding based on shortest path distances generates an
embedding that distributes points as uniformly as possible
(Alamgir et al., 2014).

6.3. kNN graph embedding in the non-realizable case

Next we consider a higher dimensional Gaussian mixture
model with three components. We define the mean vectors
of the three components as µl := Acl (l = 1, 2, 3), where

c1 :=
(

4√
3
, 0
)
, c2 :=

(
− 4

2
√
3
, 42

)
, c3 :=

(
− 4

2
√
3
,− 4

2

)
and A is a random p × 2 orthonormal matrix. The points
Xi = [Xi1, . . . , Xip]

T (i = 1, . . . , n) are generated as
Xi :=

∑3
l=1 uilµl + εil, where ui = (ui1, ui2, ui3) and

εik are independently generated from the multinomial dis-
tribution for three trials with equal probabilities and the
p-dimensional standard normal distribution Np(0, Ip), re-
spectively. Based on these observations, we then con-
struct the unweighted kNN graph. We set the true num-
ber of nearest neighbors k ≈ 2 log n, the number of orig-
inal dimensions p = 5. In order to run a more thor-
ough statistical evaluation, we chose the small sample size
n = 90 (k = 8) and constructed 100 such unweighted
kNN graphs. To these graphs, we applied various embed-
ding methods: LOE, a random embedding (RND) which
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just uses sample points from the standard normal distribu-
tion, Laplacian eigenmaps (LE), Kamada and Kawai algo-
rithm (KK), Fruchterman Reingold algorithm (FR), gen-
eralized non-metric multidimensional scaling (GNMDS),
structure preserving embedding (SPE), and t-distributed
stochastic neighbor embedding (t-SNE). To choose the tun-
ing parameter λ for GNMDS, we tried the candidate values
{0.5, 1, 2, . . . , 100} and chose the one that leads to the best
GARI value. This means that we had to run GNMDS 101
times for each data set. It took approximately 2 months to
get the solutions of GNMDS for 10 data sets, after which
we stopped (in this experiment, GNMDS was performed on
a 1.9 GHz Intel core i5 with 8 GB of memory). For SPE, we
allowed the original algorithm to select the tuning parame-
ter C. Figure 3(a) shows beanplots of the GARI scores for
2-dimensional embeddings. In this figure, LOE and t-SNE
perform best. However, the GARI scores do not tell the
whole story as they do not evaluate the actual distortion,
but just the number of violated ordinal constraints. To in-
vestigate the preservation of density information, we settle
on the larger sample size of n = 1500 (k = 14 ≈ 2 log n)
and compare various embeddings in Figure 3(b). The top
left figure shows the original data, projected on the space
spanned by the mean vectors. It is obvious that while most
methods do something reasonable, LOE is the only method
that is able to recover the Gaussian density structure of the
data. This finding also indicates that the GARI score alone
is not enough to evaluate quality of embeddings. To com-
pare the computational costs of the methods, we measured
the required time for 50 iterations of each algorithm, for
each parameter choice. This experiment was performed on
a 3 GHz Intel core i7 with 8 GB of memory. The results are
depicted in Figure 5. It is obvious that the two semi-definite
programming methods, GNMDS and SPE, are way too ex-
pensive. On the other hand, the standard graph embed-
ding algorithms such as LE, KK, FR, t-SNE are pretty fast.
The methods based on LOE are in the intermediate range.
More specifically, we additionally compared three differ-
ent methods to minimize our objective functions: LOE-SD
(the steepest descent algorithm, as implemented in C and
R, with the step size 1 and the rate parameter of the back-
tracking line search 0.5); LOE-BFGS (a Newton-like al-
gorithm, the Broyden-Fletcher-Goldfarb-Shanno algorithm
implemented as the optim function in the R stats package),
and our majorization algorithm LOE-MM. Figure 5 shows
that our majorization algorithm is the fastest among these
three.

