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Abstract

Clustering is often formulated as a discrete optimization problem. The objective is
to find, among all partitions of the data set, the best one according to some quality
measure. However, in the statistical setting where we assume that the finite data
set has been sampled from some underlying space, the goal is not to find the best
partition of the given sample, but to approximate the true partition of the under-
lying space. We argue that the discrete optimization approach usually does not
achieve this goal. As an alternative, we suggest the paradigm of “nearest neighbor
clustering”. Instead of selecting the best out of all partitions of the sample, it only
considers partitions in some restricted function class. Using tools from statistical
learning theory we prove that nearest neighbor clustering is statistically consis-
tent. Moreover, its worst case complexity is polynomial by construction, and it
can be implemented with small average case complexity using branch and bound.

1 Introduction
Clustering is the problem of discovering “meaningful” groups in given data. Many algorithms try to
achieve this by minimizing a certain quality function Qn, for example graph cut objective functions
such as ratio cut or normalized cut, or various criteria based on some function of the within- and
between-cluster similarities. The objective of clustering is then stated as a discrete optimization
problem. Given a data set Xn = {X1, . . . , Xn} and a clustering quality function Qn, the ideal
clustering algorithm should take into account all possible partitions of the data set and output the
one that minimizes Qn. The implicit understanding is that the “best” clustering can be any partition
out of the set of all possible partitions of the data set. The algorithmic challenge is to construct an
algorithm which is able to find this clustering. We will call this approach the “discrete optimization
approach to clustering”.

If we look at clustering from the perspective of statistical learning theory we assume that the finite
data set has been sampled from an underlying data space X according to some probability measure.
The ultimate goal in this setting is not to discover the best possible partition of the data set Xn, but
to learn the “true clustering” of the underlying space. In an approach based on quality functions,
this “true clustering” can be defined easily. We choose a clustering quality function Q on the set of
partitions of the entire data space X , and define the true clustering f∗ to be the partition minimizing
Q. In this setting, a very important property of a clustering algorithm is consistency. Denoting the
clustering constructed on the finite sample by fn, we require that Q(fn) converges to Q(f∗) when
n→∞. The most important insight of statistical learning theory is that in order to be consistent,
learning algorithms have to choose their functions from some “small” function space only. To mea-
sure the size of a function space F one uses the quantity NF (x1, .., xn) which denotes the number
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of ways in which the points x1, . . . , xn can be partitioned by functions in F . One can prove that
in the standard setting of statistical learning theory, a necessary condition for consistency is that
E log NF (x1, .., xn)/n→0 (cf. Theorem 2.3 in Vapnik, 1995, Section 12.4 of Devroye et al., 1996).

Stated like this, it becomes apparent that the two viewpoints described above are not compatible
with each other. While the discrete optimization approach on any given sample attempts to find
the best of all (exponentially many) partitions, the statistical learning theory approach restricts the
set of candidate partitions to have sub-exponential size. Hence, from the statistical learning theory
perspective, an algorithm which is considered ideal in the discrete optimization setting is likely to
overfit. One can construct simple examples (cf. Bubeck and von Luxburg, 2007) which show that
this indeed can happen: here the partitions constructed on the finite sample do not converge to the
true clustering of the data space. In practice, for most cases the discrete optimization approach
cannot be performed perfectly as the corresponding optimization problem is NP hard. Instead,
people resort to heuristics. One approach is to use local optimization procedures potentially ending
in local minima only (this is what happens in the k-means algorithm). Another approach is to
construct a relaxation of the original problem which can be solved efficiently (spectral clustering is
an example for this). In both cases, one usually cannot guarantee how close the heuristic solution
is to the global finite sample optimum. This situation is clearly unsatisfactory: for most clustering
algorithms, we neither have guarantees on the finite sample behavior of the algorithm, nor on its
statistical consistency in the limit.

