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Abstract

We examine whether the quality of different clustering algorithms can be compared by a
general, scientifically sound procedure which is independent of particular clustering algorithms.
We argue that the major obstacle is the difficulty in evaluating a clustering algorithm without
taking into account the context: why does the user cluster his data in the first place, and what
does he want to do with the clustering afterwards? We argue that clustering should not be
treated as an application-independent mathematical problem, but should always be studied
in the context of its end-use. Different techniques to evaluate clustering algorithms have to be
developed for different uses of clustering. To simplify this procedure we argue that it will be
useful to build a “taxonomy of clustering problems” to identify clustering applications which
can be treated in a unified way and that such an effort will be more fruitful than attempting
the impossible — developing “optimal” domain-independent clustering algorithms or even
classifying clustering algorithms in terms of how they work.

1 Introduction

Knuth (1974) said of computer programming that “It is clearly an art, but many feel that a science
is possible and desirable.” Whether clustering is art or science is an old question: “Is taxonomy
art, or science, or both?” asked Anderson (1974) whilst reviewing the state of systematic biological
taxonomy. He justifiably went on to claim

Discussions of taxonomic theory or practice that refer to the concepts “science” and
“art” without finer delineation will be less clear and less productive than discussions that
first attempt definitions of specific concepts in the panoply of science such as precision
or objectivity or repeatability or confidence and then apply these explicitly in evaluating
alternatives and specific steps within the taxonomic process (Anderson, 1974, p. 59).

The purpose of this paper is to provide such a finer delineation taking as our starting point the
means by which clustering algorithms are evaluated. Our original motivation was to develop better
benchmark challenge problems for clustering. Our reflections on this lead us to grapple with the
broader issue of the point and purpose of clustering (and abandon the idea of such benchmarks).

Clustering is “unsupervised classification” or “unsupervised segmentation”. The aim is to assign
instances to classes that are not defined a priori and that are (usually) supposed to somehow reflect
the “underlying structure” of the entities that the data represents. In the broader, non machine
learning literature it is common to use the word “classification” when talking of clustering (Bowker
and Star, 1999, Farris, 1981). “Taxonomy” refers to what machine learners would call hierarchical
clustering.
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Clustering relates data to knowledge and is a basic human activity. Bowker and Star (1999) have
argued how fundamental it is in understanding the world1. It affects knowledge representation and
discovery (Kwasnik, 1999). It defines infrastructures that have real political significance (Bowker
and Star, 1999). It forms the basis for systematic biology, and the need for classification remains
ever-present (Ruepp et al., 2004). It is pervasive.

Clustering holds a fascination for many mathematicians and engineers and as a consequence
there is a large literature on domain independent clustering techniques. However, this literature
rarely finds its way to practitioners and has long been criticized for its lack of relevance: Farris
(1981) wrote of a 1976 symposium on “Classification and Clustering” that

The technical skill shown by many of the contributors to this symposium might
well produce valuable new methods, if it could be directed to problems of systematic
importance.

The lack of appreciation is puzzling. Supervised classification techniques are widely appreciated
(and used) for solving real problems. And clustering seems to simply be “unsupervised classifica-
tion.” However, there is a fundamental difference: supervised clustering can be easily made into a
well defined problem with a loss function, which precisely formalizes what one is trying to do (and
furthermore can be grounded in a rational way in the real underlying problem). The loss function
can be viewed as an abstraction of the ultimate end-use problem. The difficulty with unsupervised
clustering is that there are a huge number of possibilities regarding what will be done with it and
(as yet) no abstraction akin to a loss function which distills the end-user intent. Depending on the
use to which a clustering is to be put, the same clustering can either be helpful or useless.