6.4. Further simulations: graph drawing and SOE

We also applied our algorithm to standard graph-drawing
tasks. Figure 4 shows one example, the classic Desar-
gues graph. The 3-dimensional LOE-embedding can per-
fectly recover the original graph structure. It seems that
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Figure 5. Running times of various methods, cf. Section 6.3.

the 2-dimensional embedding of LOE is a projection of
the 3-dimensional one. We provide more graph drawing
examples in the supplementary material. The general bot-
tom line is that LOE outperforms competing algorithms in
many cases. Finally, we also ran experiments with the gen-
eral SOE approach, with varying amounts of ordinal con-
straints. The results can be found in the supplement.

7. Conclusion and Discussion
In this paper we suggest a new soft objective function for
ordinal embedding. It not only takes into account the num-
ber of ordinal constraints that are violated, but the actual
amount of distance by which these constraints are violated.
Optimizing this objective function leads to an ordinal em-
bedding algorithm that is able to recover the density struc-
ture of the underlying data set in a much better way than
many other methods. Our approach for optimizing this ob-
jective function is based on majorizing functions and has
been published as an R-package (Terada & von Luxburg,
2014). As a second contribution, we prove that ordinal em-
bedding is even possible if not all ordinal constraints are
given, but we just get to know the indices of the k near-
est neighbors of each data point. This theoretical insight
is new. As a special case of local ordinal embedding, we
consider the problem of graph embedding. We ran exten-
sive simulations to compare our algorithms to its competi-
tors (the main paper and the supplementary material). They
show that our method is very good at discovering the den-
sity structure of data sets and the geometric structure of
graphs.
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Abstract
In this supplementary material, we provide the proof of Proposition 1 and the details about the derivation of the
majorizing function in Proposition 2. Moreover, a number of additional simulations are described.

1. Proof of Proposition 1

Proposition 1 (Scale parameter). Let δ1, δ2 > 0, δ1 6= δ2. If Xδ1 := argminErrsoft(X | p, δ1) is an optimal solution for
parameter δ1, then (δ2/δ1)Xδ1 is an optimal solution of argminErrsoft(X | p, δ2) with parameter δ2.

Proof. For any constant c > 0, we obviously have c2 Errsoft(X | p, δ) = Errsoft(cX | p, cδ) for all X ∈ Rn×p. Thus, for
all X ∈ Rn×p, we have (δ2/δ1)

2 Errsoft(X | p, δ1) = Errsoft((δ2/δ1)X | p, δ2). To obtain a contradiction, we assume
(δ2/δ1)Xδ1 does not achieve the minimal value of Errsoft(X | p, δ2), i.e.,

min
X∈Rn×p

Errsoft(X | p, δ2) < Errsoft((δ2/δ1)Xδ1 | p, δ2).

For all X1 and X2 satisfying Errsoft(X1 | p, δ1) < Errsoft(X2 | p, δ1) and all c > 0, we have

c2 Errsoft(X1 | p, δ1) < c2 Errsoft(X2 | p, δ1).

Then, we have

Errsoft((δ2/δ1)Xδ1 | p, δ2) =
(
δ2
δ1

)2

Errsoft(Xδ1 | p, δ1)

> min
X∈Rn×p

Errsoft(X | p, δ2)

=

(
δ2
δ1

)2

min
X∈Rn×p

Errsoft((δ1/δ2)X | p, δ1),

which contradicts Xδ1 := argminErrsoft(X | p, δ1).

2. Majorizing function and Majorization algorithm for SOE
First, we provide the detailed derivation of the majorizing function of the components of Errsoft (i.e., the proof of Propo-
sition 2) and then we describe a majorization algorithm for SOE.

Proceedings of the 31 st International Conference on Machine Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copyright
2014 by the author(s).
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2.1. Majorizing the components of the objective function Errsoft

To majorize max [0, dij(X) + δ − dkl(X)]
2, we use the following majorization inequality (Groenen et al., 2006),

max[0, a1 − a2]2 ≤

{
2(a21 + a22)− 2(a1 + a2)(b1 + b2) + (b1 + b2)

2 if b1 ≥ b2,
2(a21 + a22)− 4a1b1 − 4a2b2 + 2(b21 + b22) if b1 < b2.