The following alternative approach looks much more promising. Instead of attempting to solve the
discrete optimization problem over the set of all partitions, and then resorting to relaxations due to
the NP-hardness of this problem, we turn the tables. Directly from the outset, we only consider
candidate partitions in some restricted class Fn containing only polynomially many functions. Then
the discrete optimization problem of minimizing Qn over Fn is no longer NP hard – it can trivially
be solved in polynomially many steps by trying all candidates in Fn. From a theoretical point of
view this approach has the advantage that the resulting clustering algorithm has the potential of
being consistent. In addition, it also leads to practical benefits: rather than dealing with uncontrolled
relaxations of the original problem, we restrict the function class to some small enough subset Fn of
“reasonable” partitions. Within this subset, we then have complete control over the solution of the
optimization problem and can find the global optimum. Put another way, one can also interpret this
approach as some controlled way of sparsifying the NP hard optimization problem, with the positive
side effect of obeying the rules of statistical learning theory.

2 Nearest neighbor clustering

In the following we assume that we are given a set of data points Xn = {X1, . . . , Xn} and pairwise
distances dij = d(Xi, Xj) or pairwise similarities sij = s(Xi, Xj). Let Qn be the finite sample
quality function to optimize on the sample. To follow the approach outlined above we have to
optimize Qn over a “small” set Fn of partitions of Xn. Essentially, we have three requirements
on Fn: First, the number of functions in Fn should be at most polynomial in n. Second, in the
limit of n → ∞ the class Fn should be rich enough to approximate any measurable partition of
the underlying space. Third, in order to perform the optimization we need to be able to enumerate
all members of this class, that is the function class Fn should be “constructive” in some sense. A
convenient choice satisfying all those properties is the class of “nearest neighbor partitions”. This
class contains all functions which can be generated as follows. Fix a subset of m � n “seed points”
Xs1 , . . . , Xsm among the given data points. Assign all other data points to their closest seed points,
that is for all j = 1, . . . ,m define the set Zj as the subset of data points whose nearest seed point is
Xsj

. Then consider all partitions of Xn which are constant on the sets Zj . More formally, for given
seeds we define the set Fn as the set of all functions f : X → {1, . . . ,K} which are constant on the
cells of the Voronoi partition induced by the seeds. Here K denotes the number of clusters we want
to construct. The function class Fn contains Km functions, which is polynomial in n if the number
m of seeds satisfies m = O(log n). Given Fn, the simplest polynomial-time optimization algorithm
is then to evaluate Qn(f) for all f ∈ Fn and choose the solution fn = argminf∈Fn

Qn(f). We call
the resulting clustering the nearest neighbor clustering and denote it by NNC(Qn). In practice, the
seeds will be chosen randomly among the given data points.
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3 Consistency of nearest neighbor clustering

In this section we prove that nearest neighbor clustering is statistically consistent for many clustering
quality functions. Due to the complexity of the proofs and the page restriction we can only present
sketches of the proofs. All details can be found in von Luxburg et al. (2007). Let us start with some
notation. For any clustering function f : Rd → {1, . . . ,K} we denote by the predicate A(f) a
property of the function which can either be true or false. As an example, define A(f) to be true if
all clusters have at least a certain minimal size. Moreover, we need to introduce a predicate An(f)
which will be an “estimator” of A(f) based on the finite sample only. Let m := m(n) ≤ n be the
number of seeds used in nearest neighbor clustering. To simplify notation we assume in this section
that the seeds are the first m data points; all results remain valid for any other (even random) choice
of seeds. As data space we use X = R

d. We define:

NNm(x) := NNm(n)(x) := argminy∈{X1,...,Xm} ‖x− y‖ ( for x ∈ R
d)

F := {f : Rd → {1, . . . ,K} | f continuous P-a.e. and A(f) true}
Fn := FX1,...,Xn

:= {f : Rd → {1, . . . ,K} | f satisfies f(x) = f(NNm(x)), and An(f) is true}
F̃n :=

⋃
X1,...,Xn∈Rd FX1,...,Xn

Furthermore, let Q : F → R be the quality function we aim to minimize, and Qn : Fn → R an
estimator of this quality function on a finite sample. With this notation, the true clustering f∗ on the
underlying space and the nearest neighbor clustering fn introduced in the last section are given by

f∗ ∈ argminf∈F Q(f) and fn ∈ argminf∈Fn
Qn(f).