It is often presumed that for any situation where clustering may be used there is a single “right”
clustering. (“The goal of data clustering . . . is to discover the natural grouping(s) of a set of patterns
points, or objects” (Jain, 2010, p.3)2) Others take this further and maintain that the right answer
is determinable by the data (alone, without reference to intended use): “the data should vote
for their preferred model type and model complexity” (Buhmann, 2010). The presumption seems
to be based on the notion that categories exist independently of human experience and intent
(a sort of Platonic “carving nature at its joints”). Such a doctrine of “natural kinds” has been
convincingly discredited (see e.g. Gilmour and Walters (1964)). Philosophical analysis of “natural
kinds” reveals substantial difficulties (Bird and Tobin, 2010); for a cognitive science perspective
see Lakoff (1987). Users of classification methods often reject the notion that clustering is a
domain-independent subject:

I suspect that one of the reasons for the persistence of the view that classification
is subject-independent is that classificatory theorists have been largely insulated from
sources that would inform them otherwise (Farris, 1981, p.213).

The same problem occurs in supervised classification: if one is not prepared to commit to a
particular loss function (as a formal codification of the use to which your classifier will be put) one
can just estimate the underlying probability distribution. But then one is stuck with the question
of how to judge the quality of such a distribution estimate. There can be no loss-independent way
of doing this that is universally superior to other methods; pace the use of the area under the
receiver operating characteristic curve Hand (2008).

Many of the arguments about the right way to cluster or how to compare clustering methods
are side-effects of the fact that there is a very wide diversity of clustering problems. Even within a

1The reason why Borges’ famous strange classification quoted below strikes us as so bizarre is precisely because
it makes us wonder what on earth would it be like to understand the world in that extraordinary manner — “the
impossibility of thinking that” (Foucault, 1970).

These ambiguities, redundancies, and deficiencies recall those attributed by Dr. Franz Kuhn to a
certain Chinese encyclopedia called the Heavenly Emporium of Benevolent Knowledge. In its distant
pages it is written that animals are divided into (a) those that belong to the emperor; (b) embalmed
ones; (c) those that are trained; (d) suckling pigs; (e) mermaids; (f) fabulous ones; (g) stray dogs; (h)
those that are included in this classification; (i) those that tremble as if they were mad; (j) innumerable
ones; (k) those drawn with a very fine camel’s-hair brush; (l) etcetera; (m) those that have just broken
the flower vase; (n) those that at a distance resemble flies. (Borges, 1942)

2Ironically, in the same paper Jain recognizes the point, which contradicts any notion of “natural” that “the
representation of the data is closely tied with the purpose of the grouping. The representation must go hand in
hand with the end goal of the user” (Jain, 2010, p.11). We do not believe there can be a “true” clustering definable
solely in terms of the data — truth is relative to the problem being solved.
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particular domain of application (say the classification of biological organisms) there can be very
diverse and opposing views as to what constitutes a valuable classification: see the account of
Hull (1988) of the battles between phenetics, which attempts to classify on the basis of observable
characteristics ignoring phylogeny, and cladistics, which is avowedly phylogenetic. The arguments
between adherents of either of these camps are not resolvable (even in principle) by domain-
independent means — their conflict stems from a disagreement regarding what is the real problem
that needs solving.

The focus of the present paper is on problem solving with clustering and how clustering methods
are used rather than on the algorithmic details of the techniques; there are already many com-
prehensive reviews of techniques available (e.g., Jain et al., 1999, Xu and Wunsch, 2005, Berkhin,
2006). In this paper we do not really care how a clustering algorithm works, as long as it achieves
the goal we have set. From this perspective it is pointless to argue whether clustering is essen-
tially density-level set estimation, information-compression3 or an instance of a problem in graph
theory. We argue that theoretical or methodological motivations of clustering algorithms alone
are insufficient to qualify clustering as a scientific method. Some practitioners think that in the
past research focused too much on this methodological side. Johnson (1968, p. 224) expressed his
frustration caustically:

The theoreticians of numerical taxonomy have enjoyed themselves immensely over
the past decade (though not without developing several schools with scant respect for each
other!). The mushrooming literature is quite fascinating and new developments tumble
after each other. Anyone who is prepared to learn quite a deal of matrix algebra, some
classical mathematical statistics, some advanced geometry, a little set theory, perhaps a
little information theory and graph theory, and some computer technique, and who has
access to a good computer and enjoys mathematics (as he must if he gets this far!) will
probably find the development of new taximetric methods much more rewarding, more
up-to-date, more ‘general’, and hence more prestigious than merely classifying plants
or animals or working out their phylogenies.