(1)

By this inequality, we have

max [0, dij(X) + δ − dkl(X)]
2 ≤

2
[
(dij(X) + δ)2 + d2kl(X)

]
− 2(dij(Y ) + dkl(Y ) + δ)(dij(X) + dkl(X) + δ)

+(dij(Y ) + dkl(Y ) + δ)2 if dij(Y ) + δ ≥ dkl(Y ),

2
[
(dij(X) + δ)2 + d2kl(X)

]
− 4(dij(Y ) + δ)(dij(X) + δ)− 4dkl(Y )dkl(X)

+2
[
(dij(Y ) + δ)2 + d2kl(Y )

]
if dij(X) + δ < dkl(X).

(2)

To obtain the final majorizing function, we majorize each term in the right side of the inequality.

2.1.1. CASE I: dij(Y ) + δ ≥ dkl(Y )

In the case that dij(Y ) + δ ≥ dkl(Y ), we have

max [0, dij(X) + δ − dkl(X)]
2 ≤2d2ij(X) + 2d2kl(X)− 2(dij(Y ) + dkl(Y )− δ)dij(X)

− 2(dij(Y ) + dkl(Y ) + δ)dkl(X) + (dij(Y ) + dkl(Y ) + δ)(dij(Y ) + dkl(Y )− δ)
+ 2δ2.

Due to the presence of the terms dij(X) and dkl(X), the last term of the inequality is not quadratic in X . Note that
dij(Y ) + dkl(Y ) + δ > 0. By the Cauchy-Schwarz inequality

−dkl(X) ≤

{
− 1
dkl(Y ) (xk − xl)

T (yk − yl) if dkl(Y ) > 0,

0 if dkl(Y ) = 0.
(3)

We have a linear majorizing function of −2(dij(Y ) + dkl(Y ) + δ)dkl(X). Unfortunately, we cannot apply the inequality
(3) for −2(dij(Y ) + dkl(Y ) − δ)dij(X) directly since it is not always true that dij(Y ) + dkl(Y ) − δ > 0. Thus, we
consider the case dij(Y ) + dkl(Y )− δ ≥ 0 and the case dij(Y ) + dkl(Y )− δ < 0 separately.

If dij(Y ) + dkl(Y )− δ ≥ 0, we can apply the inequality (3) and obtain a linear majorizing function. Then,

max [0, dij(X) + δ − dkl(X)]
2

≤



2d2ij(X) + 2d2kl(X)− 2
dij(Y )+dkl(Y )−δ

dij(Y ) (xi − xj)
T (yi − yj)

−2dij(Y )+dkl(Y )+δ
dkl(Y ) (xk − xl)

T (yk − yl) + (dij(Y ) + dkl(Y ))
2
+ δ2 if dij(Y ) > 0 and dkl(Y ) > 0,

2d2ij(X) + 2d2kl(X)− 2
dij(Y )+dkl(Y )+δ

dkl(Y ) (xk − xl)
T (yk − yl)

+ (dij(Y ) + dkl(Y ))
2
+ δ2 if dij(Y ) = 0 and dkl(Y ) > 0,

2d2ij(X) + 2d2kl(X)− 2
dij(Y )+dkl(Y )−δ

dij(Y ) (xi − xj)
T (yi − yj)

+ (dij(Y ) + dkl(Y ))
2
+ δ2 if dij(Y ) > 0 and dkl(Y ) = 0,

2d2ij(X) + 2d2kl(X) + (dij(Y ) + dkl(Y ))
2
+ 2δ2 if dij = 0 and dkl(Y ) = 0.