Later on we will also need to work with the functions

f∗n ∈ argminf∈Fn
Q(f) and f̃∗(x) := f∗(NNm(x)).

As distance function between different clusterings f, g we will use

Ln(f, g) := P(f(X) 6= g(X) | X1, . . . , Xn)

(we need the conditioning in case f or g depend on the data, it has no effect otherwise).

Theorem 1 (Consistency of nearest neighbor clustering) Let (Xi)i∈N be a sequence of points
drawn i.i.d. according to some probability measure P on R

d, and m := m(n) the number of
seed points used in nearest neighbor clustering. Let Q : F → R be a clustering quality function,
Qn : F̃n → R its estimator, and A(f) and An(f) some predicates. Assume that:

1. Qn(f) is a consistent estimator of Q(f) which converges sufficiently fast:

∀ε > 0, Km(2n)(d+1)m2
supf∈ eFn

P(|Qn(f)−Q(f)| > ε) → 0.

2. An(f) is an estimator of A(f) which is “consistent” in the following way:

P(An(f̃∗) true) → 1 and P(A(fn) true) → 1.

3. Q is uniformly continuous with respect to the distance Ln between F and Fn:

∀ε > 0 ∃δ(ε) > 0 ∀f ∈ F ∀g ∈ Fn : Ln(f, g) ≤ δ(ε) =⇒ |Q(f)−Q(g)| ≤ ε.

4. limn→∞m(n) = +∞.

Then nearest neighbor clustering as introduced in Section 2 is weakly consistent, that is Q(fn) →
Q(f∗) in probability.

Proof. (Sketch, for details see von Luxburg et al. (2007)). We split the term P(|Q(fn)−Q(f∗)| ≥ ε)
into its two sides P(Q(fn) − Q(f∗) ≤ −ε) and P(Q(fn) − Q(f∗) ≥ ε). It is a straightforward
consequence of Condition (2) that the first term converges to 0. The main work consists in bounding
the second term. As usual we consider the estimation and approximation errors

P
(
Q(fn)−Q(f∗) ≥ ε

)
≤ P

(
Q(fn)−Q(f∗n) ≥ ε/2

)
+ P

(
Q(f∗n)−Q(f∗) ≥ ε/2

)
.
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First we bound the estimation error. In a few lines one can show that
P(Q(fn)−Q(f∗n) ≥ ε/2) ≤ P(supf∈Fn

|Qn(f)−Q(f)| ≥ ε/4).
Note that even though the right hand side resembles the standard quantities often considered in
statistical learning theory, it is not straightforward to bound as we do not assume that Q(f) =
EQn(f). Moreover, note that the function class Fn is data dependent as the seed points used in
the Voronoi partition are data points. To circumvent this problem, we replace the function class Fn

by the larger class F̃n, which is not data dependent. Using symmetrization by a ghost sample (cf.
Section 12.3 of Devroye et al., 1996), we then move the supremum out of the probability:

P
(

sup
f∈Fn

|Qn(f)−Q(f)| ≥ ε/4
)
≤ 2SK(F̃n, 2n)

supf∈ eFn
P
(
|Qn(f)−Q(f)| ≥ ε/16

)
inff∈ eFn

P
(
|Qn(f)−Q(f)| ≤ ε/8

) (1)

Note that the unusual denominator in Eq. (1) emerges in the symmetrization step as we do not
assume Q(f) = EQn(f). The quantity SK(F̃n, 2n) denotes the shattering coefficient, that is the
maximum number of ways that 2n points can be partitioned into K sets using the functions in F̃n.
It is well known (e.g., Section 21.5 of Devroye et al., 1996) that the number of Voronoi partitions
of n points using m cells in R

d is bounded by n(d+1)m2
, hence the number of nearest neighbor

clusterings into K classes is bounded by SK(F̃n, n) ≤ Kmn(d+1)m2
. Under Condition (1) of the

