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Abstract

The goal of this article is to develop a framework for large margin classification in metric
spaces. We want to find a generalization of linear decision functions for metric spaces
and define a corresponding notion of margin such that the decision function separates the
training points with a large margin. It will turn out that using Lipschitz functions as
decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a
margin. In order to construct a clean mathematical setup we isometrically embed the given
metric space into a Banach space and the space of Lipschitz functions into its dual space.
To analyze the resulting algorithm, we prove several representer theorems. They state
that there always exist solutions of the Lipschitz classifier which can be expressed in terms
of distance functions to training points. We provide generalization bounds for Lipschitz
classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The
generality of our approach can be seen from the fact that several well-known algorithms
are special cases of the Lipschitz classifier, among them the support vector machine, the
linear programming machine, and the 1-nearest neighbor classifier.

1. Introduction

Support vector machines (SVMs) construct linear decision boundaries in Hilbert spaces such
that the training points are separated with a large margin. The goal of this article is to
extend this approach from Hilbert spaces to metric spaces: we want to find a generalization
of linear decision functions for metric spaces and define a corresponding notion of margin
such that the decision function separates the training points with a large margin. The
reason why we are interested in metric spaces is that in many applications it is easier or
more natural to construct distance functions between objects in the data space than positive
definite kernel functions as they are used for support vector machines. Examples for this
situation are the edit distance used to compare strings or graphs and the earth mover’s
distance on images.

SVMs can be seen from two different points of view. In the regularization interpretation,
for a given positive definite kernel k, the SVM chooses a decision function of the form
f(x) =

∑
i αik(xi, x)+ b which has a low empirical error Remp and is as smooth as possible.

According to the large margin point of view, SVMs construct a linear decision boundary
in a Hilbert space H such that the training points are separated with a large margin and
the sum of the margin errors is small. Both viewpoints can be connected by embedding the
sample space X into the reproducing kernel Hilbert space H via the so called “feature map”
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and the function space F into the dual H′. Then the regularizer (which is a functional on F)
corresponds to the inverse margin (which is a norm of a linear operator), and the empirical
error corresponds to the margin error (cf. Sections 4.3 and 7 of Schölkopf and Smola, 2002).
The benefits of these two dual viewpoints are that the regularization framework gives some
intuition about the geometrical meaning of the norm on H, and the large margin framework
leads to statistical learning theory bounds on the generalization error of the classifier.

Now consider the situation where the sample space is a metric space (X , d). From the
regularization point of view, a convenient set of functions on a metric space is the set of
Lipschitz functions, as functions with a small Lipschitz constant have low variation. Thus
it seems desirable to separate the different classes by a decision function which has a small
Lipschitz constant. In this article we want to construct the dual point of view to this
approach. To this end, we embed the metric space (X , d) in a Banach space B and the
space of Lipschitz functions into its dual space B′. Remarkably, both embeddings can be
realized as isometries simultaneously. By this construction, each x ∈ X will correspond to
some mx ∈ B and each Lipschitz function f on X to some functional Tf ∈ B′ such that
f(x) = Tfmx and the Lipschitz constant L(f) is equal to the operator norm ‖Tf‖. In the
Banach space B we can then construct a large margin classifier such that the size of the
margin will be given by the inverse of the operator norm of the decision functional. The
basic algorithm implementing this approach is

minimize Remp(f) + λL(f)

in regularization language and

minimize L(f) + C
∑

i
ξi subject to yif(xi) ≥ 1− ξi, ξi ≥ 0

in large margin language. In both cases, L(f) denotes the Lipschitz constant of the function
f , and the minimum is taken over a subset of Lipschitz functions on X . To apply this algo-
rithm in practice, the choice of this subset will be important. We will see that by choosing
different subsets we can recover the SVM (in cases where the metric on X is induced by a
kernel), the linear programming machine (cf. Graepel et al., 1999), and even the 1-nearest
neighbor classifier. In particular this shows that all these algorithms are large margin algo-
rithms. So the Lipschitz framework can help to analyze a wide range of algorithms which
do not seem to be connected at the first glance.

This paper is organized as follows: in Section 2 we provide the necessary functional
analytic background for the Lipschitz algorithm, which is then derived in Section 3. We
investigate representer theorems for this algorithm in Section 4. It will turn out that the
algorithm always has a solution which can be expressed by distance functions to train-
ing points. In Section 5 we compute error bounds for the Lipschitz classifier in terms of
Rademacher complexities. In particular, this gives valuable information about how fast the
algorithm converges for different choices of subsets of Lipschitz functions. The geometrical
interpretation for choosing different subsets of Lipschitz functions is further discussed in
Section 6.
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2. Lipschitz function spaces

In this section we introduce several Lipschitz function spaces and their properties. For a
comprehensive overview we refer to Weaver (1999).
A metric space (X , d) is a set X together with a metric d, that is a non-negative, symmetric
function d : X × X → R which fulfills d(x, y) = 0 ⇔ x = y and the triangle inequality
d(x, y) + d(y, z) ≤ d(x, z). A function f : X → R on a metric space (X , d) is called a
Lipschitz function if there exists a constant L such that |f(x) − f(y)| ≤ Ld(x, y) for all
x, y ∈ X . The smallest constant L such that this inequality holds is called the Lipschitz
constant of f , denoted by L(f). For convenience, we recall some standard facts about
Lipschitz functions:

Lemma 1 (Lipschitz functions) Let (X , d) be a metric space, f, g : X → R Lipschitz
functions and a ∈ R. Then L(f + g) ≤ L(f) + L(g), L(af) ≤ |a|L(f) and L(min(f, g)) ≤
max{L(f), L(g)}, where min(f, g) denotes the pointwise minimum of the functions f and g.
Moreover, let f := limn→∞ fn the pointwise limit of Lipschitz functions fn with L(fn) ≤ c
for all n ∈ N. Then f is a Lipschitz function with L(f) ≤ c.

For a metric space (X , d) consider the set

Lip(X ) := {f : X → R; f is a bounded Lipschitz function}.

It forms a vector space, and the Lipschitz constant L(f) is a seminorm on this space.
To define a convenient norm on this space we restrict ourselves to bounded metric spaces.
These are spaces which have a finite diameter diam(X ) := supx,y∈X d(x, y). For the learning
framework this is not a big drawback as the training and test data can always be assumed
to come from a bounded region of the underlying space. For a bounded metric space X we
choose the norm

‖f‖L := max
{
L(f),

‖f‖∞
diam(X )

}
as our default norm on the space Lip(X ). It is easy to see that this indeed is a norm. Note
that in the mathematical literature, Lip(X ) is usually endowed with the slightly different
norm ‖f‖ := max{L(f), ‖f‖∞}. But we will see that the norm ‖ · ‖L fits very naturally
in our classification setting, as already can be seen by the following intuitive argument.
Functions that are used as classifiers are supposed to take positive and negative values on
the respective classes and satisfy

‖f‖∞ = sup
x
|f(x)| ≤ sup

x,y
|f(x)− f(y)| ≤ diam(X )L(f), (1)

that is ‖f‖L = L(f). Hence, the L-norm of a classification decision function is determined
by the quantity L(f) we use as regularizer later on. Some more technical reasons for the
choice of ‖ · ‖L will become clear later.