(4)

On the other hand, if dij(Y )+ dkl(Y )− δ < 0, we have −2(dij(Y )+ dkl(Y )− δ) > 0. Thus, we can apply the following
majorization inequality (Groenen et al., 2006)

dij(X) ≤ 1

2

d2ij(X)

dij(Y )
+

1

2
dij(Y ). (5)
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Note that this inequality holds when dij(Y ) > 0. If dij(Y ) = 0, we should replace it by a small positive value, say
τ . As Groenen et al. (2006) pointed out, by choosing τ small enough, this replacement should not have an effect on
the convergence properties of the majorization algorithm. Using the inequality (5), we can obtain a quadratic majorizing
function of −2(dij(Y ) + dkl(Y )− δ)dij(X). Thus, if dij(Y ) + dkl(Y )− δ < 0, we have

max [0, dij(X) + δ − dkl(X)]
2

≤


dij(Y )+δ−dkl(Y )

dij(Y ) d2ij(X) + 2d2kl(X)− 2
dij(Y )+dkl(Y )+δ

dkl(Y ) (xk − xl)
T (yk − yl)

+(dij(Y ) + dkl(Y ))dkl(Y ) + (dij(Y ) + δ)δ if dkl(Y ) > 0,
dij(Y )+δ−dkl(Y )

dij(Y ) d2ij(X) + 2d2kl(X) + (dij(Y ) + dkl(Y ))dkl(Y ) + (dij(Y ) + δ)δ if dkl(Y ) = 0.

(6)

2.1.2. CASE II: dij(Y ) + δ < dkl(Y )

In the case that dij(Y ) + δ < dkl(Y ), we have

max [0, dij(X) + δ − dkl(X)]
2 ≤ 2d2ij(X) + 2d2kl(X)− 4dij(Y )dij(X)− 4dkl(Y )dkl(X) + 2

(
d2ij(Y ) + d2kl(Y )

)
.

Since dij(Y ), dkl(Y ) > 0, by the inequality (3) we have

max [0, dij(X) + δ − dkl(X)]
2

≤

{
2d2ij(X) + 2d2kl(X)− 4(xi − xj)

T (yi − yj)− 4(xk − xl)
T (yk − yl) + 2

(
d2ij(Y ) + d2kl(Y )

)
if dij(Y ) > 0,

2d2ij(X) + 2d2kl(X)− 4(xk − xl)
T (yk − yl) + 2

(
d2ij(Y ) + d2kl(Y )

)
if dij(Y ) = 0.

(7)

2.1.3. COMBINING THE MAJORIZATION RESULTS

Combining the above results, we obtain the majorizing function in Proposition 2:

oijklmax [0, dij(X) + δ − dkl(X)]
2 ≤αijkl‖xi − xj‖2 + α∗ijkl‖xk − xl‖ − 2βijkl(xi − xj)

T (yi − yj)

− 2β∗ijkl(xi − xk)
T (yi − yk) + γijkl, (8)

where α∗ijkl = 2oijkl,

αijkl =

{
2oijkl if dij(Y ) ≥ |dkl(Y )− δ| or dkl(Y ) > dij(Y ) + δ,

oijkl
dij(Y )+δ−dkl(Y )

dij(Y ) if dij(Y ) + δ ≥ dkl(Y ) and dij(Y ) + dkl(Y ) < δ,

βijkl =


oijkl

dij(y)+dkl(Y )−δ
dij(Y ) if dij(Y ) ≥ |dkl(Y )− δ| and dij(Y ) > 0,

0 if (dij(Y ) + δ ≥ dkl(Y ) and dij(Y ) + dkl(Y ) < δ) or dij(Y ) = 0,

2oijkl if dij(Y ) + δ < dkl(Y ),

β∗ijkl =


oijkl

dij(y)+dkl(Y )+δ
dkl(Y ) if dij(Y ) ≥ |dkl(Y )− δ| and dkl(Y ) > 0,

0 if dij(Y ) ≥ |dkl(Y )− δ| or dkl(Y ) = 0,

2oijkl if dij(Y ) + δ < dkl(Y ),

and

γijkl =


oijkl[(dij(Y ) + dkl(Y ))2 + δ2] if dij(Y ) ≥ |dkl(Y )− δ|,
oijkl[(dij(Y ) + dkl(Y ))dkl(Y ) + (dij(Y ) + δ)δ] if dij(Y ) + δ ≥ dkl(Y ) and dij(Y ) + dkl(Y ) < δ,

2oijkl
(
d2ij(Y ) + d2kl(Y )

)
if dij(Y ) + δ < dkl(Y ).

