
Foundations and TrendsR© in
Machine Learning
Vol. 2, No. 3 (2009) 235–274
c© 2010 U. von Luxburg
DOI: 10.1561/2200000008

Clustering Stability: An Overview

By Ulrike von Luxburg

Contents

1 Introduction 236

2 Clustering Stability: Definition and
Implementation 239

3 Stability Analysis of the K-Means Algorithm 246

3.1 The Idealized K-Means Algorithm 248
3.2 The Actual K-Means Algorithm 257
3.3 Relationships between the results 262

4 Beyond K-Means 266

5 Outlook 269

References 272



Foundations and TrendsR© in
Machine Learning
Vol. 2, No. 3 (2009) 235–274
c© 2010 U. von Luxburg
DOI: 10.1561/2200000008

Clustering Stability: An Overview

Ulrike von Luxburg

Max Planck Institute for Biological Cybernetics, Tübingen, Germany,
ulrike.luxburg@tuebingen.mpg.de

Abstract

A popular method for selecting the number of clusters is based on
stability arguments: one chooses the number of clusters such that the
corresponding clustering results are “most stable”. In recent years, a
series of papers has analyzed the behavior of this method from a theo-
retical point of view. However, the results are very technical and diffi-
cult to interpret for non-experts. In this monograph we give a high-level
overview about the existing literature on clustering stability. In addi-
tion to presenting the results in a slightly informal but accessible way,
we relate them to each other and discuss their different implications.



1
Introduction

Model selection is a difficult problem in non-parametric clustering. The
obvious reason is that, as opposed to supervised classification, there is
no ground truth against which we could “test” our clustering results.
One of the most pressing questions in practice is how to determine the
number of clusters. Various ad hoc methods have been suggested in
the literature, but none of them is entirely convincing. These methods
usually suffer from the fact that they implicitly have to define “what a
clustering is” before they can assign different scores to different num-
bers of clusters. In recent years a new method has become increasingly
popular: selecting the number of clusters based on clustering stability.
Instead of defining “what is a clustering”, the basic philosophy is simply
that a clustering should be a structure on the data set that is “stable”.
That is, if applied to several data sets from the same underlying model
or of the same data-generating process, a clustering algorithm should
obtain similar results. In this philosophy it is not so important how
the clusters look (this is taken care of by the clustering algorithm), but
that they can be constructed in a stable manner.

The basic intuition of why people believe that this is a good principle
can be described by Figure 1.1. Shown is a data distribution with four

236



237

Sample 1 Sample 2

k = 2:

k = 5:

Fig. 1.1 Idea of clustering stability. Instable clustering solutions if the number of clusters
is too small (first row) or too large (second row). See text for details.

underlying clusters (depicted by the black circles), and different sam-
ples from this distribution (depicted by red diamonds). If we cluster this
data set into K = 2 clusters, there are two reasonable solutions: a hori-
zontal and a vertical split. If a clustering algorithm is applied repeatedly
to different samples from this distribution, it might sometimes con-
struct the horizontal and sometimes the vertical solution. Obviously,
these two solutions are very different from each other, hence the clus-
tering results are instable. Similar effects take place if we start with
K = 5. In this case, we necessarily have to split an existing cluster into
two clusters, and depending on the sample this could happen to any
of the four clusters. Again the clustering solution is instable. Finally,
if we apply the algorithm with the correct number K = 4, we observe
stable results (not shown in the figure): the clustering algorithm always
discovers the correct clusters (maybe up to a few outlier points). In this
example, the stability principle detects the correct number of clusters.

At first glance, using stability-based principles for model selection
appears to be very attractive. It is elegant as it avoids to define what a
good clustering is. It is a meta-principle that can be applied to any basic
clustering algorithm and does not require a particular clustering model.
Finally, it sounds “very fundamental” from a philosophy of inference
point of view.



238 Introduction

However, the longer one thinks about this principle, the less obvious
it becomes that model selection based on clustering stability “always
works”. What is clear is that solutions that are completely instable
should not be considered at all. However, if there are several stable
solutions, is it always the best choice to select the one corresponding
to the most stable results? One could conjecture that the most sta-
ble parameter always corresponds to the simplest solution, but clearly
there exist situations where the most simple solution is not what we
are looking for. To find out how model selection based on clustering
stability works we need theoretical results.

In this monograph we discuss a series of theoretical results on clus-
tering stability that have been obtained in recent years. In Section 2
we review different protocols for how clustering stability is computed
and used for model selection. In Section 3 we concentrate on theoretical
results for the K-means algorithm and discuss their various relations.
This is the main section of the paper. Results for more general cluster-
ing algorithms are presented in Section 4.



2
Clustering Stability:

Definition and Implementation

A clustering CK of a data set S = {X1, . . . ,Xn} is a function that
assigns labels to all points of S, that is CK : S → {1, . . . ,K}. Here K

denotes the number of clusters. A clustering algorithm is a procedure
that takes a set S of points as input and outputs a clustering of S.
The clustering algorithms considered in this monograph take an addi-
tional parameter as input, namely the number K of clusters they are
supposed to construct. We analyze clustering stability in a statistical
setup. The data set S is assumed to consist of n data points X1, . . . ,Xn

that have been drawn independently from some unknown underlying
distribution P on some space X . The final goal is to use these sample
points to construct a good partition of the underlying space X . For
some theoretical results it will be easier to ignore sampling effects and
directly work on the underlying space X endowed with the probability
distribution P . This can be considered as the case of having “infinitely
many” data points. We sometimes call this the limit case for n → ∞.

Assume we agree on a way to compute distances d(C,C′) between
different clusterings C and C′ (see below for details). Then, for a fixed
probability distribution P , a fixed number K of clusters and a fixed
sample size n, the instability of a clustering algorithm is defined as the

239



240 Clustering Stability: Definition and Implementation

expected distance between two clusterings CK(Sn), CK(S′
n) on different

data sets Sn, S′
n of size n, that is:

Instab(K,n) := E
(

d(CK(Sn),CK(S′
n))

)
. (2.1)

The expectation is taken with respect to the drawing of the two sam-
ples.

In practice, a large variety of methods has been devised to compute
stability scores and use them for model selection. On a very general
level they work as follows:

Given: a set S of data points, a clustering algorithm A that takes
the number k of clusters as input

(1) For k = 2, . . . ,kmax

(a) Generate perturbed versions Sb (b = 1, . . . , bmax) of the
original data set (for example by subsampling or
adding noise, see below).

(b) For b = 1, . . . , bmax:
Cluster the data set Sb with algorithm A into k
clusters to obtain clustering Cb.

(c) For b,b′ = 1, . . . , bmax:
Compute pairwise distances d(Cb,Cb′) between these
clusterings (using one of the distance functions
described below).

(d) Compute instability as the mean distance between
clusterings Cb:

Înstab(k,n) =
1

b2
max

bmax∑

b,b′=1

d(Cb,Cb′).

(2) Choose the parameter k that gives the best stability, in the
simplest case as follows:

K := argmin
k

Înstab(k,n)

(see below for more options).

This scheme gives a very rough overview of how clustering stability
can be used for model selection. In practice, many details have to be
taken into account, and they will be discussed in the next section.
Finally, we want to mention an approach that is vaguely related to
clustering stability, namely the ensemble method [26]. Here, an ensem-
ble of algorithms is applied to one fixed data set. Then a final clustering



241

is built from the results of the individual algorithms. We are not going
to discuss this approach in our monograph.

Generating perturbed versions of the data set. To be able to
evaluate the stability of a fixed clustering algorithm we need to run
the clustering algorithm several times on slightly different data sets.
To this end we need to generate perturbed versions of the original data
set. In practice, the following schemes have been used:

• Draw a random subsample of the original data set without
replacement [5, 12, 15, 17].