Theorem we now see that for fixed ε and n →∞ the right hand side of (1) converges to 0. Thus the
same holds for the estimation error. To deal with the approximation error, observe that if An(f̃∗) is
true, then f̃∗ ∈ Fn, and by the definition of f∗n we have

Q(f∗n)−Q(f∗) ≤ Q(f̃∗)−Q(f∗) and thus

P
(
Q(f∗n)−Q(f∗) ≥ ε

)
≤ P(An(f̃∗) false) + P

(
f̃∗ ∈ Fn and Q(f̃∗)−Q(f∗) ≥ ε

)
. (2)

The first expression on the right hand side converges to 0 by Condition (2) in the theorem. Using
Condition (3), we can bound the second expression in terms of the distance Ln to obtain

P
(
f̃∗ ∈ Fn, Q(f̃∗)−Q(f∗) ≥ ε

)
≤ P

(
Q(f̃∗)−Q(f∗) ≥ ε

)
≤ P

(
Ln(f∗, f̃∗) ≥ δ(ε)

)
.

Now we use techniques from Fritz (1975) to show that if n is large enough, then the distance between
a function f ∈ F evaluated at x and the same function evaluated at NNm(x) is small. Namely, for
any f ∈F and any ε>0 there exists some b(δ(ε))>0 which does not depend on n and f such that

P(Ln(f, f(NNm(·))) > δ(ε)) ≤ (2/δ(ε)) e−mb(δ(ε)).

The quantity δ(ε) has been introduced in Condition (3). For every fixed ε, this term converges to 0
due to Condition (4), thus the approximation error vanishes. ,

Now we want to apply our general theorem to particular objective functions. We start with the
normalized cut. Let s : Rd×Rd → R

+ be a similarity function which is upper bounded by a constant
C. For a clustering f : Rd → {1, . . . ,K} denote by fk(x) := 1f(x)=k the indicator function of the
k-th cluster. Define the empirical and true cut, volume, and normalized cut as follows:
cutn(fk) := 1

n(n−1)

∑n
i,j=1 fk(Xi)(1− fk(Xj))s(Xi, Xj)

cut(fk) := EX,Y

(
fk(X)(1− fk(Y ))s(X, Y )

)
voln(fk) := 1

n(n−1)

∑n
i,j=1 fk(Xi)s(Xi, Xj) vol(fk) := EX,Y

(
fk(X)s(X, Y )

)
Ncutn(f) :=

∑K
k=1

cutn(fk)
voln(fk) Ncut(f) :=

∑K
k=1

cut(fk)
vol(fk)

Note that ENcutn(f) 6= Ncut(f), but E cutn(f) = cut(f) and E voln(f) = vol(f). We fix a
constant a > 0, a sequence (an)n∈N with an ≥ an+1 and an → a and define the predicates

A(f) is true : ⇐⇒ vol(fk) > a ∀k = 1, . . . ,K

An(f) is true : ⇐⇒ voln(fk) > an ∀k = 1, . . . ,K (3)

Theorem 2 (Consistency of NNC(Ncutn)) Let (Xi)i∈N be a sequence of points drawn i.i.d. ac-
cording to some probability measure P on Rd and s : Rd ×R

d → R
+ be a similarity function which

is upper bounded by a constant C. Let m := m(n) be the number of seed points used in nearest
neighbor clustering, a > 0 an arbitrary constant, and (an)n∈N a monotonically decreasing se-
quence with an → a. Then nearest neighbor clustering using Q := Ncut, Qn := Ncutn, and A
and An as defined in (3) is weakly consistent if m(n) →∞ and m2 log n/(n(a− an)2) → 0.

4



Proof. We will check that all conditions of Theorem 1 are satisfied. First we establish that

{| cutn(fk)− cut(fk)| ≤ aε} ∩ {| voln(fk)− vol(fk)| ≤ aε} ⊂ {|cutn(fk)
voln(fk)

− cut(fk)
vol(fk)

| ≤ 2ε}.