Note that this function is quadratic in X .
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2.2. Majorization algorithm for SOE

Here, we describe the majorization algorithm for the general ordinal embedding problem. By inequality (8), we have

Errsoft(X | p, δ)

≤
n∑
i<j

n∑
k<l

[
αijkl‖xi − xj‖2 + α∗ijkl‖xk − xl‖ − 2βijkl(xi − xj)

T (yi − yj)− 2β∗ijkl(xk − xl)
T (yk − yl) + γijkl

]
.

(9)

By reformulating the right side of (9), we obtain

Errsoft(X | p, δ) ≤
p∑
s=1

[
xTsM

∗xs − 2xTs H
∗ys
]
+ γ, (10)

where xs = (x1s, . . . , xns)
T , ys = (y1s, . . . , yns)

T , M∗ = (m∗ij)n×n, H∗ = (h∗ij)n×n, γ =
∑n
i=1

∑n
j 6=i
∑n
k 6=i γijk,

m∗ij =

{∑
j′ 6=im

∗
ij′ if i = j,

−(αij·· + α∗··ij) if i 6= j,
h∗ij =

{∑
j′ 6=i ηij′ if i = j,

−(βij·· + β∗··ij) if i 6= j.

Note that the diagonal elements ofM are positive. For given Y and xjs (j 6= i), we can optimize the majorization function
with xis by the following formula

xis :=

∑n
j=1 hijyjs −

∑
j 6=imijxjs

mii
.

Therefore, a majorization algorithm for minimizing Q is given by Algorithm 1. In this algorithm, the computational
complexity of each iteration is O(c) where c is the number of ordinal constraints (i.e., c := #(A)).

Algorithm 1 SOE-MM: Majorization algorithm for SOE
1: Set δ > 0 to a scale parameter and set X0 to some initial coordinate matrix.
2: Set iteration counter t := 0.
3: Set X−1 := X0.
4: Set ε > 0 to a small vale as the convergence criterion (e.g., ε = 10−5).
5: while t = 0 or Errsoft(Xt−1 | p, δ)− Errsoft(Xt | p, δ) ≥ ε do
6: t := t+ 1.
7: Set Y := Xt−1.
8: Compute M∗ and H∗.
9: for i = 1 to n do

10: for s = 1 to p do
11: Compute

xis :=

∑n
j=1 hijyjs −

∑
j 6=imijxjs

mii
.

12: end for
13: end for
14: Set Xt := X .
15: end while

3. Additional numerical experiments
3.1. A low sample size example in the realizable case

Section 6.2. of the main paper describes a realizable embedding problem. Because some of the algorithms could not
cope with the large sample size, we additionally conducted experiments with a smaller sample size. To this end, we
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constructed the unweighted kNN graph from the two-dimensional original data in Figure 1 (upper left) and embedded
this graph in R2 by various embedding methods. We compare our approach to Laplacian eigenmaps (LE), the Kamada
and Kawai algorithm (KK), the Fruchterman Reingold algorithm (FR), generalized non-metric scaling (GNMDS) with
λ = 0.05, structure preserving embedding (SPE) and t-distributed stochastic neighbor embedding (t-SNE). In Figure 1 we
can observe the same effect that also happened for larger sample size in the main paper: while most of the methods get the
rough layout correct, LOE is the only method that is capable to capture the original density and geometric structure of the
data.