• Add random noise to the original data points [8, 19].
• If the original data set is high-dimensional, use different ran-

dom projections in low-dimensional spaces, and then cluster
the low-dimensional data sets [25].

• If we work in a model-based framework, sample data from
the model [14].

• Draw a random sample of the original data with replacement.
This approach has not been reported in the literature yet, but
it avoids the problem of setting the size of the subsample. For
good reasons, this kind of sampling is the standard in the
bootstrap literature [11] and might also have advantages in
the stability setting. This scheme requires that the algorithm
can deal with weighted data points (because some data points
will occur several times in the sample).

In all cases, there is a trade-off that has to be treated carefully. If we
change the data set too much (for example, the subsample is too small,
or the noise too large), then we might destroy the structure we want
to discover by clustering. If we change the data set too little, then the
clustering algorithm will always obtain the same results, and we will
observe trivial stability. It is hard to quantify this trade-off in practice.

Which clusterings to compare? Different protocols are used to com-
pare the clusterings on the different data sets Sb.

• Compare the clustering of the original data set with the clus-
terings obtained on subsamples [17].



242 Clustering Stability: Definition and Implementation

• Compare clusterings of overlapping subsamples on the data
points where both clusterings are defined [5].

• Compare clusterings of disjoint subsamples [12, 15]. Here we
first need to apply an extension operator to extend each clus-
tering to the domain of the other clustering.

Distances between clusterings. If two clusterings are defined on the
same data points, then it is straightforward to compute a distance score
between these clusterings based on any of the well-known clustering
distances such as the Rand index, Jaccard index, Hamming distance,
minimal matching distance, and Variation of Information distance [18].
All these distances count, in some way or the other, points or pairs of
points on which the two clusterings agree or disagree. The most conve-
nient choice from a theoretical point of view is the minimal matching
distance. For two clusterings C,C′ of the same data set of n points it is
defined as:

dMM(C,C′) := min
π

1
n

n∑
i=1

1l{C(Xi) �=π(C′(Xi))}, (2.2)

where the minimum is taken over all permutations π of the K labels.
Intuitively, the minimal matching distance measures the same quantity
as the 0–1-loss used in supervised classification. For a stability study
involving the adjusted Rand index or an adjusted mutual information
index see Vinh and Epps [27].

If two clusterings are defined on different data sets one has two
choices. If the two data sets have a big overlap one can use a restriction
operator to restrict the clusterings to the points that are contained in
both data sets. On this restricted set one can then compute a standard
distance between the two clusterings. The other possibility is to use
an extension operator to extend both clusterings from their domain to
the domain of the other clustering. Then one can compute a standard
distance between the two clusterings as they are now both defined
on the joint domain. For center-based clusterings, as constructed by
the K-means algorithm, a natural extension operator exists. Namely,
to a new data point we simply assign the label of the closest cluster
center. A more general scheme to extend an existing clustering to new



243

data points is to train a classifier on the old data points and use its
predictions as labels on the new data points. However, in the context
of clustering stability it is not obvious what kind of bias we introduce
with this approach.

Stability scores and their normalization. The stability protocol
outlined above results in a set of distance values (d(Cb,Cb′))b,b′=1,...,bmax .
In most approaches, one summarizes these values by taking their mean:

Înstab(k,n) =
1

b2
max

bmax∑
b,b′=1

d(Cb,Cb′).

Note that the mean is the simplest summary statistic one can compute
based on the distance values d(Cb,Cb′). A different approach is to use the
area under the cumulative distribution function of the distance values
as the stability score, see Ben-Hur et al. [5] or Bertoni and Valentitni [6]
for details. In principle one could also come up with more elaborate
statistics based on distance values. To the best of our knowledge, such
concepts have not been used so far.

The simplest way to select the number K of clusters is to minimize
the instability:

K = argmin
k=2,...,kmax

Înstab(k,n).

This approach has been suggested in Levine and Domany [17]. However,
an important fact to note is that Înstab(k,n) trivially scales with k,
regardless of what the underlying data structure is. For example, in
the top left plot in Figure 2.1 we can see that even for a completely
unclustered data set, Înstab(n,k) increases with k. When using stability
for model selection, one should correct for the trivial scaling of Înstab,
otherwise it might be meaningless to take the minimum afterwards.
There exist several different normalization protocols:

• Normalization using a reference null distribution [6, 12]. One
repeatedly samples data sets from some reference null distri-
bution. Such a distribution is defined on the same domain as
the data points, but does not possess any cluster structure.
In simple cases one can use the uniform distribution on the



244 Clustering Stability: Definition and Implementation

0 5 10 15
0.4

0.6

0.8
stability on reference distribution

0 5 10 15
0.4

0.6

0.8
stability (not normalized)

Data set: uniform

0 5 10 15
0.5

1

1.5
stability (normalized)

0 5 10 15
0

0.5

1
stability (not normalized)

0 5 10 15
0.4

0.6

0.8
stability on reference distribution

Data set: four Gaussians

0 5 10 15
0

1

2
stability (normalized)

Fig. 2.1 Normalized stability scores. Left plots: Data points from a uniform density on
[0,1]2. Right plots: Data points from a mixture of four well-separated Gaussians in R2. The
first row always shows the unnormalized instability Înstab for K = 2, . . . ,15. The second row
shows the instability Înstabnorm obtained on a reference distribution (uniform distribution).
The third row shows the normalized stability Înstabnorm.

data domain as null distribution. A more practical approach
is to scramble the individual dimensions of the existing data
points and use the “scrambled points” as null distribution
(see [6, 12] for details). Once we have drawn several data
sets from the null distribution, we cluster them using our
clustering algorithm and compute the corresponding stabil-
ity score Înstabnull as above. The normalized stability is then
defined as Înstabnorm := Înstab/Înstabnull.

• Normalization by random labels [15]. First, we cluster each
of the data sets Sb as in the protocol above to obtain the
clusterings Cb. Then, we randomly permute these labels. That
is, we assign the label to data point Xi that belonged to
Xπ(i), where π is a permutation of {1, . . . ,n}. This leads to a
permuted clustering Cb, perm. We then compute the stability
score Înstab as above, and similarly we compute Înstabperm

for the permuted clusterings. The normalized stability is then
defined as Înstabnorm := Înstab/Înstabperm.

Once we computed the normalized stability scores Înstabnorm we can
choose the number of clusters that has smallest normalized instability,



245

that is:

K = argmin
k=2,...,kmax

Înstabnorm(k,n).

This approach has been taken for example in Ben-Hur et al. [5] and
Lange et al. [15].

Selecting K based on statistical tests. A second approach to select
the final number of clusters is to use a statistical test. Similarly to
the normalization considered above, the idea is to compute stability
scores not only on the actual data set, but also on “null data sets”
drawn from some reference null distribution. Then one tests whether,
for a given parameter k, the stability on the actual data is significantly
larger than the one computed on the null data. If there are several
values k for which this is the case, then one selects the one that is most
significant. The most well-known implementation of such a procedure
uses bootstrap methods [12]. Other authors use a χ2-test [6] or a test
based on the Bernstein inequality [7].

To summarize, there are many different implementations for select-
ing the number K of clusters based on stability scores. Until now,
there does not exist any convincing empirical study that thoroughly
compares all these approaches on a variety of data sets. In my opin-
ion, even fundamental issues such as the normalization have not been
investigated in enough detail. For example, in my experience normal-
ization often has no effect whatsoever (but I did not conduct a thorough
study either). To put stability-based model selection on a firm ground
it would be crucial to compare the different approaches with each other
in an extensive case study.



3
Stability Analysis of the K-Means Algorithm

The vast majority of papers about clustering stability use the K-means
algorithm as basic clustering algorithm. In this section we discuss the
stability results for the K-means algorithm in depth. Later, in Sec-
tion 4 we will see how these results can be extended to other clustering
algorithms.