Another important space of Lipschitz functions is constructed as follows. Let (X0, d) be
a metric space with a distinguished “base point” e which is fixed in advance. (X0, d, e) is
called a pointed metric space. We define

Lip0(X0) := {f ∈ Lip(X0); f(e) = 0}.
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On this space, the Lipschitz constant L(·) is a norm. However, its disadvantage in the
learning framework is the condition f(e) = 0, which is an inconvenient a priori restriction
on our classifier as e has to be chosen in advance. To overcome this restriction, for a
given bounded metric space (X , d) we define a corresponding extended pointed metric space
X0 := X ∪ {e} for a new base element e with the metric

dX0(x, y) =

{
d(x, y) for x, y ∈ X
diam(X ) for x ∈ X , y = e.

(2)

Note that diam(X0) = diam(X ). Then we define the map

ψ : Lip(X ) → Lip0(X0), ψ(f)(x) =

{
f(x) if x ∈ X
0 if x = e.

(3)

Lemma 2 (Isometry between Lipschitz function spaces) ψ is an isometric isomor-
phism between Lip(X ) and Lip0(X0).

Proof Obviously, ψ is bijective and linear. Moreover, for f0 := ψ(f) we have

L(f0) = sup
x,y∈X0

|f0(x)− f0(y)|
dX0(x, y)

= max{ sup
x,y∈X

|f(x)− f(y)|
d(x, y)

, sup
x∈X

|f(x)− f(e)|
dX0(x, e)

} =

= max{L(f),
‖f‖∞

diam(X )
} = ‖f‖L

Hence, ψ is an isometry. ,

In some respects, the space (Lip0(X0), L(·)) is more convenient to work with than
(Lip(X ), ‖ · ‖L). In particular it has some very useful duality properties. Let (X0, d, e)
be a pointed metric space with some distinguished base element e. A molecule of X0 is a
function m : X0 → R such that its support (i.e., the set where m has non-zero values) is a
finite set and

∑
x∈X0

m(x) = 0. For x, y ∈ X0 we define the basic molecules mxy := 1x−1y.
It is easy to see that every molecule m can be written as a (non unique) finite linear com-
bination of basic molecules. Thus we can define

‖m‖AE := inf

{∑
i

|ai|d(xi, yi); m =
∑

i

aimxiyi

}

which is a norm on the space of molecules. The completion of the space of molecules with
respect to ‖ · ‖AE is called the Arens-Eells space AE(X0). Denoting its dual space (i.e., the
space of all continuous linear forms on AE(X0)) by AE(X0)′ the following theorem holds
true (cf. Arens and Eells, 1956, Weaver, 1999).

Theorem 3 (Isometry between AE(X0)′ and Lip0(X0)) AE(X0)′ is isometrically iso-
morphic to Lip0(X0).
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This means that we can regard a Lipschitz function f on X0 as a linear functional Tf on
the space of molecules, and the Lipschitz constant L(f) coincides with the operator norm of
the corresponding functional Tf . For a molecule m and a Lipschitz function f this duality
can be expressed as

〈f,m〉 =
∑
x∈X0

m(x)f(x). (4)

It can be proved that ‖mxy‖AE = d(x, y) holds for all basic molecules mxy. Hence, it is
possible to embed X0 isometrically in AE(X0) via

Γ : X0 → AE(X0), x 7→ mxe. (5)

The norm ‖ · ‖AE has a nice geometrical interpretation in terms of the mass transportation
problem (cf. Weaver, 1999): some product is manufactured in varying amounts at several
factories and has to be distributed to several shops. The (discrete) transportation problem
is to find an optimal way to transport the product from the factories to the shops. The
costs of such a transport are defined as

∑
ij aijdij where aij denotes the amount of the

product transported from factory i to shop j and dij the distance between them. If fi

denotes the amount produced in factory i and si denotes the amount needed in shop i, the
formal definition of the transportation problem is

min
i,j=1,...,n

∑
aijdij subject to aij ≥ 0,

∑
j

aij = sj ,
∑

i

aij = fi. (6)

To connect the Arens-Eells space to this problem we identify the locations of the factories
and shops with a molecule m. The points x with m(x) > 0 represent the factories, the ones
with m(x) < 0 the shops. It can be proved that ‖m‖AE equals the minimal transportation
costs for molecule m. A special case is when the given molecule has the form m0 =

∑
mxiyj .

In this case, the transportation problem reduces to the bipartite minimal matching problem:
given 2m points (x1, . . . , xn, y1, . . . , yn) in a metric space, we want to match each of the
x-points to one of the y-points such that the sum of the distances between the matched
pairs is minimal. The formal statement of this problem is

min
π

∑
i,j

d(xi, yπ(i)) (7)

where the minimum is taken over all permutations π of the set {1, ..., n} (cf. Steele, 1997).

In Section 4 we will also need the notion of a vector lattice. A vector lattice is a
vector space V with an ordering � which respects the vector space structure (i.e., for
x, y, z ∈ V, a > 0: x � y =⇒ x + z � y + z and ax � ay) and such that for any two
elements f, g ∈ V there exists a greatest lower bound inf(f, g). In particular, the space of
Lipschitz functions with the ordering f � g ⇔ ∀x f(x) ≤ g(x) forms a vector lattice.

3. The Lipschitz classifier

Let (X , d) be a metric space and (xi, yi)i=1,...,n ⊂ X × {±1} some training data. In order
to be able to define hyperplanes, we want to embed (X , d) into a vector space, but without
loosing or changing the underlying metric structure.
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3.1 Embedding and large margin in Banach spaces

Our first step is to embed X by the identity mapping into the extended space X0 as described
in (2), which in turn is embedded into AE(X0) via (5). We denote the resulting composite
embedding by

Φ : X → AE(X0), x 7→ mx := mxe.

Secondly, we identify Lip(X ) with Lip0(X0) according to (3) and then Lip0(X0) withAE(X0)′

according to Theorem 3. Together this defines the map

Ψ : Lip(X ) → AE(X0)′, f 7→ Tf .