Arguably, it is the most important part of the scientific process to evaluate whether methods
serve the end goals they have been designed for. We believe that there is an urgent need for such
evaluation procedures for clustering.

2 Deficiencies in current clustering evaluation

In this section we discuss why most of the methods used in the clustering literature to evaluate
clustering algorithms are very problematic and do not serve their purpose. The point we want to
make is that clustering algorithms cannot be evaluated in a problem-independent way: whether a
clustering of a particular data set is good or bad cannot be evaluated without taking into account
what we want to do with the clustering once we have it. This insight is remarkably old. Gilmour
and Walters (1964, p.5) quote Mercier (1912):

The nature of the classification that we make . . . must have direct regard to the
purpose for which the classification is required. In as far as it serves the purpose, the
classification is a good classification, however ‘artificial’ it may be. In as far as it does
not serve this purpose, it is a bad classification, however ‘natural’ it may be.

In this section we argue that this insight is completely ignored by most of the current literature on
clustering. Scanning the current literature on clustering algorithms one will find that one or several
of the following methods are typically used to argue for the success of a clustering algorithm.

Evaluation on artificial data sets. Clustering algorithms are applied to artificial data sets,
for example points drawn from a mixture of Gaussians. Then the clustering results are compared
against the “ground truth”. Such a procedure can make sense to evaluate the statistical per-
formance of a clustering algorithm under particular assumptions on the data generating process.
It cannot be used to evaluate the usefulness of the clustering — usefulness cannot be evaluated
without a particular purpose in mind.

3Shannon’s prophetic words are still true: “the use of a few exciting words like information, entropy, redundancy,
do not solve all our problems” (Shannon, 1956).
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Evaluation on classification benchmark data sets. Clustering algorithms are applied to
classification data sets, that is data sets where samples come with class labels. Then the class
labels are treated as the ground truth against which the clustering results of different algorithms
are compared (using one out of various scores as the (adjusted) Rand index, misclassification error,
F-measure, normalized mutual information, variation of information, and so on). High agreement
with the ground truth is interpreted as good clustering performance.

We believe this approach is dangerous and misleading: It is an assumption that class labels
coincide with cluster structure and that the “best” clustering of the data set coincides with the
labels. This assumption might be true for some data sets but not for others. There might even exist
a more “natural” clustering of the data points that is not reflected in the current class labels. Or,
as it is often the case in high-dimensional data, different subspaces of features support completely
different clusters. Consider a set of images that is labeled according to whether it contains a car,
but a clustering algorithm decides to cluster the images according to whether they are greyscale or
color. In such a case, the clustering algorithm discovers a very reasonable clustering, but achieves
a very bad classification error. The classification error by itself cannot be used as a valid score to
compare clusterings.

Evaluation on real world data sets. Sometimes people run their algorithm on a real data
set, and then try to convince the reader that the clusters “make sense” in the application; this
is claimed by some to be “the best way to evaluate clustering algorithms” (Kogan, 2007, p.156)4.
For example, proteins are grouped according to some known structure. This is more or less a
qualitative version of the approach using benchmark data sets. It can make sense if the clustering
algorithm is intended for use in exploratory data analysis in this particular application, but does
not carry any further meaning otherwise.