Applying the McDiarmid inequality to cutn and voln, respectively, we obtain that for all f ∈ F̃n

P(|Ncut(f)−Ncutn(f)| > ε) ≤ 4K exp
(
− na2ε2

8C2K2

)
.

Together with m2 log n/(n(a− an)2) → 0 this shows Condition (1) of Theorem 1. The proof of
Condition (2) is rather technical, but in the end also follows by applying the McDiarmid inequality
to voln(f). Condition (3) follows by establishing that for f ∈ F and g ∈ Fn we have

|Ncut(f)−Ncut(g)| ≤ 4CK

a
Ln(f, g).

,

In fact, Theorem 1 can be applied to a large variety of clustering objective functions. As examples,
consider ratio cut, within-sum of squares, and the ratio of between- and within-cluster similarity:

RatioCutn(f) :=
∑K

k=1
cutn(fk)

nk
RatioCut(f) :=

∑K
k=1

cut(fk)
Efk(X)

WSSn(f) := 1
n

∑n
i=1

∑K
k=1 fk(Xi)‖Xi − ck,n‖2 WSS(f) := E

∑K
k=1 fk(X)‖X − ck‖2

BWn :=
∑K

k=1
cutn(fk)

voln(fk)−cutn(fk) BW :=
∑K

k=1
cut(fk)

vol(fk)−cut(fk)

Here nk :=
∑

i fk(Xi)/n is the fraction of points in the k-th cluster, and ck,n :=∑
i fk(Xi)Xi/(nnk) and ck := Efk(X)X/Efk(X) are the empirical and true cluster centers.

Theorem 3 (Consistency of NNC(RatioCutn), NNC(WSSn), and NNC(BWn)) Let fn

and f∗ be the empirical and true minimizers of nearest neighbor clustering using RatioCutn,
WSSn, or BWn, respectively. Then, under conditions similar to the ones in Theorem 2, we have
RatioCut(fn) → RatioCut(f∗), WSS(fn) → WSS(f∗), and BW(fn) → BW(f∗) in probabil-
ity. See von Luxburg et al. (2007) for details.

4 Implementation using branch and bound

It is an obvious question how nearest neighbor clustering can be implemented in a more efficient way
than simply trying all functions in Fn. Promising candidates are branch and bound methods. They
are guaranteed to achieve an optimal solution, but in most cases are much more efficient than a naive
implementation. As an example we introduce a branch and bound algorithm for solving NNC(Ncut)
for K = 2 clusters. For background reading see Brusco and Stahl (2005). First of all, observe that
minimizing Ncutn over the nearest neighbor function set Fn is the same as minimizing Ncutm over
all partitions of a contracted data set consisting of m “super-points” Z1, . . . , Zm (super-point Zi

contains all data points assigned to the i-th seed point), endowed with the “super-similarity” function
s̄(Zs, Zt) :=

∑
Xi∈Zs,Xj∈Zt

s(Xi, Xj). Hence nearest neighbor clustering on the original data set
with n points can be performed by directly optimizing Ncut on the contracted data set consisting of
only m super-points. Assume we already determined the labels l1, . . . , li−1∈{±1} of the first i−1
super-points. For those points we introduce the sets A = {Z1, . . . , Zi−1}, A− := {Zj | j < i, lj =
−1}, A+ := {Zj | j < i, lj = +1}, for the remaining points the set B = {Zi, . . . , Zm}, and the
set V := A ∪ B of all points. By default we label all points in B with −1 and, in recursion level
i, decide about moving Zi to cluster +1. Analogously to the notation fk of the previous section, in
case K =2 we can decompose Ncut(f) = cut(f+1) · (1/ vol(f+1) + 1/ vol(f−1)); we call the first
term the “cut term” and the second term the “volume term”. As it is standard in branch and bound
we have to investigate whether the “branch” of clusterings with the specific fixed labels on A could
contain a solution which is better than all the previously considered solutions. We use two criteria
for this purpose. The first one is very simple: assigning at least one point in B to +1 can only
lead to an improvement if this either decreases the cut term or the volume term of Ncut. Necessary
conditions for this are maxj≥i s̄(Zj , A

+) − s̄(Zj , A
−) ≥ 0 or vol(A+) ≤ vol(V )/2, respectively.