Lemma 4 (Properties of the embeddings) The mappings Φ and Ψ have the following
properties:

1. Φ is an isometric embedding of X into AE(X0): to every point x ∈ X corresponds a
molecule mx ∈ AE(X0) such that d(x, y) = ‖mx −my‖AE for all x, y ∈ X .

2. Lip(X ) is isometrically isomorphic to AE(X0)′: to every Lipschitz function f on X
corresponds an operator Tf on AE(X0) such that ‖f‖L = ‖Tf‖ and vice versa.

3. It makes no difference whether we evaluate operators on the image of X in AE(X0)
or apply Lipschitz functions on X directly: Tfmx = f(x).

4. Scaling a linear operator is the same as scaling the corresponding Lipschitz function:
for a ∈ R we have aTf = Taf .

Proof All these properties are direct consequences of the construction and Equation (4).
,

The message of this lemma is that it makes no difference whether we classify our training
data on the space X with the decision function sgn f(x) or on AE(X0) with the hyperplane
sgn(Tfmx). The advantage of the latter is that constructing a large margin classifier in a
Banach space is a well studied problem. In Bennett and Bredensteiner (2000) and Zhou
et al. (2002) it has been established that constructing a maximal margin hyperplane between
the set X+ of positive and X− of negative training points in a Banach space V is equivalent
to finding the distance between the convex hulls of X+ and X−. More precisely, let C+ and
C− the convex hulls of the sets X+ and X−. In the separable case, we define the margin
of a separating hyperplane H between C+ and C− as the minimal distance between the
training points and the hyperplane:

ρ(H) := inf
i=1,...,n

d(xi,H).

The margin of the maximal margin hyperplane coincides with half the distance d(C+, C−) =
infp+∈C+,p−∈C− ‖p+ − p−‖ between the convex hulls of the positive and negative training
points. Hence, determining the maximum margin hyperplane can be understood as solving
the optimization problem infp+∈C+,p−∈C− ‖p+ − p−‖. By duality arguments (cf. Bennett
and Bredensteiner, 2000) it can be seen that its solution coincides with the solution of
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supT∈V ′ infp+∈C+,p−∈C− 〈T, p+ − p−〉/‖T‖. This can be equivalently rewritten as the opti-
mization problem

inf
T∈V ′,b∈R

‖T‖ subject to yi(〈T, xi〉+ b) ≥ 1 ∀i = 1, ..., n (8)

A solution of this problem is called a large margin classifier. The decision function has the
form f(x) = 〈T, x〉 + b, and its margin is given by 1/‖T‖. For details we refer to Bennett
and Bredensteiner (2000) and Zhou et al. (2002).

3.2 Derivation of the algorithm

Now we can apply this construction to our situation. We embed X isometrically into the
Banach space AE(X0) and use the above reasoning to construct a large margin classifier.
As the dual space of AE(X0) is Lip0(X0) and 〈f,mx〉 = f(x), the optimization problem (8)
in our case is

inf
f0∈Lip0(X0),b∈R

L(f0) subject to yi(f0(xi) + b) ≥ 1 ∀i = 1, ..., n.

By the isometry stated in Theorem 3, this is equivalent to the problem

inf
f∈Lip(X ),b∈R

‖f‖L subject to yi(f(xi) + b) ≥ 1 ∀i = 1, ..., n.

Next we want to show that the solution of this optimization problem does not depend on
the variable b. To this end, we first set g := f + b ∈ Lip(X ) to obtain

inf
g∈Lip(X ),b∈R

‖g − b‖L subject to yig(xi) ≥ 1 ∀i = 1, ..., n.

Then we observe that

‖g−b‖L = max{L(g−b), ‖g − b‖∞
diam(X )

} = max{L(g),
‖g − b‖∞
diam(X )

} ≥ L(g) = max{L(g),
‖g‖∞

diam(X )
}.

Here the last step is true because of the fact that g takes positive and negative values and
thus ‖g‖∞/diam(X ) ≤ L(g) as we explained in Equation (1) of Section 2. Hence, under the
constraints yig(xi) ≥ 1 we have infb ‖g − b‖L = L(g), and we can rewrite our optimization
problem in the final form

inf
f∈Lip(X )

L(f) subject to yif(xi) ≥ 1, i = 1, . . . , n. (∗)

We call a solution of this problem a (hard margin) Lipschitz classifier. So we have proved:

Theorem 5 (Lipschitz classifier) Let (X , d) be a bounded metric space, (xi, yi)i=1,...,n ⊂
X ×{±1} some training data containing points of both classes. Then a solution f of (∗) is
a large margin classifier, and its margin is given by 1/L(f).
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One nice aspect about the above construction is that the margin constructed in the space
AE(X0) also has a geometrical meaning in the original input space X itself: it is a lower
bound on the minimal distance between the “separation surface” S := {s ∈ X ; f(s) = 0}
and the training points. To see this, normalize the function f such that mini=1,...,n |f(xi)| =
1. This does not change the set S. Because of

1 ≤ |f(xi)| = |f(xi)− f(s)| ≤ L(f)d(xi, s)

we thus get d(xi, s) ≥ 1/L(f).
Analogously to SVMs we also define the soft margin version of the Lipschitz classifier by
introducing slack variables ξi to allow some training points to lie inside the margin or even
be misclassified:

inf
f∈Lip(X )

L(f) + C
n∑

i=1

ξi subject to yif(xi) ≥ 1− ξi, ξi ≥ 0. (∗∗)

In regularization language, the soft margin Lipschitz classifier can be stated as

inf
f∈Lip(X )

`(yif(xi)) + λL(f)

where the loss function ` is given by `(yif(xi)) = max{0, 1− yif(xi)}.
In Section 4, we will give an analytic expression for a solution of (∗) and show how (∗∗)

can be written as a linear programming problem. However, it may be sensible to restrict
the set over which the infimum is taken in order to avoid overfitting. We thus suggest to
consider the above optimization problems over subspaces of Lip(X ) rather than the whole
space Lip(X ). In Section 6 we derive a geometrical interpretation of the choice of different
subspaces. Now we want to point out some special cases.
Assume that we are given training points in some reproducing kernel Hilbert space H. As
it is always the case for linear functions, the Lipschitz constant of a linear function in H ′

coincides with its Hilbert space norm. This means that the support vector machine in H
chooses the same linear function as the Lipschitz algorithm, if the latter takes the subspace
of linear functions as hypothesis space.
In the case where we optimize over the subset of all linear combinations of distance functions
of the form f(x) =

∑n
i=1 aid(xi, x)+ b, the Lipschitz algorithm can be approximated by the

linear programming machine (cf. Graepel et al., 1999):

inf
a,b

n∑
i=1

|ai| subject to yi(
n∑

i=1

aid(xi, x) + b) ≥ 1.