For simpler reference we briefly recapitulate the K-means algorithm
(details can be found in many text books, for example [13]). Given a set
of n data points X1, . . . ,Xn ∈ Rd and a fixed number K of clusters to
construct, the K-means algorithm attempts to minimize the clustering
objective function:

Q
(n)
K (c1, . . . , cK) =

1
n

n∑
i=1

min
k=1,...,K

‖Xi − ck‖2, (3.1)

where c1, . . . , cK denote the centers of the K clusters. In the limit
n → ∞, the K-means clustering is the one that minimizes the limit
objective function:

Q
(∞)
K (c1, . . . , cK) =

∫
min

k=1,...,K
‖X − ck‖2 dP (X), (3.2)

where P is the underlying probability distribution.

246



247

Given an initial set c<0> = {c<0>
1 , . . . , c<0>

K } of centers, the K-means
algorithm iterates the following two steps until convergence:

(1) Assign data points to closest cluster centers:

∀i = 1, . . . ,n : C<t>(Xi) := argmin
k=1,...K

‖Xi − c<t>
k ‖.

(2) Re-adjust cluster means:

∀k = 1, . . . ,K : c<t+1>
k :=

1
Nk

∑

{i | C<t>(Xi)=k}
Xi,

where Nk denotes the number of points in cluster k.

It is well known that, in general, the K-means algorithm terminates
in a local optimum of Q

(n)
K and does not necessarily find the global

optimum. We study the K-means algorithm in two different scenarios:

The idealized scenario: Here we assume an idealized algorithm that
always finds the global optimum of the K-means objective function
Q

(n)
K . For simplicity, we call this algorithm the idealized K-means

algorithm.

The realistic scenario: Here we analyze the actual K-means
algorithm as described above. In particular, we take into account its
property of getting stuck in local optima. We also take into account
the initialization of the algorithm.

In both scenarios, our theoretical investigations are based on the
following simple protocol to compute the stability of the K-means
algorithm:

(1) We assume to have access to as many independent samples
of size n of the underlying distribution as we want. That is,
we ignore artifacts introduced by the fact that in practice we
draw subsamples of one fixed, given sample and thus might
introduce a bias.

(2) As distance between two K-means clusterings of two samples
S, S′ we use the minimal matching distance between the
extended clusterings on the domain S ∪ S′.



248 Stability Analysis of the K-Means Algorithm

(3) We work with the expected minimal matching distance as
in Equation (2.1), that is we analyze Instab rather than
the practically used Înstab. This does not do much harm as
instability scores are highly concentrated around their means
anyway.

3.1 The Idealized K-Means Algorithm

In this section we focus on the idealized K-means algorithm, that is the
algorithm that always finds the global optimum c(n) of the K-means
objective function:

c(n) := (c(n)
1 , . . . , c

(n)
K ) := argmin

c
Q

(n)
K (c).

3.1.1 First Convergence Result and the Role of Symmetry

The starting point for the results in this section is the following obser-
vation [4]. Consider the situation in Figure 3.1a. Here the data contains
three clusters, but two of them are closer to each other than to the third
cluster. Assume we run the idealized K-means algorithm with K = 2 on
such a data set. Separating the left two clusters from the right cluster
(solid line) leads to a much better value of Q

(n)
K than, say, separating

the top two clusters from the bottom one (dashed line). Hence, as soon
as we have a reasonable amount of data, idealized (!) K-means with
K = 2 always constructs the first solution (solid line). Consequently, it
is stable in spite of the fact that K = 2 is the wrong number of clus-
ters. Note that this would not happen if the data set was symmetric,
as depicted in Figure 3.1b. Here neither the solution depicted by the
dashed line nor the one with the solid line is clearly superior, which
leads to instability if the idealized K-means algorithm is applied to
different samples. Similar examples can be constructed to detect that
K is too large, see Figure 3.1c and d. With K = 3 it is clearly the best
solution to split the big cluster in Figure 3.1c, thus clustering this data
set is stable. In Figure 3.1d, however, due to symmetry reasons neither
splitting the top nor the bottom cluster leads to a clear advantage.
Again this leads to instability.



3.1 The Idealized K-Means Algorithm 249

(a) (b) (c) (d)

Fig. 3.1 If data sets are not symmetric, idealized K-means is stable even if the number K
of clusters is too small (a) or too large (c). Instability of the wrong number of clusters only
occurs in symmetric data sets (b and d).

These informal observations suggest that unless the data set con-
tains perfect symmetries, the idealized K-means algorithm is stable
even if K is wrong. This can be formalized with the following theorem.

Theorem 3.1 (Stability and global optima of the objective
function). Let P be a probability distribution on Rd and Q

(∞)
K the

limit K-means objective function as defined in Equation (3.2), for some
fixed value K > 1.

(1) If Q
(∞)
K has a unique global minimum, then the idealized

K-means algorithm is perfectly stable when n → ∞, that is:

lim
n→∞ Instab(K,n) = 0.

(2) If Q
(∞)
K has several global minima (for example, because

the probability distribution is symmetric), then the idealized
K-means algorithm is instable, that is:

lim
n→∞ Instab(K,n) > 0.

This theorem has been proved (in a slightly more general setting) in
references [2, 4].

Proof sketch, Part 1. It is well known that if the objective function
Q

(∞)
K has a unique global minimum, then the centers c(n) constructed

by the idealized K-means algorithm on a sample of n points almost



250 Stability Analysis of the K-Means Algorithm

surely converge to the true population centers c(∗) as n → ∞ [20]. This
means that given some ε > 0 we can find some large n such that c(n) is
ε-close to c(∗) with high probability. As a consequence, if we compare
two clusterings on different samples of size n, the centers of the two
clusterings are at most 2ε-close to each other. Finally, one can show that
if the cluster centers of two clusterings are ε-close, then their minimal
matching distance is small as well. Thus, the expected distance between
the clusterings constructed on two samples of size n becomes arbitrarily
small and eventually converges to 0 as n → ∞.
Part 2. For simplicity, consider the symmetric situation in Figure 3.1a.
Here the probability distribution has three axes of symmetry. For K = 2
the objective function Q

(∞)
2 has three global minima c(∗1), c(∗2), c(∗3)

corresponding to the three symmetric solutions. In such a situation, the
idealized K-means algorithm on a sample of n points gets arbitrarily
close to one of the global optima, that is mini=1,...,3 d(c(n), c(∗i)) → 0 [16].
In particular, the sequence (c(n))n of empirical centers has three con-
vergent subsequences, each of which converges to one of the global
solutions. One can easily conclude that if we compare two clusterings
on random samples with probability 1/3 they belong to “the same sub-
sequence” and thus their distance will become arbitrarily small. With
probability 2/3 they “belong to different subsequences”, and thus their
distance remains larger than a constant a > 0. From the latter we can
conclude that Instab(K,n) is always larger than 2a/3.

The interpretation of this theorem is distressing. The stability or
instability of parameter K does not depend on whether K is “correct”
or “wrong”, but only on whether the K-means objective function for
this particular value K has one or several global minima. However, the
number of global minima is usually not related to the number of clus-
ters, but rather to the fact that the underlying probability distribution
has symmetries. In particular, if we consider “natural” data distribu-
tions, such distributions are rarely perfectly symmetric. Consequently,
the corresponding functions Q

(∞)
K usually only have one global mini-

mum, for any value of K. In practice this means that for a large sample
size n, the idealized K-means algorithm is stable for any value of K.
This seems to suggest that model selection based on clustering stability



3.1 The Idealized K-Means Algorithm 251

does not work. However, we will see later in Section 3.3 that this result
is essentially an artifact of the idealized clustering setting and does not
carry over to the realistic setting.