Internal clustering quality scores. There exist many internal scores to measure how “good”
a clustering is (sum of square distances to cluster centers, ratio of between-cluster to within-cluster
similarities, graph cut measures like the normalized cut or the Cheeger cut, likelihood scores, and
so on). We argue that all these scores are unsuitable to evaluate the quality of clustering algorithms
in an objective way. Such scores are useful on the level of algorithms where they can be used as
an objective function in an optimization problem, and it is a valid research question how different
scores can be optimized efficiently. However, across different algorithms these scores tell only little
about the usefulness of the clustering. For every score preferring one clustering over the other
one can invent another score which does the opposite. A unique, global, objective score for all
clustering problems does not exist.

In supervised classification we are faced with a similar problem. Depending on whether we
compare algorithms based on the zero-one loss or the area under the ROC curve, say, we may get
different answers (that is different algorithms will be superior depending on the measure used).
However, the advantage we have in supervised learning is that we can abstract from the real
problem we have to solve by introducing a loss function which can guide the choice of solution. In
clustering, this cannot be achieved in a domain-independent function, which makes the situation
much worse.

Universal “Benchmark data sets”. The UCI approach to supervised classification (whereby
there is a small fixed collection of data sets, divorced from their real end use, that are used as a
simple one-dimensional means of evaluating machine learning solutions) is widely used to compare
supervised learning algorithms. However its value can be questioned even in the supervised case.
For example, although lip-service is often paid to the idea that a loss function can be derived from
utilities (arising in the particular end-use problem one is solving) these benchmark problems are
typically only evaluated on a single loss function. Given the diversity of end uses to which cluster-
ing is put, any such approach seems hopeless for clustering. One need only look at how problematic
it is to study taxonomic repeatability within a particular domain to be daunted (Moss, 1971).

4Compare Farris (1981, p. 208): “A clustering method is selected in each application for its ability to manufacture
a grouping most in accord with the subjective feelings of a ‘professional taxonomist.’ (That taxonomist, of course,
will then claim vindication of his views; they have been verified by an ‘objective’ method!) One must wonder what
value might be attributed to a method chosen primarily for its failure to contradict preconceptions.”
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We believe it makes sense to study particular applications of clustering and find out what
procedures are good or bad per application. But this is a process of interaction between algorithm
developers and practitioners. We need input from practitioners to help judge whether results are
good or bad. We do not believe that such a process can be automated — the data sets would need
to have a “true classification”, and then we are in the situation described above.

3 Proposed method of evaluation: measure the usefulness
for the particular task under consideration

As we have discussed above, clusterings or clustering algorithms cannot be evaluated without
taking into account the use the clustering will be put to. To sketch how evaluation procedures
might look like if they do take into account the use the clustering is put to, let us consider the two
following, very distinct scenarios.

3.1 Evaluating the usefulness of clustering: Two example scenarios

Clustering for data pre-processing. Often “one does not learn structure for its own sake,
but rather to facilitate solving some higher level task” (Seldin and Tishby, 2010). Clustering is
often used as an automated pre-processing step in a whole data processing chain. For example, we
cluster customers and products to compress the contents of a huge sales data base before building a
recommender system. Or we cluster the search results of a search engine query to discover whether
the search term was ambiguous, and then use the clustering results to improve the ranking of the
answers. In such situations, the whole purpose of clustering is to improve the overall performance
of the system. This overall performance can usually be quantified by some problem-dependent score.

From a methodological point of view it is relatively straightforward and uncontroversial how
clustering can be evaluated in this scenario. One can interpret the clustering as just one element
in a whole chain of processing steps. Put more extremely, the clustering (algorithm) is just one
more “parameter” which has to be tuned, and this tuning can be achieved similarly as for all other
parameters, for example by cross validation over the final outcome of our system as a whole. We
do not directly evaluate the “quality” of the clustering, and we are not interested in whether the
clustering algorithm discovers “meaningful groups”. All we care about is the usefulness of the
clustering for achieving our final goal. For example, to build a music recommender system it might
be a useful preprocessing step to cluster songs or users into groups to decrease the size of the
underlying data set. In this application we do not care whether the clustering algorithm yields a
meaningful clustering of songs or users, as long as the final recommender system works well. If it
performs better when a particular clustering algorithm is used, this is all we need to know about
the clustering step.