The reason for this is that the Lipschitz constant of a function f(x) =
∑n

i=1 aid(xi, x) + b
is upper bounded by

∑
i |ai|.

Furthermore, if we do not restrict the function space at all, then we will see in the next
section that the 1-nearest neighbor classifier is a solution of the Lipschitz algorithm.

These examples show that the Lipschitz algorithm is a very general approach. By choos-
ing different subsets of Lipschitz functions we recover several well known algorithms. As the
Lipschitz algorithm is a large margin algorithm according to Theorem 5, the same holds for
the recovered algorithms. For instance the linear programming machine, originally designed
with little theoretical justification, can now be understood as a large margin algorithm.
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4. Representer theorems

A crucial theorem in the context of SVMs and other kernel algorithms is the representer
theorem (cf. Schölkopf and Smola, 2002). It states that even though the space of possible
solutions of these algorithms forms an infinite dimensional space, there always exists a
solution in the finite dimensional subspace spanned by the training points. It is because of
this theorem that SVMs overcome the curse of dimensionality and yield computationally
tractable solutions. In this section we prove a similar theorem for the Lipschitz classifiers
(∗) and (∗∗). To simplify the discussion, we denote D := {d(x, ·); x ∈ X} ∪ {1} and
Dtrain := {d(xi, ·); xi training point } ∪ {1}, where 1 is the constant-1 function.

4.1 Soft margin case

We first start by recalling a general result which implies the classical representer theorem
in the case of SVMs.

Lemma 6 (Minimum norm interpolation) Let V be a function of n+1 variables which
is non-decreasing in its n + 1-st argument. Given n points x1, . . . , xn and a functional Ω,
any function which is a solution of the problem

inf
f
V (f(x1), . . . , f(xn),Ω(f)) (9)

is a solution of the minimum norm interpolation problem

inf
f :∀i, f(xi)=ai

Ω(f) (10)

for some a1, . . . , an ∈ R.

Here, f being a solution of a problem of the form infW (f) means f = argminW (f). We
learned this theorem from M. Pontil, but it seems to be due to C. Micchelli.
Proof Let f0 be a solution of the first problem. Take ai = f0(xi). Then for any function
f such that f(xi) = ai for all i, we have

V (f(x1), . . . , f(xn),Ω(f)) ≥ V (f0(x1), . . . , f0(xn),Ω(f0)) = V (f(x1), . . . , f(xn),Ω(f0)).

Hence, by monotonicity of V we get Ω(f) ≥ Ω(f0), which concludes the proof. ,

The meaning of the above result is that if the solutions of problem (10) have specific
properties, then the solutions of problem (9) will also have these properties. So instead of
studying the properties of solutions of (∗∗) directly, we will investigate the properties of
(10) when the functional Ω is the Lipschitz norm. We first need to introduce the concept
of Lipschitz extensions.

Lemma 7 (Lipschitz extension) Given a function f defined on a finite subset x1, . . . , xn

of X , there exists a function f ′ which coincides with f on x1, . . . , xn, is defined on the whole
space X , and has the same Lipschitz constant as f . Additionally, it is possible to explicitly
construct f ′ in the form

f ′(x) = α min
i=1,...,n

(f(xi) + L(f)d(x, xi)) + (1− α) max
i=1,...,n

(f(xi)− L(f)d(x, xi)) ,

for any α ∈ [0, 1], with L(f) = maxi,j=1,...,n(f(xi)− f(xj))/d(xi, xj).

9



von Luxburg and Bousquet

Proof Consider the function g(x) = mini=1,...,n(f(xi) + L(f)d(x, xi)). We have

|g(x)− g(y)| ≤ max
i=1,...,n

|f(xi) + L(f)d(x, xi)− f(xi)− L(f)d(y, xi)| ≤ L(f)d(x, y),

so that L(g) ≤ L(f). Also, by definition g(xi) ≤ f(xi) + L(f)d(xi, xi) = f(xi). More-
over, if i0 denotes the index where the minimum is achieved in the definition of g(xi), i.e.
g(xi) = f(xi0)+L(f)d(xi, xi0), then by definition of L(f) we have g(xi) ≥ f(xi0)+(f(xi)−
f(xi0)) = f(xi). As a result, for all i = 1, . . . , n we have g(xi) = f(xi), which also implies
that L(g) = L(f).
Now the same reasoning can be applied to h(x) = maxi=1,...,n(f(xi)− L(f)d(x, xi)). Since
α ∈ [0, 1] we have f ′(xi) = f(xi) for all i. Moreover, L(αg+(1−α)h) ≤ αL(g)+(1−α)L(h) =
L(f) and thus L(f ′) = L(f), which concludes the proof. ,

From the above lemma, we obtain an easy way to construct solutions of minimum norm
interpolation problems like (10) with Lipschitz norms, as is expressed in the next lemma.

Lemma 8 (Solution of the Lipschitz minimal norm interpolation problem)
Let a1, . . . , an ∈ Rn, α ∈ [0, 1], L0 = maxi,j=1,...,n(ai − aj)/d(xi, xj), and

fα(x) := α min
i=1,...,n

(ai + L0d(x, xi)) + (1− α) max
i=1,...,n

(ai − L0d(x, xi)) .

Then fα is a solution of the minimal norm interpolation problem (10) with Ω(f) = L(f).
Moreover, when α = 1/2 then fα is a solution of the minimal norm interpolation problem
(10) with Ω(f) = ‖f‖L.

Proof Given that a solution f of (10) has to satisfy f(xi) = ai, it cannot have L(f) < L0.
Moreover, by Lemma 7 fα satisfies the constraints and has L(f) = L0, hence it is a solution
of (10) with Ω(f) = L(f).
When one takes Ω(f) = ‖f‖L, any solution f of (10) has to have L(f) ≥ L0 and ‖f‖∞ ≥
maxi |ai|. The proposed solution fα with α = 1/2 not only satisfies the constraints fα(xi) =
ai but also has L(f) = L0 and ‖f‖∞ = maxi |ai|, which shows that it is a solution of the
considered problem.
To prove that ‖f‖∞ = maxi |ai|, consider x ∈ X and denote by i1 and i2 the indices where
the minimum and the maximum, respectively, are achieved in the definition of fα(x). Then
one has

f1/2(x) ≤
1
2

(ai2 + L0d(x, xi2)) +
1
2

(ai2 − L0d(x, xi2)) = ai2 ,

and similarly f1/2(x) ≥ ai1 . ,

Now we can formulate a general representer theorem for the soft margin Lipschitz clas-
sifier.