If neither is satisfied, we retract. The second criterion involves a lower bound θl on the Ncut value of
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Branch and bound algorithm for Ncut: f∗ = bbncut(S̄, i, f, θu){
1. Set g := f; set A−, A+, and B as described in the text

2. // Deal with special cases:

• If i = m and A− = ∅ then return f.

• If i = m and A− 6= ∅:
– Set gi = +1.
– If Ncut(g) < Ncut(f) return g, else return f.

3. // Pruning:

• If vol(A+) > vol(A∪B)/2 and maxj≥i(s̄(j, A
+)− s̄(j, A−)) ≤ 0 return f.

• Compute lower bound θl as described in the text.

• If θl ≥ θu then return f.

4. // If no pruning possible, recursively call bbncut:

• Set gi = +1, θ′u := min{Ncut(g), θu}, call g′ := bbncut(S̄, g, i + 1, θ′u)

• Set gi = −1, θ′′u := min{Ncut(g′), θ′u}, call g′′ := bbncut(S̄, g, i + 1, θ′′u)

• If Ncut(g′) ≤ Ncut(g′′) then return g′, else return g′′. }

Figure 1: Branch and bound algorithm for NNC(Ncut) for K = 2. The algorithm is initially called
with the super-similarity matrix S̄, i = 2, f = (+1,−1, . . . ,−1), and θu the Ncut value of f .

all solutions in the current branch. It compares θl to an upper bound θu on the optimal Ncut value,
namely to the Ncut value of the best function we have seen so far. If θl ≥ θu then no improvement
is possible by any clustering in the current branch of the tree, and we retract. To compute θl, assume
we assign a non-empty set B+ ⊂ B to label +1 and the remaining set B− = B \ B+ to label -1.
Using the conventions s̄(A,B) =

∑
Zi∈A,Zj∈B s̄ij and s̄(A, ∅) = 0, the cut term is bounded by

cut(A+ ∪B+, A− ∪B−) ≥
{

minj≥i s(Zj , A
+) if A− = ∅

s̄(A+, A−) + minj≥i s̄(Zj , A
−) otherwise.

(4)

The volume term can be maximally decreased in case vol(A+) < vol(V )/2, when choosing B+

such that vol(A+ ∪B+) = vol(A− ∪B−) = vol(V )/2. If vol(A+) > vol(V )/2, then an increase
of the volume term is unavoidable; this increase is minimal when we move one vertex only to A+:

1
vol(A+∪B+) + 1

vol(A−∪B−) ≥

{
4/ vol(V ) if vol(A+) ≤ vol(V )/2
vol(V )/max

j≥i
(vol(A+ ∪ Zj) vol(A− ∪B \ Zj)) otherw. (5)

Combining both bounds we can now define the lower bound θl as the product of Eq. (4) and (5).
The entire algorithm is presented in Fig. 1. On top of the basic algorithm one can apply various
heuristics to improve the retraction behavior and thus the average running time of the algorithm. For
example, in our experience it is of advantage to sort the super-points by decreasing degree, and from
one recursion level to the next one alternate between first visiting branch gi = 1 and gi = −1.