3.1.2 Refined Convergence Results for the Case of a
Unique Global Minimum

Above we have seen that if, for a particular distribution P and a
particular value K, the objective function Q

(∞)
K has a unique global

minimum, then the idealized K-means algorithm is stable in the sense
that limn→∞ Instab(K,n) = 0. At first glance, this seems to suggest
that stability cannot distinguish between different values k1 and k2 (at
least for large n). However, this point of view is too simplistic. It can
happen that even though both Instab(k1,n) and Instab(k2,n) converge
to 0 as n → ∞, this happens “faster” for k1 than for k2. If measured
relative to the absolute values of Instab(k1,n) and Instab(k2,n), the dif-
ference between Instab(k1,n) and Instab(k2,n) can still be large enough
to be “significant”.

The key in verifying this intuition is to study the limit process
more closely. This line of work has been established by Shamir and
Tishby in a series of papers [22, 23, 24]. The main idea is that instead
of studying the convergence of Instab(k,n) one needs to consider the
rescaled instability

√
n · Instab(k,n). One can prove that the rescaled

instability converges in distribution, and the limit distribution depends
on k. In particular, the means of the limit distributions are different
for different values of k. This can be formalized as follows.

Theorem 3.2 (Convergence of rescaled stability). Assume that
the probability distribution P has a density p. Consider a fixed param-
eter K, and assume that the corresponding limit objective function
Q

(∞)
K has a unique global minimum c(∗) = (c(∗)

1 , . . . , c
(∗)
K ). The bound-

ary between clusters i and j is denoted by Bij . Let m ∈ N, and
Sn,1, . . . ,Sn,2m be samples of size n drawn independently from P . Let
CK(Sn,i) be the result of the idealized K-means clustering on sample
Sn,i. Compute the instability as mean distance between clusterings of



252 Stability Analysis of the K-Means Algorithm

disjoint pairs of samples, that is:

Instab(K,n) :=
1
m

m∑
i=1

dMM
(CK(Sn,2i−1),CK(Sn,2i)

)
. (3.3)

Then, as n → ∞ and m → ∞, the rescaled instability
√

n · Instab(K,n)
converges in probability to

RInstab(K) :=
∑

1≤i<j≤K

∫
Bij

Vij

‖c
(∗)
i − c

(∗)
j ‖

p(x)dx, (3.4)

where Vij stands for a term describing the asymptotics of the random
fluctuations of the cluster boundary between cluster i and cluster j

(exact formula given in [23, 24]).

Note that even though the definition of instability in Equation (3.3)
differs slightly from the definition in Equation (2.1), intuitively it mea-
sures the same quantity. The definition in Equation (3.3) just has the
technical advantage that all pairs of samples are independent from one
another.

Proof sketch. It is well known that if Q
(∞)
K has a unique global

minimum, then the centers constructed by the idealized K-means algo-
rithm on a finite sample satisfy a central limit theorem [21]. That is,
if we rescale the distances between the sample-based centers and the
true centers with the factor

√
n, these rescaled distances converge to a

normal distribution as n → ∞. When the cluster centers converge, the
same can be said about the cluster boundaries. In this case, instabil-
ity essentially counts how many points change side when the cluster
boundaries move by some small amount. The points that potentially
change side are the points close to the boundary of the true limit clus-
tering. Counting these points is what the integrals

∫
Bij

. . .p(x)dx in
the definition of RInstab take care of. The exact characterization of
how the cluster boundaries “jitter” can be derived from the central
limit theorem. This leads to the term Vij/‖c

(∗)
i − c

(∗)
j ‖ in the inte-

gral. Vij characterizes how the cluster centers themselves “jitter”. The
normalization ‖c

(∗)
i − c

(∗)
j ‖ is needed to transform jittering of cluster

centers to jittering of cluster boundaries: if two cluster centers are



3.1 The Idealized K-Means Algorithm 253

very far apart from each other, the cluster boundary only jitters by
a small amount if the centers move by ε, say. However, if the centers
are very close to each other (say, they have distance 3ε), then mov-
ing the centers by ε has a large impact on the cluster boundary. The
details of this proof are very technical, we refer the interested reader to
references [23, 24].

Let us briefly explain how the result in Theorem 3.2 is compatible
with the result in Theorem 3.1. On a high level, the difference between
both results resembles the difference between the law of large numbers
and the central limit theorem in probability theory. The LLN stud-
ies the convergence of the mean of a sum of random variables to its
expectation (note that Instab has the form of a sum of random vari-
ables). The CLT is concerned with the same expression, but rescaled
with a factor

√
n. For the rescaled sum, the CLT then gives results

on the convergence in distribution. Note that in the particular case of
instability, the distribution of distances lives on the non-negative num-
bers only. This is why the rescaled instability in Theorem 3.2 is positive
and not 0 as in the limit of Instab in Theorem 3.1. A toy figure explain-
ing the different convergence processes can be seen in Figure 3.2.

Theorem 3.2 tells us that different parameters k usually lead to dif-
ferent rescaled stabilities in the limit for n → ∞. Thus we can hope
that if the sample size n is large enough we can distinguish between
different values of k based on the stability of the corresponding clus-
terings. An important question is now which values of k lead to stable
and which ones lead to instable results, for a given distribution P .

3.1.3 Characterizing Stable Clusterings

It is a straightforward consequence of Theorem 3.2 that if we consider
different values k1 and k2 and the clustering objective functions Q

(∞)
k1

and Q
(∞)
k2

have unique global minima, then the rescaled stability values
RInstab(k1) and RInstab(k2) can differ from each other. Now we want
to investigate which values of k lead to high stability and which ones
lead to low stability.

Conclusion 3.3 (Instable clusterings). Assume that Q
(∞)
K has a

unique global optimum. If Instab(K,n) is large, the idealized K-means



254 Stability Analysis of the K-Means Algorithm

Fig. 3.2 Different convergence processes. The left column shows the convergence studied
in Theorem 3.1. As the sample size n → ∞, the distribution of distances dMM(C,C′) is
degenerate, all mass is concentrated on 0. The right column shows the convergence studied
in Theorem 3.2. The rescaled distances converge to a non-trivial distribution, and its mean
(depicted by the cross) is positive. To go from the left to the right side one has to rescale
by

√
n.

clustering tends to have cluster boundaries in high-density regions of
the space.

There exist two different derivations of this conclusion, which have
been obtained independently from each other by completely different
methods [3, 22]. On a high level, the reason why the conclusion tends
to hold is that if cluster boundaries jitter in a region of high-density,
then more points “change side” than if the boundaries jitter in a region
of low density.

First derivation, informal, based on references [22, 24]. Assume that
n is large enough such that we are already in the asymptotic regime
(that is, the solution c(n) constructed on the finite sample is close to the
true population solution c(∗)). Then the rescaled instability computed
on the sample is close to the expression given in Equation (3.4). If the
cluster boundaries Bij lie in a high-density region of the space, then
the integral in Equation (3.4) is large — compared to a situation where
the cluster boundaries lie in low-density regions of the space. From a
high level point of view, this justifies the conclusion above. However,



3.1 The Idealized K-Means Algorithm 255

note that it is difficult to identify how exactly the quantities p, Bij ,
and Vij influence RInstab, as they are not independent of each other.