Theorem 9 (Soft margin representer theorem) There exists a solution of the soft mar-
gin Lipschitz classifier (∗∗) in the vector lattice spanned by Dtrain which is of the form

f(x) =
1
2

min(ai + L0d(x, xi)) +
1
2

max(ai − L0d(x, xi))

10
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for some real numbers a1, . . . , an with L0 := maxi,j(ai − aj)/d(xi, xj). Moreover one has
‖f‖L = L(f) = L0.

Proof The first claim follows from Lemmas 6 and 8. The second claim follows from the
fact that a solution of (∗∗) satisfies ‖f‖L = L(f). ,

Theorem 9 is remarkable as the space Lip(X ) of possible solutions of (∗∗) contains the
whole vector lattice spanned by D. The theorem thus states that even though the Lipschitz
algorithm searches for solutions in the whole lattice spanned by D it always manages to
come up with a solution in the sublattice spanned by Dtrain.

4.2 Algorithmic consequences

As a consequence of the above theorem, we can obtain a tractable algorithm for solving
problem (∗∗). First, we determine the coefficients ai by solving

min
a1,...,an∈R

n∑
i=1

`(yiai) + λmax
i,j

(ai − aj)
d(xi, xj)

,

which can be rewritten as a linear programming problem

min
a1,...,an,ξ1,...,ξn,ρ∈R

n∑
i=1

ξi + λρ ,

under the constraints ξi ≥ 0, yiai ≥ 1 − ξi, ρ ≥ (ai − aj)/d(xi, xj). Once a solution is
found, one can simply take the function f1/2 defined in Theorem 9 with the coefficients
ai determined by the linear program. Note, however, that in practical applications, the
solution found by this procedure might overfit as it optimizes (∗∗) over the whole class
Lip(X ).

4.3 Hard margin case

The representer theorem for the soft margin case clearly also holds in the hard margin case,
so that there will always be a solution of (∗) in the vector lattice spanned by Dtrain. But in
the hard margin case, also a different representer theorem is valid. We denote the set of all
training points with positive label by X+, the set of the training points with negative label
by X−, and for two subsets A,B ⊂ X we define d(A,B) := infa∈A,b∈B d(a, b).

Theorem 10 (Hard margin representer theorem) Problem (∗) always has a solution
which is a linear combination of distances to sets of training points.

To prove this theorem we first need a simple lemma.

Lemma 11 (Optimal Lipschitz constant) The Lipschitz constant L∗ of a solution of
(∗) satisfies L∗ ≥ 2/d(X+, X−).

Proof For a solution f of (∗) we have

L(f) = sup
x,y∈X

|f(x)− f(y)|
d(x, y)

≥ max
i,j=1,...,n

|f(xi)− f(xj)|
d(xi, xj)

≥ max
i,j=1,...,n

|yi − yj |
d(xi, xj)

=
2

minxi∈X+,xj∈X− d(xi, xj)
=

2
d(X+, X−)

.

11
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,

Lemma 12 (Solutions of (∗)) Let L∗ = 2/d(X+, X−). For all α ∈ [0, 1], the following
functions solve (∗):

fα(x) := αmin
i

(yi + L∗d(x, xi) + (1− α) max
i

(yi − L∗d(x, xi))

g(x) :=
d(x,X−)− d(x,X+)

d(X+, X−)

Proof By Lemma 7, fα has Lipschitz constant L∗ and satisfies fα(xi) = yi. Moreover, it is
easy to see that yig(xi) ≥ 1. Using the properties of Lipschitz constants stated in Section 2
and the fact that the function d(x, ·) has Lipschitz constant 1 we see that L(g) ≤ L∗. Thus
fα and g are solutions of (∗) by Lemma 11. ,

The functions fα and g lie in the vector lattice spanned by Dtrain. As g is a linear
combination of distances to sets of training points we have proved Theorem 10.

It is interesting to have a closer look at the functions of Lemma 12. The functions f0 and
f1 are the smallest and the largest functions, respectively, that solve problem (∗) with equal-
ity in the constraints: any function f that satisfies f(xi) = yi and has Lipschitz constant
L∗ satisfies f0(x) ≤ f(x) ≤ f1(x). The functions g and f1/2 are especially remarkable:

Lemma 13 (1-nearest neighbor classifier) The functions g and f1/2 defined above have
the sign of the 1-nearest neighbor classifier.

Proof It is obvious that g(x) > 0 ⇐⇒ d(x,X+) < d(x,X−) and g(x) < 0 ⇐⇒
d(x,X+) > d(x,X−). For the second function, we rewrite f1/2 as follows:

f1/2(x) =
1
2
(min(L∗d(x,X+) + 1, L∗d(x,X−)− 1)−min(L∗d(x,X+)− 1, L∗d(x,X−) + 1)) .

Consider x such that d(x,X+) ≥ d(x,X−). Then d(x,X+) + 1 ≥ d(x,X−)− 1 and thus

f1/2(x) =
1
2
(
L∗d(x,X−)− 1−min(L∗d(x,X+)− 1, L∗d(x,X−) + 1)

)
≤ 0 .

The same reasoning applies to the situation d(x,X+) ≤ d(x,X−) to yield f1/2(x) ≥ 0 in
this case. ,

Note that g needs not reach equality in the constraints on all the data points, whereas
the function f1/2 always satisfies equality in the constraints. Lemma 13 has the surprising
consequence that according to Section 3, the 1-nearest neighbor classifier actually is a large
margin classifier.

12
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4.4 Negative results

So far we have proved that (∗) always has a solution which can be expressed as a linear
combination of distances to sets of training points. But maybe we even get a theorem
stating that we always find a solution which is a linear combination of distance functions
to single training points? Unfortunately, in the metric space setting such a theorem is not
true in general. This can be seen by the following counterexample:

Example 1 Assume four training points x1, x2, x3, x4 with distance matrix

D =


0 2 1 1
2 0 1 1
1 1 0 2
1 1 2 0


and label vector y = (1, 1,−1,−1). Then the set

{f : X → R| yif(xi) ≥ 1, f(x) =
4∑

i=1

aid(xi, x) + b}

is empty. The reason for this is that the distance matrix is singular and we have d(x1, ·) +
d(x2, ·) = d(x3, ·) = d(x4, ·). Hence, in this example, (∗) has no solution which is a linear
combination of distances to single training points. But it still has a solution as linear
combination of distances to sets of training points according to Theorem 10.

Another negative result is the following. Assume that instead of looking for solutions of
(∗) in the space of all Lipschitz functions we only consider functions in the vector space
spanned by D. Is it in this case always possible to find solution in the linear span of Dtrain?
The answer is no again. An example for this is the following:

Example 2 Let X = {x1, ..., x5} consist of five points with distance matrix

D =


0 2 1 1 1
2 0 1 1 1
1 1 0 2 1
1 1 2 0 2
1 1 1 2 0

 .