If the final application in mind is indeed supervised classification and clustering is performed as
a pre-processing step, then one can evaluate the quality of the clustering in terms of the degradation
of classification performance, when quantized observations are used in place of the original obser-
vations (Bock, 1992), or the improvement in performance arising from the additional information
in the class labels, along with the original observations (Candillier et al., 2006).

Clustering for exploratory data analysis. Here, clustering is used to discover aspects of
the data which are either completely new, or which are already suspected to exist, or which are
hoped not to exist. For example, one can use clustering to define certain sub-categories of diseases
in medicine, or as a means for quality control to detect undesirable groupings that suggest experi-
mental artifacts or confounding factors in the data. Exploratory data analysis should “present the
data to the analyst such that he can see patterns in the data and formulate interesting hypotheses
about the data” (Good, 1983).

As far as we know, no systematic attempt has been made to assess whether clustering in general
(or a particular clustering algorithm) is useful for exploratory data analysis. In addition to the
technical question concerning how to perform the clustering, this question has a psychological
aspect. Ultimately it is a human user who will explore the data and hopefully detect a pattern.
One approach to evaluate the performance of a certain clustering algorithm might be to ask humans
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to use a particular clustering algorithm to generate hypotheses, and later evaluate the quality of the
hypotheses on independent data. Major obstacles to this endeavor are how to evaluate whether a
hypothesis is “interesting,” and how to perform a “placebo clustering” as a null model to compare
with.

Data exploration is often performed visually. If clustering and visualization are treated as two
independent components of some data exploration software, we believe it likely that the particular
choice of the clustering algorithm is not very relevant compared to the design of the human com-
puter interaction interface — the visualization and data manipulation capabilities of the system
will likely be responsible for success or failure of the attempt to discover structure in the data. As
opposed to treating clustering and visualization independently from each other, it is a promising
approach to consider them jointly. For example, it might make sense to sacrifice a bit of accuracy
in the clustering algorithm if this leads to a performance gain in the visualization part (consider
the t-SNE algorithm of van der Maaten and Hinton (2008) as an example). The evaluation of such
a system has to take into account the human user as well.

3.2 Can we optimize the “usefulness” directly?

The information bottleneck approach (Tishby et al., 1999) attempts to directly optimize the
usefulness of a clustering. It tries to find a cluster assignment of all input points that is as
“informative as possible” (in terms of mutual information) about a particular “property of interest”.
At first glance, this framework seems to be exactly what we are looking for. At second glance,
one realizes that it is not so obvious how to implement it in practice. Often it is very hard
to quantify a “feature of interest”. In the exploratory data analysis setting this seems close to
impossible. In the data pre-processing setting, we are interested in a high classification accuracy
in the end, which is too abstract a target for the information bottleneck approach (one may as well
directly optimize classification performance (Bock, 1992)). Furthermore, the method unjustifiably
assumes that Shannon information is “intrinsic” and captures the essence of meaning in the data.
There are in fact many different notions of information and even just “gathering information”
from the data implicitly presumes a loss function (DeGroot, 1962). Formally the choice of a notion
of information is tantamount to the choice of a loss function in a supervised learning problem
(Reid and Williamson, 2011). Nevertheless we believe that of all the literature on clustering, the
information bottleneck is closest in intent to what we are interested in as it at least tries to take
into account “what we are interested in.”

3.3 How are meta-criteria like clustering stability related to the useful-
ness?

In a statistical setting, it is assumed that the given data points are samples from some underlying
probability distribution. There are many data sets where such an assumption makes sense (cus-
tomers are samples from the “set of humans”; a particular set of hand-written digits just contains
a few instances out of a much larger set of “all possible hand written digits”). In such a setting, it
has often been advocated that it is important to ascertain whether a particular clustering just “fits
noise” or uncovers “true structure” of the data. There are several different tools that attempt to
distinguish between these two cases. Below are four such notions (sorted by increasing stringency).