Second derivation, more formal, based on Ben-David and von
Luxburg [3]. A formal way to prove the conclusion is as follows. We
introduce a new distance dboundary between two clusterings. This dis-
tance measures how far the cluster boundaries of two clusterings are
apart from each other. One can prove that the K-means quality func-
tion Q

(∞)
K is continuous with respect to this distance function. This

means that if two clusterings C,C′ are close with respect to dboundary,
then they have similar quality values. Moreover, if Q

(∞)
K has a unique

global optimum, we can invert this argument and show that if a clus-
tering C is close to the optimal limit clustering C∗, then the distance
dboundary(C,C∗) is small. Now consider the clustering C(n) based on a
sample of size n. One can prove the following key statement. If C(n) con-
verges uniformly (over the space of all probability distributions) in the
sense that with probability at least 1 − δ we have dboundary(Cn,C) ≤ γ,
then:

Instab(K,n) ≤ 2δ + P (Tγ(B)). (3.5)

Here P (Tγ(B)) denotes the probability mass of a tube of width γ

around the cluster boundaries B of C. Results in [1] establish the uni-
form convergence of the idealized K-means algorithm. This proves the
conjecture: Equation (3.5) shows that if Instab is high, then there is a
lot of mass around the cluster boundaries, namely the cluster bound-
aries are in a region of high density.

For stable clusterings, the situation is not as simple. It is tempting
to make the following conjecture.

Conjecture 3.4 (Stable clusterings). Assume that Q
(∞)
K has a

unique global optimum. If Instab(K,n) is “small”, the idealized K-
means clustering tends to have cluster boundaries in low-density regions
of the space.

Argument in favor of the conjecture: As in the first approach above,
considering the limit expression of RInstab reveals that if the cluster



256 Stability Analysis of the K-Means Algorithm

boundary lies in a low density area of the space, then the integral in
RInstab tends to have a low value. In the extreme case where the cluster
boundaries go through a region of zero density, the rescaled instability
is even 0.

Argument against the conjecture: counter-examples! One can con-
struct artificial examples where clusterings are stable although their
decision boundary lies in a high-density region of the space ([3]). The
way to construct such examples is to ensure that the variations of the
cluster centers happen in parallel to cluster boundaries and not orthog-
onal to cluster boundaries. In this case, the sampling variation does
not lead to jittering of the cluster boundary, hence the result is rather
stable.

These counter-examples show that Conjecture 3.4 cannot be true in
general. However, my personal opinion is that the counter-examples are
rather artificial, and that similar situations will rarely be encountered
in practice. I believe that the conjecture “tends to hold” in practice.
It might be possible to formalize this intuition by proving that the
statement of the conjecture holds on a subset of “nice” and “natural”
probability distributions.

The important consequence of Conclusion 3.3 and Conjecture 3.4
(if true) is the following.

Conclusion 3.5 (Stability of idealized K-means detects
whether K is too large). Assume that the underlying distribution
P has K well-separated clusters, and assume that these clusters can
be represented by a center-based clustering model. Then the following
statements tend to hold for the idealized K-means algorithm.

(1) If K is too large, then the clusterings obtained by the ideal-
ized K-means algorithm tend to be instable.

(2) If K is correct or too small, then the clusterings obtained by
the idealized K-means algorithm tend to be stable (unless
the objective function has several global minima, for example
due to symmetries).



3.2 The Actual K-Means Algorithm 257

Given Conclusion 3.3 and Conjecture 3.4 it is easy to see why Con-
clusion 3.5 is true. If K is larger than the correct number of clusters,
one necessarily has to split a true cluster into several smaller clusters.
The corresponding boundary goes through a region of high density (the
cluster which is being split). According to Conclusion 3.3 this leads to
instability. If K is correct, then the idealized (!) K-means algorithm dis-
covers the correct clustering and thus has decision boundaries between
the true clusters, that is in low-density regions of the space. If K is
too small, then the K-means algorithm has to group clusters together.
In this situation, the cluster boundaries are still between true clusters,
hence in a low-density region of the space.

3.2 The Actual K-Means Algorithm

In this section we want to study the actual K-means algorithm. In
particular, we want to investigate when and how it gets stuck in dif-
ferent local optima. The general insight is that even though, from an
algorithmic point of view, it is an annoying property of the K-means
algorithm that it can get stuck in different local optima, this property
might actually help us for the purpose of model selection. We now want
to focus on the effect of the random initialization of the K-means algo-
rithm. For simplicity, we ignore sampling artifacts and assume that we
always work with “infinitely many” data points; that is, we work on
the underlying distribution directly.

The following observation is the key to our analysis. Assume we are
given a data set with Ktrue well-separated clusters, and assume that
we initialize the K-means algorithm with Kinit ≥ Ktrue initial centers.
The key observation is that if there is at least one initial center in each
of the underlying clusters, then the initial centers tend to stay in the
clusters they had been placed in. This means that during the course
of the K-means algorithm, cluster centers are only re-adjusted within
the underlying clusters and do not move between them. If this prop-
erty is true, then the final clustering result is essentially determined by
the number of initial centers in each of the true clusters. In particular,
if we call the number of initial centers per cluster the initial config-
uration, one can say that each initial configuration leads to a unique



258 Stability Analysis of the K-Means Algorithm

(a) (b)

Fig. 3.3 Different initial configurations and the corresponding outcomes of the K-means
algorithm. Figure a: the two boxes in the top row depict a data set with three clusters and
four initial centers. Both boxes show different realizations of the same initial configuration.
As can be seen in the bottom, both initializations lead to the same K-means clustering.
Figure b: here the initial configuration is different from the one in Figure a, which leads to
a different K-means clustering.

clustering, and different configurations lead to different clusterings; see
Figure 3.3 for an illustration. Thus, if the initialization method used
in K-means regularly leads to different initial configurations, then we
observe instability.

In [9], the first results in this direction were proved. They are still
preliminary in the sense that so far, proofs only exist for a simple
setting. However, we believe that the results also hold in a more general
context.

Theorem 3.6 (Stability of the actual K-means algorithm).
Assume that the underlying distribution P is a mixture of two
well-separated Gaussians on R. Denote the means of the Gaussians
by µ1 and µ2.

(1) Assume that we run the K-means algorithm with K = 2 and
that we use an initialization scheme that places one initial
center in each of the true clusters (with high probability).
Then the K-means algorithm is stable in the sense that with
high probability, it terminates in a solution with one center
close to µ1 and one center close to µ2.

(2) Assume that we run the K-means algorithm with K = 3 and
that we use an initialization scheme that places at least one



3.2 The Actual K-Means Algorithm 259

Fig. 3.4 Stable regions used in the proof of Theorem 3.6. See text for details.

of the initial centers in each of the true clusters (with high
probability). Then the K-means algorithm is instable in the
sense that with probability close to 0.5 it terminates in a
solution that considers the first Gaussian as cluster, but splits
the second Gaussian into two clusters; and with probability
close to 0.5 it does it the other way round.

Proof idea. The idea of this proof is best described with Figure 3.4.
In the case of Kinit = 2 one has to prove that if the one center lies
in a large region around µ1 and the second center in a similar region
around µ2, then the next step of K-means does not move the cen-
ters out of their regions (in Figure 3.4, these regions are indicated
by the black bars). If this is true, and if we know that there is one
initial center in each of the regions, the same is true when the algo-
rithm stops. Similarly, in the case of Kinit = 3, one proves that if there
are two initial centers in the first region and one initial center in the
second region, then all centers stay in their regions in one step of
K-means.

All that is left to do now is to find an initialization scheme that
satisfies the conditions in Theorem 3.6. Luckily, we can adapt a scheme
that has already been used in Dasgupta and Schulman [10]. For simplic-
ity, assume that all clusters have similar weights (for the general case
see [9]), and that we want to select K initial centers for the K-means
algorithm. Then the following initialization should be used:

Initialization (I):
(1) Select L preliminary centers uniformly at random from the

given data set, where L ≈ K log(K).



260 Stability Analysis of the K-Means Algorithm

(2) Run one step of K-means, that is assign the data points to
the preliminary centers and re-adjust the centers once.

(3) Remove all centers for which the mass of the assigned data
points is smaller than p0 ≈ 1/L.

(4) Among the remaining centers, select K centers by the
following procedure:

(a) Choose the first center uniformly at random.

(b) Repeat until K centers are selected: Select the next
center as the one that maximizes the minimum distance
to the centers already selected.