Let the first four points be training points with the label vector y = (−1,−1,−1, 1). As
above there exists no feasible function in the vector space spanned by Dtrain. But as the
distance matrix of all five points is invertible, there exist feasible functions in the vector
space spanned by D.

In the above examples the problem was that the distance matrix on the training points was
singular. But there are also other sources of problems that can occur. In particular it can
be the case that the Lipschitz constant of a function restricted to the training set takes the
minimal value L∗, but the Lipschitz constant on the whole space X is larger. Then it can
happen that although we can find a linear combination of distance functions that satisfies
f(xi) = yi, the function f has a Lipschitz constant larger than L∗ and thus is no solution
of (∗). An example for this situation is the following:

13
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Example 3 Let X = {x1, ..., x5} consist of five points with distance matrix

D =


0 1 1 1 1
1 0 1 1 2
1 1 0 2 1
1 1 2 0 1
1 2 1 1 0

 .

Let the first four points be training points with the label vector y = (1, 1,−1,−1). The
optimal Lipschitz constant in this problem is L∗ = 2/d(X+, X−) = 2. The function
f(x) = −2d(x1, x)−2d(x2, x)+3 has this Lipschitz constant if we evaluate it on the training
points only. But if we also consider x5, the function has Lipschitz constant 4.

These examples show that, in general, Theorem 10 cannot be improved to work in the
vector space instead of the vector lattice spanned by Dtrain. This also holds if we consider
some subspaces of the set of Lipschitz functions. Thus we are in the interesting situation
that it is not enough to consider distance functions to single training points – we have to
deal with distances to sets of training points.

5. Error Bounds

In this section we compute error bounds for the Lipschitz classifier using Rademacher aver-
ages. This can be done following techniques introduced for example in Chapter 3 of Devroye
and Lugosi (2001) or in Bartlett and Mendelson (2002). The measures of capacity we con-
sider are the Rademacher average Rn and the related maximum discrepancy R̃n. For an
arbitrary class F of functions, they are defined as

Rn(F) := E

(
1
n

sup
f∈F

|
n∑

i=1

σif(Xi)|

)
≥ 1

2
E

(
1
n

sup
f∈F

|
n∑

i=1

(f(Xi)− f(X ′
i))

)
| =:

1
2
R̃n(F)

where σi are iid Rademacher random variables (i.e., Prob(σi = +1) = Prob(σi = −1) =
1/2), Xi and X ′

i are iid sample points according to the (unknown) sample distribution,
and the expectation is taken with respect to all occurring random variables. Sometimes
we also consider the conditional Rademacher average R̂n, where the expectation is taken
only conditionally on the sample points X1, ..., Xn. For decision function f , consider the
loss function `(f(x), y) = 1 if yf(x) ≤ −1, 1− yf(x) if 0 ≤ yf(x) ≤ 1, and 0 if yf(x) ≥ 1.
Let F be a class of functions, denote by E the expectation with respect to the unknown
sample distribution and by En the expectation with respect to the empirical distribution of
the training points.

Lemma 14 (Error bounds) With probability at least 1 − δ over the iid drawing of n
sample points, every f ∈ F satisfies

E(`(f(X), Y )) ≤ En(`(f(X), Y )) + 2Rn(F) +

√
8 log(2/δ)

n
.

14
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Proof The proof is based on techniques of Devroye and Lugosi (chap. 3 of 2001) and
Bartlett and Mendelson (2002): McDiarmid’s concentration inequality, symmetrization and
contraction property of Rademacher averages. ,

A similar bound can be obtained with the maximum discrepancy (see Bartlett and Mendel-
son, 2002).

We will describe two different ways to compute Rademacher averages for sets of Lip-
schitz functions. One way is a classical approach using entropy numbers and leads to an
upper bound on Rn. For this approach we always assume that the metric space (X , d) is
precompact (i.e., it can be covered by finitely many balls of radius ε for every ε > 0).
The other way is more elegant: because of the definition of ‖·‖L and the resulting isometries,
the maximum discrepancy of a ‖ ·‖L-unit ball of Lip(X ) is the same as of the corresponding
unit ball in AE(X0)′. Hence it will be possible to express R̃n as the norm of an element of
the Arens-Eells space. This norm can then be computed via bipartite minimal matching.
In the following, B always denotes the unit ball of the considered function space.

5.1 The duality approach

The main insight to compute the maximum discrepancy by the duality approach is the
following observation:

sup
‖f‖L≤1

|
n∑

i=1

f(xi)− f(x′i)| = sup
‖Tf‖≤1

|
n∑

i=1

Tfmxi − Tfmx′i
| =

= sup
‖Tf‖≤1

|〈Tf ,
n∑

i=1

mxi −mx′i
〉| = ‖

n∑
i=1

mxix′i
‖AE

Applying this to the definition of the maximum discrepancy immediately yields

R̃n(B) =
1
n
E‖

n∑
i=1

mXiX′
i
‖AE . (11)

As we already explained in Section 2, the norm ‖
∑n

i=1mXiX′
i
‖AE can be interpreted as the

costs of a minimal bipartite matching between {X1, . . . , Xn} and {X ′
1, . . . , X

′
n}. To compute

the right hand side of (11) we need to know the expected value of random instances of the
bipartite minimal matching problem, where we assume that the points Xi andX ′

i are drawn
iid from the sample distribution. In particular we want to know how this value scales with
the number n of points as this indicates how fast we can learn. This question has been solved
for some special cases of random bipartite matching. Let the random variable Cn describe
the minimal bipartite matching costs for a matching between the points X1, . . . , Xn and
X ′

1, . . . , X
′
n drawn iid according to some distribution P . In Dobric and Yukich (1995) it has

been proved that for an arbitrary distribution on the unit square of Rd with d ≥ 3 we have
limCn/(nd−1/d) = c > 0 a.s. for some constant c. The upper bound ECn ≤ c

√
n log n for

arbitrary distributions on the unit square in R
2 was presented in Talagrand (1992). These

results, together with Equation (11), lead to the following maximum discrepancies:
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Theorem 15 (Maximum discrepancy of unit ball of Lip([0, 1]d)) Let X = [0, 1]d ⊂
R

d with the Euclidean metric. Then the maximum discrepancy of the ‖ · ‖L-unit ball B of
Lip(X ) satisfies

R̃n(B) ≤ c2
√

log n/
√
n for all n ∈ N if d = 2

lim
n→∞

R̃n(B) d
√
n = cd > 0 if d ≥ 3

where cd (d ≥ 2) are constants which are independent of n but depend on d.