Stability. The same clustering algorithm is applied repeatedly to perturbed versions of the
original data. Then a stability score is computed that evaluates whether the results of the algorithm
are “stable” or “unstable”. If the results are unstable, they are considered unreliable and unsuitable
for further use. See von Luxburg (2010) for a large list of references.

Convergence of clustering algorithms. The question is whether, for increasing amounts
of data, the results of a clustering algorithm converge to a particular solution and whether this
solution is reasonable. See Pollard (1981) or von Luxburg et al. (2008) for examples.

Generalization bounds. One computes generalization bounds that tell how much the clus-
tering results obtained on a finite sample are different from the ones one would obtain on the full
underlying distribution. These bounds are in the tradition of statistical learning theory and depend
on the size of the class of models from which the clustering is chosen. See Buhmann (2010) for an
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approach where the richness of the hypothesis is balanced against the stability of the clustering
results and Seldin and Tishby (2010) for PAC-Bayesian generalization bounds for the expected
out-of-sample performance of clustering.

Statistical significance. Here the goal is to assign confidences scores to clustering results.
They should tell how confident we are that the clustering results significantly deviate from some
null model of “unclustered” data. In many branches of science it is a strong requirement to report
such confidence scores. There exist numerous ways to compute confidence scores in the literature,
see Efron et al. (1996) for an example.

None of the criteria listed above directly evaluates the quality of a particular clustering of a
particular data set; they always take into account the clustering algorithm (respectively, the model
class from which the clustering solution was chosen). The purpose of all the criteria mentioned
above is to handle the statistical uncertainty in the data.

How are these criteria related the usefulness of a clustering? Their importance also depends on
the particular use of the clustering. In the pre-processing setting. statistical considerations do not
play any role, as long as the system works. If the clustering algorithm gives different results on
different samples, but the system works on either of these results, then we are fine. For example,
many people use k-means to cluster a huge set of texts, say, into a set of manageable size. If we
want to cluster a data set of 106 items into 103 clusters, it does not really matter whether the
clusters correspond to true underlying structure — they only have to serve for data compression.
We can have a completely different clustering each time we get a new data set, but the overall
system might still work fine on any of these data sets.

Interestingly, it is in the setting of “discovering structure” that statistical significance is impor-
tant. In the exploratory setting, a user does not have infinite time to inspect all sorts of meaningless
clusterings, and we cannot hope to generate a meaningful hypothesis from nothing. In this sense,
statistical significance is a necessary (but not sufficient) criterion for an algorithm to be useful.
Similarly, significance is important in taxonomic applications, for example when defining species
in biology. Here we want to define categories based on underlying structure and not on noise. This
insight is quite striking: it is the “soft” exploratory data analysis and discovering structure setting
where we have the “hardest” statistical requirements for our clustering algorithms.

It is conceivable that one could define the problem of “structure discovery” precisely enough
to allow one to then analyse the statistical significance of structures so discovered, but we do not
have any concrete ideas concerning this. We imagine that at best it would be “discovery” from a
predetermined set of structures. Ideally such a test would condition on the data (Reid, 1995).

4 A suggestion for future research

We have seen that clustering is used in a variety of contexts with very different goals and that
clustering results cannot be evaluated without taking into account this context. We are left with
the question as to what can be done. We take our lead from Tukey (1954):

Difficulties in identifying problems have delayed statistics far more than difficulties
in solving problems. This seems likely to be the case in the future too. Thus it is
appropriate to be as systematic as we can about unsolved problems. . . . Different ends
require different means and different logical structures. . . . While techniques are im-
portant in experimental statistics, knowing when to use them and why to use them are
more important.