5 Experiments

The main point about nearest neighbor clustering is its statistical consistency: for large n it reveals
an approximately correct clustering. In this section we want to show that it also behaves reason-
ably on smaller samples. Given an objective function Qn (such as WSS or Ncut) we compare the
NNC results to heuristics designed to optimize Qn directly (such as k-means or spectral clustering).
As numeric data sets we used classification benchmark data sets from different repositories (UCI
repository, repository by G. Rätsch) and microarray data from Spellman et al. (1998). Moreover, we
use graph data sets of the internet graph and of biological, social, and political networks: COSIN
collection, collection by M. Newman, email data by Guimerà et al. (2003), electrical power network
by Watts and Strogatz (1998), and protein interaction networks of Jeong et al. (2001) and Tsuda
et al. (2005). Due to space constraints we focus on the case of constructing K = 2 clusters using
the objective functions WSS and Ncut. We always set the number m of seed points for NNC to
m = log n. In case of WSS, we compare the result of the k-means algorithm to the result of NNC
using the WSS objective function and the Euclidean distance to assign data points to seed points.
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Numeric WSS Ncut
data sets K-means NNC SC NNC
breast-c. 6.95± 0.19 7.04± 0.21 0.11± 0.02 0.09± 0.02

7.12± 0.20 7.12± 0.22 0.22± 0.07 0.21± 0.07
diabetis 6.62± 0.22 6.71± 0.22 0.03± 0.02 0.03± 0.02

6.72± 0.22 6.72± 0.22 0.04± 0.03 0.05± 0.05
german 18.26± 0.27 18.56± 0.28 0.02± 0.02 0.02± 0.02

18.35± 0.30 18.45± 0.32 0.04± 0.08 0.03± 0.03
heart 10.65± 0.46 10.77± 0.47 0.18± 0.03 0.17± 0.02

10.75± 0.46 10.74± 0.46 0.28± 0.03 0.30± 0.07
splice 68.99± 0.24 69.89± 0.24 0.36± 0.10 0.44± 0.16

69.03± 0.24 69.18± 0.25 0.58± 0.09 0.66± 0.18
bcw 3.97± 0.26 3.98± 0.26 0.02± 0.01 0.02± 0.01

3.98± 0.26 3.98± 0.26 0.04± 0.01 0.08± 0.07
ionosph. 25.72± 1.63 25.77± 1.63 0.06± 0.03 0.04± 0.01

25.76± 1.63 25.77± 1.63 0.12± 0.11 0.14± 0.12
pima 6.62± 0.22 6.73± 0.23 0.03± 0.03 0.03± 0.03

6.73± 0.23 6.73± 0.23 0.05± 0.04 0.09± 0.13
cellcycle 0.78± 0.03 0.78± 0.03 0.12± 0.02 0.10± 0.01

0.78± 0.03 0.78± 0.02 0.16± 0.02 0.15± 0.03

Network data NNC SC
ecoli.interact 0.06 0.06
ecoli.metabol 0.03 0.04
helico 0.16 0.16
beta3s 0.00 0.00
AS-19971108 0.02 0.02
AS-19980402 0.01 1.00
AS-19980703 0.02 0.02
AS-19981002 0.04 0.04
AS-19990114 0.08 0.05
AS-19990402 0.11 0.10
netscience 0.01 0.01
polblogs 0.11 0.11
power 0.00 0.00
email 0.27 0.27
yeastProtInt 0.04 0.06
protNW1 0.00 0.00
protNW2 0.08 1.00
protNW3 0.01 0.80
protNW4 0.03 0.76

Table 1: Left: Numeric data. Results for K-means algorithm, NNC(WSS) with Euclidean distance;
spectral clustering (SC); NNC(Ncut) with commute distance. The top line always shows the results
on the training set, the second line the extended results on the test set. Right: Network data.
NNC(Ncut) with commute distance and spectral clustering, both trained on the entire graph.

Note that one cannot run K-means on pure network data, which does not provide coordinates. In
case of Ncut, we use the Gaussian kernel as similarity function on the numeric data sets. The kernel
width σ is set to the mean distance of a data point to its k-th nearest neighbor. We then build the
k-nearest neighbor graph (both times using k=lnn). On the network data, we directly use the given
graph. For both types of data, we use the commute distance on the graph (e.g., Gutman and Xiao,
2004) as distance function to determine the nearest seed points for NNC.