One can prove that this initialization scheme satisfies the conditions
needed in Theorem 3.6 (for exact details see [9]).

Theorem 3.7 (Initialization). Assume we are given a mixture of
Ktrue well-separated Gaussians in R, and denote the centers of the
Gaussians by µi. If we use the Initialization (I) to select Kinit centers,
then there exist Ktrue disjoint regions Ak with µk ∈ Ak, so that all Kinit

centers are contained in one of the Ak and

• if Kinit = Ktrue, each Ak contains exactly one center,
• if Kinit < Ktrue, each Ak contains at most one center,
• if Kinit > Ktrue, each Ak contains at least one center.

Proof sketch. The following statements can be proved to hold with
high probability. By selecting Ktrue log(Ktrue) preliminary centers, each
of the Gaussians receives at least one of these centers. By running
one step of K-means and removing the centers with too small mass,
one removes all preliminary centers that sit on outliers. Moreover, one
can prove that “ambiguous centers” (that is, centers that sit between
two clusters) attract only few data points and will be removed as well.
Next one shows that centers that are “unambiguous” are reasonably
close to a true cluster center µk. Consequently, the method for selecting
the final center from the remaining preliminary ones “cycles though
different Gaussians” before visiting a particular Gaussian for the second
time.



3.2 The Actual K-Means Algorithm 261

When combined, the results of Theorems 3.6 and 3.7 show that if
the data set contains Ktrue well-separated clusters, then the K-means
algorithm is stable if it is started with the true number of clusters, and
instable if the number of clusters is too large. Unfortunately, in the
case where K is too small one cannot make any useful statement about
stability because the aforementioned configuration argument does not
hold any more. In particular, initial cluster centers do not stay inside
their initial clusters, but move out of the clusters. Often, the final cen-
ters constructed by the K-means algorithm lie in between several true
clusters, and it is very hard to predict the final positions of the cen-
ters from the initial ones. This can be seen with the example shown in
Figure 3.5. We consider two data sets from a mixture of three Gaus-
sians. The only difference between the two data sets is that in the
left plot all mixture components have the same weight, while in the
right plot the top right component has a larger weight than the other
two components. One can verify experimentally that if initialized with
Kinit = 2, the K-means algorithm is rather stable in the left figure (it
always merges the top two clusters). But it is instable in the right
figure (sometimes it merges the top clusters, sometimes the left two
clusters). This example illustrates that if the number of clusters is too
small, subtle differences in the distribution can decide on stability or
instability of the actual K-means algorithm.

−10 0 10

−5

0

5

stable

−10 0 10

−5

0

5

instable

Fig. 3.5 Illustration for the case where K is too small. We consider two data sets that have
been drawn from a mixture of three Gaussians with means µ1 = (−5,−7), µ2 = (−5,7),
µ3 = (5,7) and unit variances. In the left figure, all clusters have the same weight 1/3,
whereas in the right figure the top right cluster has larger weight 0.6 than the other two
clusters with weights 0.2 each. If we run K-means with K = 2, we can verify experimentally
that the algorithm is pretty stable if applied to points from the distribution in the left
figure. It nearly always merges the top two clusters. On the distribution shown in the right
figure, however, the algorithm is instable. Sometimes the top two clusters are merged, and
sometimes the left two clusters.



262 Stability Analysis of the K-Means Algorithm

In general, we expect that the following statements hold (but they
have not yet been proved in a context more general than in Theo-
rems 3.6 and 3.7).

Conjecture 3.8 (Stability of the actual K-means algorithm).
Assume that the underlying distribution has Ktrue well-separated
clusters, and that these clusters can be represented by a center-based
clustering model. Then, if one uses Initialization (I) to construct Kinit

initial centers, the following statements hold:
• If Kinit = Ktrue, we have one center per cluster, with high proba-
bility. The clustering results are stable.

• If Kinit > Ktrue, different initial configurations occur. By the above
argument, different configurations lead to different clusterings, so
we observe instability.

• If Kinit < Ktrue, then depending on subtle differences in the under-
lying distribution we can have either stability or instability.

3.3 Relationships between the results

In this section we discuss conceptual aspects of the results and relate
them to each other.

3.3.1 Jittering versus Jumping

There are two main effects that lead to instability of the K-means
algorithm. Both effects are visualized in Figure 3.6.

Jittering of the cluster boundaries. Consider a fixed local (or global)
optimum of Q

(∞)
K and the corresponding clustering on different random

samples. Due to the fact that different samples lead to slightly different
positions of the cluster centers, the cluster boundaries “jitter”. That is,
the cluster boundaries corresponding to different samples are slightly
shifted with respect to one another. We call this behavior the “jittering”
of a particular clustering solution. For the special case of the global
optimum, this jittering has been investigated in Sections 3.1.2 and 3.1.3.
It has been established that different parameters K lead to different
amounts of jittering (measured in terms of rescaled instability). The



3.3 Relationships between the results 263

space of solutions for k=2

ob
j. 

fu
nc

tio
n

Fig. 3.6 The x-axis depicts the space of all clusterings for a fixed distribution P and for
a fixed parameter K (this is an abstract sketch only). The y-axis shows the value of the
objective function of the different solutions. The solid line corresponds to the true limit
objective function Q

(∞)
K , the dotted lines show the sample-based function Q

(∞)
K on different

samples. The idealized K-means algorithm only studies the jittering of the global optimum,
that is how far the global optimum varies due to the sampling process. The jumping between
different local optima is induced by different random initializations, as investigated for the
actual K-means algorithm.

jittering is larger if the cluster boundaries are in a high-density region
and smaller if the cluster boundaries are in low-density regions of the
space. The main “source” of jittering is the sampling variation.

Jumping between different local optima. By “jumping” we refer to
the fact that an algorithm terminates in different local optima. Investi-
gating jumping has been the major goal in Section 3.2. The main source
of jumping is the random initialization. If we initialize the K-means
algorithm in different configurations, we end in different local optima.
The key point in favor of clustering stability is that one can relate the
number of local optima of Q

(∞)
K to whether the number K of clusters

is correct or too large (this has happened implicitly in Section 3.2).

3.3.2 Discussion of the Main Theorems

Theorem 3.1 works in the idealized setting. In Part 1 it shows that if
the underlying distribution is not symmetric, the idealized clustering
results are stable in the sense that different samples always lead to the
same clustering. That is, no jumping between different solutions takes
place. In hindsight, this result can be considered as an artifact of the
idealized clustering scenario. The idealized K-means algorithm artifi-
cially excludes the possibility of ending in different local optima. Unless



264 Stability Analysis of the K-Means Algorithm

there exist several global optima, jumping between different solutions
cannot happen. In particular, the conclusion that clustering results are
stable for all values of K does not carry over to the realistic K-means
algorithm (as can be seen from the results in Section 3.2). Put plainly,
even though the idealized K-means algorithm with K = 2 is stable in
the example of Figure 3.1a, the actual K-means algorithm is instable.
Part 2 of Theorem 3.1 states that if the objective function has several
global optima, for example due to symmetry, then jumping takes place
even for the idealized K-means algorithm and results in instability. In
the setting of the theorem, the jumping is merely induced by having
different random samples. However, a similar result can be shown to
hold for the actual K-means algorithm, where it is induced due to ran-
dom initialization. Namely, if the underlying distribution is perfectly
symmetric, then “symmetric initializations” lead to the different local
optima corresponding to the different symmetric solutions.

To summarize, Theorem 3.1 investigates whether jumping between
different solutions takes place due to the random sampling process. The
negative connotation of Part 1 is an artifact of the idealized setting
that does not carry over to the actual K-means algorithm, whereas the
positive connotation of Part 2 does carry over.