Note that this procedure gives (asymptotically) exact results rather than upper bounds in
cases where we have (asymptotically) exact results on the bipartite matching costs. This
is for example the case for cubes in R

d, d ≥ 3 as Dobric and Yukich (1995) gives an exact
limit result, or for R2 with the uniform distribution.

5.2 Covering number approach

To derive the Rademacher complexity in more general settings than Euclidean spaces we
use an adapted version of the classical entropy bound of Dudley based on covering numbers.
The covering number N(X , ε, d) of a totally bounded metric space (X , d) is the smallest
number of balls of radius ε with centers in X which can cover X completely. The proof of
the following theorem can be found in the appendix.

Theorem 16 (Generalized entropy bound) Let F be a class of functions and X1, . . . , Xn

iid sample points with empirical distribution µn. Then, for every ε > 0,

R̂n(F) ≤ 2ε+
4
√

2√
n

∫ ∞

ε/4

√
logN(F , u, L2(µn)) du.

To apply this theorem we need to know covering numbers of spaces of Lipschitz functions.
This can be found for example in Kolmogorov and Tihomirov (1961), pp.353–357.

Theorem 17 (Covering numbers for Lipschitz function balls) For a totally bounded
metric space (X , d) and the unit ball B of (Lip(X ), ‖ · ‖L),

2N(X ,4ε,d) ≤ N(B, ε, ‖ · ‖∞) ≤
(

2
⌈

2 diam(X )
ε

⌉
+ 1
)N(X , ε

4
,d)

.

If, in addition, X is connected and centered (i.e., for all subsets A ⊂ X with diam(A) ≤ 2r
there exists a point x ∈ X such that d(x, a) ≤ r for all a ∈ A),

2N(X ,2ε,d) ≤ N(B, ε, ‖ · ‖∞) ≤
(

2
⌈

2 diam(X )
ε

⌉
+ 1
)
· 2N(X , ε

2
,d).

Combining Theorems 16 and 17 and using N(F , u, L2(µn)) ≤ N(F , u, ‖ · ‖∞) now gives a
bound on the Rademacher complexity of balls of Lip(X ):
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Theorem 18 (Rademacher complexity of unit ball of Lip(X )) Let (X , d) be a totally
bounded metric space with diameter diam(X ) and B the ball of Lipschitz functions with
‖f‖L ≤ 1. Then, for every ε > 0,

Rn(B) ≤ 2ε+
4
√

2√
n

∫ 4 diam(X )

ε/4

√
N(X , u

4
, d) log

(
2
⌈

2 diam(X )
u

⌉
+ 1
)
du.

If, in addition, X is connected and centered, we have

Rn(B) ≤ 2ε+
4
√

2√
n

∫ 2 diam(X )

ε/4

√
N(X , u

2
, d) log 2 + log(2

⌈
2 diam(X )

u

⌉
+ 1) du.

In our framework this is a nice result as the bound on the complexity of balls of Lip(X )
only uses the metric properties of the underlying space X .

Now we want to compare the results of Theorems 15 and 18 for two simple examples.

Example 4 (d-dimensional unit square, d ≥ 3) Let X = [0, 1]d ⊂ R
d, d ≥ 3, with the

Euclidean metric ‖ · ‖2. This is a connected and centered space. In Theorem 15 we showed
that R̃n(B) asymptotically scales as 1/ d

√
n, and this result cannot be improved. Now we

want to check whether Theorem 18 achieves a similar scaling rate. To this end we choose
ε = 1/ d

√
n (as we know that we cannot obtain a rate smaller than this) and use that the

covering numbers of X have the form N(X , ε, ‖ · ‖2) = c/εd (e.g., page 1 of Mendelson and
Vershynin, 2003). After evaluating the second integral of Theorem 18 we find that Rn(B)
indeed scales as 1/ d

√
n.

Example 5 (2-dimensional unit square) Let X = [0, 1]2 ⊂ R
2 with the Euclidean met-

ric. Applying Theorem 18 similar to Example 4 yields a bound on Rn(B) that scales as
log n/

√
n.

In case of Example 4 the scaling behavior of the upper bound on Rn(B) obtained by the
covering number approach coincides with the exact result for R̃n(B) derived in Theorem
15. In case of Example 5 the covering number result log n/

√
n is slightly worse than the

result
√

log(n)/
√
n obtained in Theorem 15.

5.3 Complexity of Lipschitz RBF classifiers

In this section we want to derive a bound for the Rademacher complexity of radial basis
function classifiers of the form

Frbf := {f : X → R| f(x) =
l∑

k=1

akgk(d(pk, x)), gk ∈ G, l <∞}, (12)

where pk ∈ X , ak ∈ R, and G ⊂ Lip(X ) is a (small) set of ‖ · ‖∞-bounded Lipschitz
functions on R whose Lipschitz constants are bounded from below by a constant c > 0.
As an example, consider G = {g : R → R| g(x) = exp(−x2/σ2), σ ≥ 1}. The special
case G = {id} corresponds to the function class which is used by the linear programming
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machine. It can easily be seen that the Lipschitz constant of an RBF function satisfies
L(
∑

k akgk(d(pk, ·))) ≤
∑

k |ak|L(gk). We define a norm on Frbf by

‖f‖rbf := inf

{∑
k

|ak|L(gk); f =
∑

k

akgk(d(pk, ·))

}

and derive the Rademacher complexity of a unit ball B of (Frbf , ‖ · ‖rbf ). Substituting ak

by ck/L(gk) in the expansion of f we get

sup
f∈B

|
n∑

i=1

σif(xi)| = sup∑
|ak|L(gk)≤1,pk∈X ,gk∈G

|
n∑

i=1

σi

l∑
k=1

akgk(d(pk, xi))|

= sup∑
|ck|≤1,pk∈X ,gk∈G

|
n∑

i=1

σi

l∑
k=1

ck
L(gk)

gk(d(pk, xi))|

= sup∑
|ck|≤1,pk∈X ,gk∈G

|
l∑

k=1

ck

n∑
i=1

σi
1

L(gk)
gk(d(pk, xi))|

= sup
p∈X ,g∈G

|
n∑

i=1

σi
1

L(g)
g(d(p, xi))| (13)

For the last step observe that the supremum in the linear expansion in the second last line
is obtained when one of the ck is 1 and all the others are 0. To proceed we introduce the
notations hp,g(x) := g(d(p, xi))/L(g), H := {hp,g; p ∈ X , g ∈ G}, and G1 := {g/L(g); g ∈
G}. We rewrite the right hand side of Equation (13) as

sup
p∈X ,g∈G

|
n∑

i=1

σi
1

L(g)
g(d(p, xi))| = sup

hp,g∈H
|

n∑
i=1

σihp,g(xi)|

and thus obtain Rn(B) = Rn(H). To calculate the latter we need the following:

Lemma 19 N(H, 2ε, ‖ · ‖∞) ≤ N(X , ε, d)N(G1, ε, ‖ · ‖∞).