4.1 A systematic catalog of clustering problems

We believe that it would be valuable (and relatively straight-forward) to compile a table of different
clustering problems and corresponding evaluation procedures. A more effective approach might be
to come up with a way to treat several clustering problems with similar methods, so one does not
have to start from scratch for every new application. We believe that the most effective approach
would be to systematically build a taxonomy or catalog of clustering problems (Hartigan, 1977).
We believe that this should be done in a solution agnostic way: define the problem in a purely
declarative manner without trying to say how it should be solved. We conjecture that such a
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taxonomy will be of considerable help. This proposal is tantamount to the research program “left
to the reader as an exercise” in the self-referentially titled The Botryology of Botryology (Good,
1977). This proposal is quite different to the several clusterings of clustering algorithms that have
appeared Jain et al. (2004), Jain (2010), Andreopoulos et al. (2009) and which do not really address
an end-users’ concerns. We emphasize that our focus is on distinguishing properties of clustering
problems, not algorithms. Hence, for our catalogue of clustering problems it is irrelevant to take
into account distinctions like parametric vs. non-parametric, frequentist vs. Bayesian, model-based
vs. model free, information-theoretic vs. probabilistic, etc. Of course different algorithms “solve”
different problems — but we are suggesting to attempt a classification of problems in a manner
independent of how to solve it. Such a declarative approach has proved valuable in computer
programming and other branches of engineering.

We do not yet attempt to suggest how this catalog of clustering problems will look in any
detail, but do suggest several “dimensions” of clustering applications which may be important in
such an endeavor. These dimensions are largely independent of application domain or clustering
algorithm.

Exploratory — confirmatory. We expect that exploratory/confirmatory distinction (Tukey,
1977) mentioned earlier will be central. While exploratory data analysis is used to discover pat-
terns in data and to formulate concrete hypotheses about the data, confirmatory data analysis
deals with the question of how to validate a given hypothesis based on empirical data. Clustering
is employed in both contexts. Examples for exploratory uses of clustering are: Detecting latent
structure, defining categories in data for later use (e.g. different subcategories of a disease), ver-
ifying that there is structure in the data, verifying that no unexpected clusters show up (quality
control), verifying that expected clusters are there. For confirmative clustering consider the fol-
lowing example from medicine. Assume that one hypothesizes a particular categorization among
patients (e.g., according to a syndrome). Then data are collected from a different feature space
(say, gene expressions). The confirmation comes from looking at the clusters in the new space and
comparing them to the hypothesized categorization.

Qualitative — quantitative. A fundamental distinction is whether the clustering results
are used in a quantitative or qualitative context, that is whether we can compute a score to
evaluate the overall performance of our system. The exploratory context is often “qualitative”.
We are interested in certain properties of the clusterings, but not in any final scores. Examples
for quantitative uses of clustering are data preprocessing, data compression, or clustering for semi-
supervised learning. Here, a final score can be used to evaluate the clustering performance. Note
that quantitative clustering is not necessarily the same as confirmatory data analysis. In this
sense, the distinction “exploratory — confirmative” is not necessarily the same as “quantitative
— qualitative”.

Unsupervised — supervised. There are different degrees of supervision in clustering prob-
lems. Situations where one does not have a clue what one is looking for are rare, and in many cases
additional information can be used. For example, in exploratory data analysis the analyst usually
has a good idea what he is looking for and he might bias the clustering with a particular choice of
features or a particular choice of similarity measure between patterns. Further, the assessment of
the usefulness of clustering as a preprocessing is often an iterative process: if clustering is found
useful in a supervised task, it may be more likely to be useful in similar tasks. For instance, clus-
tering has become a mainstream technique to build codebooks of phonemes or subwords in speech
recognition. In some transfer learning methods, a set of clusters selected as a good preprocess-
ing for one supervised task might used for another similar supervised task. In some transduction
learning approaches, clustering might be carried out on both labeled and unlabeled data and the
classification of labeled data performed according to the majority of labels found in a given cluster.