Theorem 3.2 studies how different samples affect the jittering of a
unique solution of the idealized K-means algorithm. In general, one
can expect that similar jittering takes place for the actual K-means
algorithm as well. In this sense, we believe that the results of this the-
orem can be carried over to the actual K-means algorithm. However, if
we reconsider the intuition stated in the introduction and depicted in
Figure 1.1, we realize that jittering was not really what we had been
looking for. The main intuition in the beginning was that the algo-
rithm might jump between different solutions, and that such jumping
shows that the underlying parameter K is wrong. In practice, stability
is usually computed for the actual K-means algorithm with random
initialization and on different samples. Here both effects (jittering and
jumping) and both random processes (random samples and random
initialization) play a role. We suspect that the effect of jumping to
different local optima due to different initialization has higher impact
on stability than the jittering of a particular solution due to sampling



3.3 Relationships between the results 265

variation. Our reason to believe so is that the distance between two
clusterings is usually higher if the two clusterings correspond to differ-
ent local optima than if they correspond to the same solution with a
slightly shifted boundary.

To summarize, Theorem 3.2 describes the jittering behavior of an
individual solution of the idealized K-means algorithm. We believe that
similar effects take place for the actual K-means algorithm. However,
we also believe that the influence of jittering on stability plays a minor
role compared to the one of jumping.

Theorem 3.6 investigates the jumping behavior of the actual
K-means algorithm. As the source of jumping, it considers the random
initialization only. It does not take into account variations due to ran-
dom samples (this is hidden in the proof, which works on the underlying
distribution rather than with finitely many sample points). However, we
believe that the results of this theorem also hold for finite samples. The-
orem 3.6 is not yet as general as we would like it to be. But we believe
that studying the jumping behavior of the actual K-means algorithm is
the key to understanding the stability of the K-means algorithm used
in practice, and Theorem 3.6 points in the right direction.

Altogether, the results obtained in the idealized and realistic setting
perfectly complement each other and describe two sides of the same
coin. The idealized setting mainly studies what influence the differ-
ent samples can have on the stability of one particular solution. The
realistic setting focuses on how the random initialization makes the
algorithm jump between different local optima. In both settings, sta-
bility “pushes” in the same direction: If the number of clusters is too
large, results tend to be instable. If the number of clusters is correct,
results tend to be stable. If the number of clusters is too small, both
stability and instability can occur, depending on subtle properties of
the underlying distribution.



4
Beyond K-Means

Most of the theoretical results in the literature on clustering stability
have been proved with the K-means algorithm in mind. However, some
of them hold for more general clustering algorithms. This is mainly the
case for the idealized clustering setting.

Assume a general clustering objective function Q and an ideal clus-
tering algorithm that globally minimizes this objective function. If this
clustering algorithm is consistent in the sense that the optimal clus-
tering on the finite sample converges to the optimal clustering of the
underlying space, then the results of Theorem 3.1 can be carried over
to this general objective function [4]. Namely, if the objective function
has a unique global optimum, the clustering algorithm is stable, and
it is instable if the algorithm has several global minima (for exam-
ple due to symmetry). It is not too surprising that one can extend
the stability results of the K-means algorithm to more general vector-
quantization-type algorithms. However, the setup of this theorem is so
general that it also holds for completely different algorithms such as
spectral clustering. The consistency requirement sounds like a rather
strong assumption. But note that clustering algorithms that are not
consistent are completely unreliable and should not be used anyway.

266



267

Similarly as above, one can also generalize the characterization of
instable clusterings stated in Conclusion 3.3, cf. Bon-David and von
Luxburg [3]. Again we are dealing with algorithms that minimize an
objective function. The consistency requirements are slightly stronger
in that we need uniform consistency over the space (or a subspace)
of probability distributions. Once such uniform consistency holds, the
characterization that instable clusterings tend to have their boundary
in high-density regions of the space can be established.

While the two results mentioned above can be carried over to a
huge bulk of clustering algorithms, it is not as simple for the refined
convergence analysis of Theorem 3.2. Here we need to make one cru-
cial additional assumption, namely the existence of a central limit type
result. This is a rather strong assumption which is not satisfied for many
clustering objective functions. However, a few results can be estab-
lished [24]: in addition to the traditional K-means objective function,
a central limit theorem can be proved for other variants of K-means
such as kernel K-means (a kernelized version of the traditional K-
means algorithm) or Bregman divergence clustering (where one selects
a set of centroids such that the average divergence between points and
centroids is minimized). Moreover, central limit theorems are known
for maximum likelihood estimators, which leads to stability results for
certain types of model-based clusterings using maximum likelihood esti-
mators. Still the results of Theorem 3.2 are limited to a small number
of clustering objective functions, and one cannot expect to be able to
extend them to a wide range of clustering algorithms.

Even stronger limitations hold for the results about the actual K-
means algorithm. The methods used in Section 3.2 were particularly
designed for the K-means algorithm. It might be possible to extend
them to more general centroid-based algorithms, but it is not obvi-
ous how to advance further. In spite of this shortcoming, we believe
that these results hold in a much more general context of random-
ized clustering algorithms. From a high level point of view, the actual
K-means algorithm is a randomized algorithm due to its random ini-
tialization. The randomization is used to explore different local optima
of the objective function. There were two key insights in our stability
analysis of the actual K-means algorithm: First, we could describe the



268 Beyond K-Means

“regions of attraction” of different local minima, that is we could prove
which initial centers lead to which solution in the end (this was the con-
figurations idea). Second, we could relate the “size” of the regions of
attraction to the number of clusters. Namely, if the number of clusters
is correct, the global minimum will have a huge region of attraction in
the sense that it is very likely that we will end in the global minimum.
If the number of clusters is too large, we could show that there exist
several local optima with large regions of attraction. This leads to a
significant likelihood of ending in different local optima and observing
instability.

We believe that similar arguments can be used to investigate stabil-
ity of other kinds of randomized clustering algorithms. However, such
an analysis always has to be adapted to the particular algorithm under
consideration. In particular, it is not obvious whether the number of
clusters can always be related to the number of large regions of attrac-
tion. Hence it is an open question whether results similar to the ones
for the actual K-means algorithm also hold for completely different
randomized clustering algorithms.



5
Outlook

Based on the results presented above one can draw a cautiously opti-
mistic picture about model selection based on clustering stability for
the K-means algorithm. Stability can discriminate between different
values of K, and the values of K that lead to stable results have desir-
able properties. If the data set contains a few well-separated clusters
that can be represented by a center-based clustering, then stability has
the potential to discover the correct number of clusters.

An important point to stress is that stability-based model selec-
tion for the K-means algorithm can only lead to convincing results if
the underlying distribution can be represented by center-based clus-
ters. If the clusters are very elongated or have complicated shapes, the
K-means algorithm cannot find a good representation of this data set,
regardless what number K one uses. In this case, stability-based model
selection breaks down, too. It is a legitimate question what implications
this has in practice. We usually do not know whether a given data set
can be represented by center-based clusterings, and often the K-means
algorithm is used anyway. In my opinion, however, the question of
selecting the “correct” number of clusters is not so important in this
case. The only way in which complicated structure can be represented

269



270 Outlook

using K-means is to break each true cluster in several small, spherical
clusters and either live with the fact that the true clusters are split into
pieces, or use some mechanism to join these pieces afterwards to form a
bigger cluster of general shape. In such a scenario it is not so important
what number of clusters we use in the K-means step: it does not really
matter whether we split an underlying cluster into, say, 5 or 7 pieces.

There are a few technical questions that deserve further considera-
tion. Obviously, the results in Section 3.2 are still somewhat preliminary
and should be worked out in more generality. The results in Section 3.1
are large sample results. It is not clear what “large sample size” means
in practice, and one can construct examples where the sample size
has to be arbitrarily large to make valid statements [3]. However, such
examples can either be countered by introducing assumptions on the
underlying probability distribution, or one can state that the sample
size has to be large enough to ensure that the cluster structure is well-
represented in the data and that we do not miss any clusters.