In the first experiment we compare the values obtained by the different algorithms on the training
sets. From the numeric data sets we generated z = 40 training sets by subsampling n/2 points.
On each training set, we repeated all algorithms r = 50 times with different random initializations
(the seeds in NNC; the centers in K-means; the centers in the K-means post-processing step in
spectral clustering). Denoting the quality of an individual run of the algorithm by q, we then report
the values meanz(minrq) ± standarddevz(minrq). For the network data sets we ran spectral
clustering and NNC on the whole graph. Again we use r=50 different initializations, and we report
minrq. All results can be found in Table 1. For both the numeric data sets (left table, top lines) and
the network data sets (right table) we see that the training performance of NNC is comparable to the
other algorithms. This is what we had hoped, and we find it remarkable as NNC is in fact a very
simple clustering algorithm.

In the second experiment we try to measure the amount of overfitting induced by the different algo-
rithms. For each of the numeric data sets we cluster n/2 points, extend the clustering to the other
n/2 points, and then compute the objective function on the test set. For the extensions we proceed
in a greedy way: for each test point, we add this test point to the training set and then give it the
label +1 or -1 that leads to the smaller quality value on the augmented training set. We also tried
several other extensions suggested in the literature, but the results did not differ much. To compute
the test error, we then evaluate the quality function on the test set labeled according to the exten-
sion. For Ncut, we do this based on the k-nearest neighbor graph on the test set only. Note that this
experiment does not make sense on the network data, as there is no default procedure to construct
the subgraphs for training and testing. The results on the numeric data sets are reported in Table 1
(left table, bottom lines). We see that NNC performs roughly comparably to the other algorithms.
This is not really what we wanted to obtain, our hope was that NNC obtains better test values as it is
less prone to overfitting. The most likely explanation is that both K-means and spectral clustering
have already reasonably good extension properties. This can be due to the fact that as NNC, both
algorithms consider only a certain subclass of all partitions: Voronoi partitions for K-means, and
partitions induced by eigenvectors for spectral clustering. See below for more discussion.

7



6 Discussion
In this paper we investigate clustering algorithms which minimize quality functions. Our main point
is that, as soon as we require statistical consistency, we have to work with “small” function classes
Fn. If we even choose Fn to be polynomial, then all problems due to NP hardness of discrete op-
timization problems formally disappear as the remaining optimization problems become inherently
polynomial. From a practical point of view, the approach of using a restricted function class Fn can
be seen as a more controlled way of simplifying NP hard optimization problems than the standard
approaches of local optimization or relaxation. Carefully choosing the function class Fn such that
overly complex target functions are excluded, we can guarantee to pick the best out of all remaining
target functions. This strategy circumvents the problem that solutions of local optimization or relax-
ation heuristics can be arbitrarily far away from the optimal solution.
The generic clustering algorithm we studied in this article is nearest neighbor clustering, which pro-
duces clusterings that are constant on small local neighborhoods. We have proved that this algorithm
is statistically consistent for a large variety of popular clustering objective functions. Thus, as op-
posed to other clustering algorithms such as the K-means algorithm or spectral clustering, nearest
neighbor clustering is guaranteed to converge to a minimizer of the true global optimum on the
underlying space. This statement is much stronger than the results already known for K-means or
spectral clustering. For K-means it has been proved that the global minimizer of the WSS objec-
tive function on the sample converges to a global minimizer on the underlying space (e.g., Pollard,
1981). However, as the standard K-means algorithm only discovers a local optimum on the discrete
sample, this result does not apply to the algorithm used in practice. A related effect happens for
spectral clustering, which is a relaxation attempting to minimize Ncut (see von Luxburg (2007) for
a tutorial). It has been shown that under certain conditions the solution of the relaxed problem on
the finite sample converges to some limit clustering (e.g., von Luxburg et al., to appear). However,
it has been conjectured that this limit clustering is not necessarily the optimizer of the Ncut objec-
tive function. So for both cases, our consistency results represent an improvement: our algorithm
provably converges to the true limit minimizer of K-means or Ncut, respectively. The same result
also holds for a large number of alternative objective functions used for clustering.
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