3.2. Choice of k

Next, we describe the relationship between the number of constraints and the number of nearest neighbors. We sampled
500 points in R2 from a distribution that has two uniform high-density squares, surrounded by a uniform low density region.
See Figure 2 (upper left). We then constructed the unweighted kNN graph and embedded this graph in R2 by LOE using
the Laplacian eigenmaps as the initial embedding, see Figure 2. Figure 1 in the main paper shows the difference between
the original embedding and the procrustes transformed LOE embedding with each k. In Figure 2, we show the actual LOE
embeddings for a variety of values of k. The number of constraints can be considered as the amount of information that is
given about the original density structure. The LOE embeddings around the most informative value k = 250 recover the
original embedding nearly perfectly.

3.3. Some standard graph-drawing examples

Here, we describe applications for 6 classical unweighted graphs: the Frucht graph, the Icosahedral graph, the Chvatal
graph, the Folkman graph, the Thomassen graph and the Meredith graph. The adjacency matrices of these graphs are
available in the igraph package on R (Csárdi & Nepusz, 2006). To these graphs, we applied various embedding methods:
LOE, Laplacian eigenmaps (LE), Kamada and Kawai algorithm (KK), Fruchterman Reingold algorithm (FR), general-
ized non-metric multidimensional scaling (GNMDS), structure preserving embedding (SPE), and t-distributed stochastic
neighbor embedding (t-SNE). Here, to choose the tuning parameter λ for GNMDS, we also tried the candidate values
{0.5, 1, 2, . . . , 100} and chose the one that leads to the best GARI value. Figure 3 shows the adjacency matrices (0 : blue
and 1 : yellow) of the 6 graphs and embeddings of each method with the values of GARI and Errlocal. We can see that
LOE performs very nicely for most of these graph drawing tasks. Moreover, for the Desargues graph whose 2-dimensional
embeddings are described in the main paper, Figure 3 shows 3-dimensional embeddings of each method with the values of
GARI and Errlocal.

3.4. A non-local embedding task solved by the general SOE algorithm

In this experiment, we consider a general, non-local embedding problem and apply our SOE algorithm. As initial data we
use a matrix of “driving” distances between 21 cities in Europe. This data is available as ‘eurodist’ in the stats library of
R. Note that there are no perfect embeddings in the 2-dimensional space. Among all ordinal distance comparisons (about
20000 comparisons in total), we randomly selected 1000 ordinal comparisons. We now compare our SOE algorithm to
GNMDS. The parameter for GNMDS was set to λ = 0.15, which was selected as the value that provides the minimal
number of violations of ordinal constraints. We compare SOE and GNMDS to two hard competitors: metric MDS, which
is allowed to uses the actual distance scores between all cities, and standard non-metric MDS, which is allowed to use all
ordinal constraints. Figure 4 shows the procrustes rotated embeddings of each of the methods. SOE provides a very similar
embedding to the one of non-metric MDS with full ordinal embedding. The solution of GNMDS is somewhat different.
The figure shows that SOE provides a much better embedding than GNMDS. This is also in accordance with the number
of violations of constraints, which is 94/1000 for GNMDS and 35/1000 for SOE.

3.5. Illustration of the proof of Theorem 3

The main step in the consistency proof is Proposition 4: the density estimate of von Luxburg & Alamgir (2013) can be used
to re-weight the graph, and the shortest path distances in this re-weighted graph converge to the true underlying Euclidean
distances.

We demonstrate this convergence for a simple toy data set: a mixture of two Gaussians in R2, where the weight of one
Gaussian is slightly larger than the weight of the other Gaussian (see Figure 5, left side). We draw n = 1000 points
according to this distribution, build the unweighted kNN graph with k = 50, and estimate the density as described in
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von Luxburg & Alamgir (2013). Then we re-weight the edges in the kNN graph with the weights rn,k as described in the
proof of Proposition 4 of the main paper. In this re-weighted kNN graph we then compute the shortest path distances. In
Figure 5 we depict these shortest path distances (right plot) and the true underlying Euclidean distances (middle plot). It is
obvious that the distance structure is exactly the same.