There is yet another limitation that is more severe, namely the
number of clusters to which the results apply. The conclusions in Sec-
tion 3.1 as well as the results in Section 3.2 only hold if the true number
of clusters is relatively small (say, in the order of 10 rather than on
the order of 100), and if the parameter K used by K-means is in the
same order of magnitude. Let us briefly explain why this is the case.
In the idealized setting, the limit results in Theorems 3.1 and 3.2 of
course hold regardless of what the true number of clusters is. But the
subsequent interpretation regarding cluster boundaries in high and low
density areas breaks down if the number of clusters is too large. The
reason is that the influence of one tiny bit of cluster boundary between
two clusters is negligible compared to the rest of the cluster boundary
if there are many clusters, such that other factors might dominate the
behavior of clustering stability. In the realistic setting of Section 3.2,
we use an initialization scheme which, with high probability, places
centers in different clusters before placing them into the same cluster.
The procedure works well if the number of clusters is small. However,
the larger the number of clusters, the higher the likelihood to fail with
this scheme. Similarly problematic is the situation where the true num-
ber of clusters is small, but the K-means algorithm is run with a very



271

large K. Finally, note that similar limitations hold for all model selec-
tion criteria. It is simply a very difficult (and pretty useless) question
whether a data set contains 100 or 105 clusters, say.

While stability is relatively well-studied for the K-means algorithm,
there does not exist much work on the stability of completely different
clustering mechanisms. We have seen in Section 4 that some of the
results for the idealized K-means algorithm also hold in a more general
context. However, this is not the case for the results about the actual
K-means algorithm. We consider the results about the actual K-means
algorithm as the strongest evidence in favor of stability-based model
selection for K-means. Whether this principle can be proved to work
well for algorithms very different from K-means is an open question.

An important point we have not discussed in depth is how clustering
stability should be implemented in practice. As we have outlined in
Section 2 there exist many different protocols for computing stability
scores. It would be very important to compare and evaluate all these
approaches in practice, in particular as there are several unresolved
issues (such as the normalization). Unfortunately, a thorough study
that compares all different protocols in practice does not exist.



References

[1] S. Ben-David, “A framework for statistical clustering with constant time
approximation algorithms for K-median and K-means clustering,” Machine
Learning, vol. 66, pp. 243–257, 2007.

[2] S. Ben-David, D. Pál, and H.-U. Simon, “Stability of k-Means Clustering,” in
Conference on Learning Theory (COLT), (N. Bshouty and C. Gentile, eds.),
pp. 20–34, Springer, 2007.

[3] S. Ben-David and U. von Luxburg, “Relating clustering stability to properties
of cluster boundaries,” in Proceedings of the 21st Annual Conference on Learn-
ing Theory (COLT), (R. Servedio and T. Zhang, eds.), pp. 379–390, Springer,
Berlin, 2008.

[4] S. Ben-David, U. von Luxburg, and D. Pál, “A sober look on clustering stabil-
ity,” in Proceedings of the 19th Annual Conference on Learning Theory (COLT),
(G. Lugosi and H. Simon, eds.), pp. 5–19, Springer, Berlin, 2006.

[5] A. Ben-Hur, A. Elisseeff, and I. Guyon, “A stability based method for dis-
covering structure in clustered data,” in Pacific Symposium on Biocomputing,
pp. 6–17, 2002.

[6] A. Bertoni and G. Valentini, “Model order selection for bio-molecular data
clustering,” BMC Bioinformatics, vol. 8(Suppl 2):S7, 2007.

[7] A. Bertoni and G. Valentini, “Discovering multi-level structures in bio-
molecular data through the Bernstein inequality,” BMC Bioinformatics,
vol. 9(Suppl 2), 2008.

[8] M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Rad-
macher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang,
F. Marincola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock, J. Carpten,
E. Gillanders, D. Leja, K. Dietrich, C. Beaudry, M. Berens, D. Alberts,

272



References 273

V. Sondak, M. Hayward, and J. Trent, “Molecular classification of cutaneous
malignant melanoma by gene expression profiling,” Nature, vol. 406, pp. 536–
540, 2000.

[9] S. Bubeck, M. Meila, and U. von Luxburg, “How the initialization affects
the stability of the k-means algorithm,” Draft, http://arxiv.org/abs/0907.5494,
2009.

[10] S. Dasgupta and L. Schulman, “A probabilistic analysis of EM for mixtures of
separated, spherical gaussians,” JMLR, vol. 8, pp. 203–226, 2007.

[11] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. Chapman &
Hall, 1993.

[12] J. Fridlyand and S. Dudoit, “Applications of resampling methods to estimate
the number of clusters and to improve the accuracy of a clustering method,”
Technical Report 600, Department of Statistics, University of California, Berke-
ley, 2001.

[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.
New York: Springer, 2001.

[14] M. K. Kerr and G. A. Churchill, “Bootstrapping cluster analysis: Assessing the
reliability of conclusions from microarray experiments,” PNAS, vol. 98, no. 16,
pp. 8961–8965, 2001.

[15] T. Lange, V. Roth, M. Braun, and J. Buhmann, “Stability-based validation of
clustering solutions,” Neural Computation, vol. 16, no. 6, pp. 1299–1323, 2004.

[16] J. Lember, “On minimizing sequences for k-centres,” Journal of Approximation
Theory, vol. 120, pp. 20–35, 2003.

[17] E. Levine and E. Domany, “Resampling method for unsupervised estimation
of cluster validity,” Neural Computation, vol. 13, no. 11, pp. 2573–2593, 2001.

[18] M. Meila, “Comparing clusterings by the variation of information,” in Pro-
ceedings of the 16th Annual Conference on Computational Learning Theory
(COLT), (B. Schölkopf and M. Warmuth, eds.), pp. 173–187, Springer, 2003.

[19] U. Möller and D. Radke, “A cluster validity approach based on nearest-neighbor
resampling,” in Proceedings of the 18th International Conference on Pattern
Recognition (ICPR), pp. 892–895, Washington, DC, USA: IEEE Computer
Society, 2006.

[20] D. Pollard, “Strong consistency of k-means clustering,” Annals of Statistics,
vol. 9, no. 1, pp. 135–140, 1981.

[21] D. Pollard, “A central limit theorem for k-means clustering,” Annals of Prob-
ability, vol. 10, no. 4, pp. 919–926, 1982.

[22] O. Shamir and N. Tishby, “Cluster stability for finite samples,” in Advances
in Neural Information Processing Systems (NIPS) 21, (J. Platt, D. Koller,
Y. Singer, and S. Rowseis, eds.), Cambridge, MA: MIT Press, 2008.

[23] O. Shamir and N. Tishby, “Model Selection and Stability in k-means clus-
tering,” in Proceedings of the 21rst Annual Conference on Learning Theory
(COLT), (R. Servedio and T. Zhang, eds.), 2008.

[24] O. Shamir and N. Tishby, “On the reliability of clustering stability in the
large sample regime,” in Advances in Neural Information Processing Systems
21 (NIPS), (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.),
2009.



274 References

[25] M. Smolkin and D. Ghosh, “Cluster stability scores for microarray data in
cancer studies,” BMC Bioinformatics, vol. 36, no. 4, 2003.

[26] A. Strehl and J. Ghosh, “Cluster ensembles — A knowledge reuse framework
for combining multiple partitions,” JMLR, vol. 3, pp. 583–617, 2002.

[27] N. Vinh and J. Epps, “A novel approach for automatic number of clusters detec-
tion in microarray data based on consensus clustering,” in Proceedings of the
Ninth IEEE International Conference on Bioinformatics and Bioengineering,
pp. 84–91, IEEE Computer Society, 2009.