Bias towards particular solutions. In most uses of clustering, one has a “bias” concerning
what one is looking for. This bias affects the type of clusters one tries to construct. In some
applications the focus might be to join similar data points; for example, when detecting a chemical
compound with similar properties to a given one. In other applications, it might be more important
to separate different points, for example to identify emerging topics in a stream of news. Other
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examples are compact clusters vs. chain-like clusters, peak-based vs. gap-based clusters, flat
clustering vs. hierarchical clustering.

Modeling the data-generating process. Do we need to find clusters that represent some
understanding of how the data were generated? Not necessarily. For instance, in speech recognition
it is common to use vector quantization as preprocessing, a method making no assumption about
how data were generated. Similarly, in image processing, connected component methods do not
attempt to uncover the mechanism by which data were generated. However, in some applications,
clustering can be understood as a method for uncovering latent data structure, and prior knowledge
may guide users to select the most suitable approach. Below are three examples illustrating how
such prior knowledge could be exploited.

1. Phylogenies are usually modeled as a diffusion process. Clustering approaches to such prob-
lems usually attempt to uncover the underlying hierarchy, hence are tackled using hierarchical
clustering methods.

2. If instead the data were generated by a shallow process, there is no reason to use a hierarchical
model. For instance, handwriting used to be taught with a few methods in the US, hence,
handwriting styles could be clustered by assuming just a two level random process: drawing
the method, then drawing the writer; Gaussian mixtures or k-means type of algorithms are
appropriate for such problems.

3. A third type of model is constraint-based and assumes interactions between samples (like in
a Markov random field of an Ising model of magnetism). For instance, dress-code can be
assumed to emerge from peer-pressure and result in clusters of people dressing in a similar
way. Graph partitioning methods may lend themselves to such cases.

Evidently, in each of these three cases using clustering methods that do not attempt to model
the data generative process might “work well”, if all we are interested in is representing groups
efficiently for compression or prediction. But using a data generative model may make a lot of
difference from the point of view of gaining insight. For instance, we may want to predict the
consequences of actions or devise policies to attain a desired goal. Consider an example from epi-
demiology. Patients with the same symptoms may be clustered assuming one of the three models
described above. The first model (hierarchical model) can be appropriate if a genetic mutation is
responsible for a disease. Then, based on the hierarchical model one can try to trace a population
to a common ancestor and use this knowledge to diagnose and treat patients. If patients may have
a disease because of one categorical factor of variability (environment, diet, etc.) like in the case
of scurvy and lack of vitamin C, then a mixture model might be more appropriate. If the disease
is transmitted by contagion, then modeling the data with an interaction model (third case above)
is appropriate, and a corresponding disease prevention policy can be devised.

We stress that a catalog of clustering problems is likely to be quite complex, which is no different
to, say, a catalog of structural engineering problems. Many real problems require multiple factors
dealt with at once (a wall keeps out the rain, wind and noise, but also holds up the roof and
provides somewhere to hang a painting). Nevertheless these aspects can be described declaratively
(in terms of water-resistance, wind load, sound attenuation, static and dynamic load bearing and
visual aesthetics).

5 Conclusions

We asked whether clustering was art or science, but concluded that it is meaningless to view
clustering as a domain-indendent method. We deliberately duck our original question by claiming
it unhelpful and irrelevant. If one wants an abstract label, a better one is engineering, which
embraces different ways of knowing (“art” and “science”), recognizes the intrinsic psychological
component of many problems, has standardized language and problem descriptions to avoid undue
technique-focus and most certainly is focussed on solving the end-user problem (Vincenti, 1990).

If clustering researchers want real impact in applications, then it is time to step back from a
purely mathematical and algorithmic point of view. What is missing is not “better” clustering
algorithms but a problem-centric perspective in order to devise meaningful evaluation procedures.
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