Note that once we have an approximation of the full underlying Euclidean distance matrix, as provided in Proposition 4,
we could simply use classic multidimensional scaling to embed the original graph to the Euclidean space. This embedding
is going to be consistent, by a similar argument as the one of Theorem 3. On the same toy data as above, we show the result
of this embedding in Figure 6. It is obvious that it gets the structure correct, which illustrates the relevance of Theorem 3.
However, we do not recommend this approach for practice, because estimating the density to construct an embedding
violates the principle that one never should solve too difficult problems as an intermediate step.
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Laplacian eigenmaps Fruchterman and Reingold
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Figure 1: Two dimensional embeddings of 7 methods in the realizable and small sample case.

Original data k = 10 k = 50 k = 100 k = 200

k = 250 k = 300 k = 400 k = 450 k = 490

Figure 2: LOE embeddings for different values of k.



Supplementary Material for Local Ordinal Embedding

GARI
1.54 1.44 1.42 3.38 1.40 1.82 1.32

LOEt-SNESPEGNMDSFRKKLEIcosahedral

0.51 0.57 0.57 0.69 0.57 0.57 0.63

GARI
0.47 0.36 0.50 2.79 0.50 0.62 0.00

LOEt-SNESPEGNMDSFRKKLEFrucht

0.66 0.73 0.77 0.69 0.84 1.000.73

GARI
6.27 6.04 5.96 11.9 6.18 7.30 5.34

LOEt-SNESPEGNMDSFRKKLEFolkman

0.29 0.37 0.37 0.37 0.52 0.370.43

GARI
6.18 4.52 4.32 30.2 5.79 7.80 3.04

LOEt-SNESPEGNMDSFRKKLEThomassen

0.29 0.42 0.38 0.30 0.30 0.68 0.53

GARI
29.0 21.7 21.5 24.2 27.8 154.6 12.6

LOEt-SNESPEGNMDSFRKKLEMeredith

0.55 0.45 0.45 0.59 0.40 0.48 0.58

GARI
2.25 2.69 2.65 3.30 2.45 2.42 2.03

LOEt-SNESPEGNMDSFRKKLEChvatal

0.38 0.12 0.12 0.28 0.41 0.350.48

GARI
4.14 4.26 4.21 9.50 4.30 5.17 0.00

LOE-3Dt -SNE-3DSPE-3DGNMDS-3DFR-3DKK-3DLE-3DDesargues

0.68 0.84 0.88 0.80 0.76 1.000.68

Figure 3: Adjacency matrices (0 : blue and 1 : yellow) and embeddings of 7 methods for some classical graphs.
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Figure 4: Two-dimensional embeddings of 21 cities in Europe (Upper figure: metric MDS with the original distance matrix
and non-metric MDS with all ordinal comparisons, Lower left figure: non-metric MDS with all ordinal comparisons and
SOE with 1000 ordinal comparisons, Lower right figure: non-metric MDS with all ordinal comparisons and GNMDS with
1000 ordinal comparisons).
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Figure 5: Left side: Density of the mixture of Gaussians used in the simulation. Middle and right: we fix one data point X ,
marked by a black star. The color of the remaining points encodes the distance of the corresponding point to X . We can
see that the true Euclidean distance (middle plot) is very well approximated by the shortest path distance in the re-weighted
graph (right plot).
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Figure 6: Left side: original sample from the mixture of Gaussians. The color encodes the true density values. Middle:
reconstructed point set. We first estimated the density based on the unweighted kNN graph, then re-weighted the graph
edges as in the Proof of Proposition 4, computed the shortest path distances in this reweighted graph, and then applied
classic (metric) multidimensional scaling. The colors show the values of the estimated density. Right: same procedure
as in the middle, but the graph was reweighted based on the true distance values. We can see that this results in a nearly
perfect embedding.