Proof First we observe that for hp1,g1 , hp2,g2 ∈ H

‖hp1,g1 − hp2,g2‖∞ = sup
x∈X

|g1(d(p1, x))
L(g1)

− g2(d(p2, x))
L(g2)

|

≤ sup
x∈X

(
|g1(d(p1, x))

L(g1)
− g1(d(p2, x))

L(g1)
|+ | |g1(d(p2, x))

L(g1)
− g2(d(p2, x))

L(g2)
|
)

≤ sup
x∈X

|d(p1, x)− d(p2, x)|+ ‖ g1
L(g1)

− g2
L(g2)

‖∞

≤ d(p1, p2) + ‖ g1
L(g1)

− g2
L(g2)

‖∞ =: dH(hp1,g1 , hp2,g2) (14)

For the step from the second to the third line we used the Lipschitz property of g1. Finally,
it is easy to see that N(H, 2ε, dH) ≤ N(X , ε, d)N(G1, ε, ‖ · ‖∞). ,

Plugging lemma 19 in Theorem 16 yields the following Rademacher complexity:
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Theorem 20 (Rademacher complexity of unit ball of Frbf) Let B be the unit ball
of (Frbf , ‖ · ‖rbf ), G1 the rescaled functions of G as defined above, and w :=
max{diam(X , d),diam(G1, ‖ · ‖∞)}. Then, for every ε > 0,

Rn(B) ≤ 2ε+
4
√

2√
n

∫ w

ε/4

√
logN(X , u

2
, d) + logN(G1,

u

2
, ‖ · ‖∞) du.

This theorem is a huge improvement compared to Theorem 18 as instead of the covering
numbers we now have log-covering numbers in the integral. As an example consider the
linear programming machine on X = [0, 1]d. Because of G = {id}, the second term in the
square root vanishes, and the integral over the log-covering numbers of X can be bounded
by a constant independent of ε. As result we obtain that in this case Rn(B) scales as 1/

√
n.

6. Choosing subspaces of Lip(X )

So far we always considered the isometric embedding of the given metric space into the
Arens-Eells space and discovered many interesting properties of this embedding. But there
exist many different isometric embeddings which could be used instead. Hence, the con-
struction of embedding the metric space isometrically into some Banach space and then
using a large margin classifier in this Banach space is also possible with different Banach
spaces than the Arens-Eells space. For example, Hein and Bousquet (2003) used the Kura-
towski embedding, which maps a metric space X isometrically in the space of continuous
functions (C(X ), ‖ · ‖∞) (see Example 6 below). Now it is a natural question whether there
are interesting relationships between large margin classifiers constructed by the different
isometric embeddings, especially with respect to the Lipschitz classifier.

A second question concerns the choice of subspaces of Lip(X ). At the end of Section
3 we already explained that we have to work on some “reasonable” subspace of Lipschitz
functions to apply the Lipschitz classifier in practice. This is justified by complexity ar-
guments, but does the large margin interpretation still hold if we do this? Is there some
geometric intuition which could help choosing a subspace?

It will turn out that both questions are inherently related to each other. We will show
that there is a correspondence between embedding X into a Banach space V and construct-
ing the large margin classifier on V on the one hand, and choosing a subspace F of Lip(X )
and constructing the Lipschitz classifier from F on the other hand. Ideally, we would like
to have a one-to-one correspondence between V and F . In one direction this would mean
that we could realize any large margin classifier on any Banach space V with the Lipschitz
classifier on an appropriate subspace F of Lipschitz functions. In the other direction this
would mean that choosing a subspace F of Lipschitz functions corresponds to a large margin
classifier on some Banach space V . We could then study the geometrical implications of a
certain subspace F via the geometric properties of V .

Unfortunately, such a nice one-to-one correspondence between V and F is not always
true, but in many cases it is. We will show that given an embedding into some vector
space V , the hypothesis class of the large margin classifier on V always corresponds to a
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subspace F of Lipschitz functions (Lemma 24). In general, this correspondence will be an
isomorphism, but not an isometry. The other way round, given a subspace F of Lipschitz
functions, under some conditions we can construct a vector space V such that X can be
isometrically embedded into V and the large margin classifiers on V and F coincide (Lemma
25).

The key ingredient in this section is the fact that AE(X0) is a free Banach space. The
following definition can be found for example in Pestov (1986).

Definition 21 (Free Banach space) Let (X0, d, e) be a pointed metric space. A Banach
space (E, ‖ · ‖E) is a free Banach space over (X0, d, e) if the following properties hold:

1. There exists an isometric embedding Φ : X0 → E with Φ(e) = 0, and E is the closed
linear span of Φ(X0).

2. For every Banach space (V, ‖·‖V ) and every Lipschitz map Ψ : X0 → V with L(Ψ) = 1
and Ψ(e) = 0 there exists a linear operator T : E → V with ‖T‖ = 1 such that
T ◦ Φ = Ψ.

It can be shown that the free Banach space over (X , d, e) always exists and is unique up
to isomorphism (cf. Pestov, 1986).

Lemma 22 (AE is a free Banach space) For any pointed metric space (X0, d, e), AE(X0)
is a free Banach space.

Proof Property (1) of Definition 21 is clear by construction. For a proof of property (2),
see for example Theorem 2.2.4 of Weaver (1999). ,

We are particularly interested in the case where the mapping Ψ : X0 → V of Definition
21 is an isometric embedding of X0 into some vector space V . Firstly we want to find out
under which conditions its dual V ′ is isometric isomorphic to some subspace F of Lip(X ).
Secondly, given a subspace F of Lip(X ) the question is whether there exists a Banach space
V such that X0 can be embedded isometrically into V and simultaneously V ′ is isometric
isomorphic to F . Both questions will be answered by considering the mapping T of Defini-
tion 21 and its adjoint T ′. The following treatment will be rather technical, and it might
be helpful to have Figure 1 in mind, which shows which relations we want to prove.

Now we want to go into detail and start with the first question. For simplicity, we make
the following definition.

Definition 23 (Dense isometric embedding) Let (X0, d) a metric space and V a normed
space. A mapping Ψ : X0 → V is called a dense isometric embedding if Ψ is an isometry
and if V is the norm-closure of span{Ψ(x);x ∈ X0}.

20



Distance–Based Classification with Lipschitz Functions

X
0

AE’ = Lip

V’ = F

T’

?
isometry  ψ exists T’ isometry?

exist?V, ψ
?

isometry T’ exists 

AE

V

φ

ψ

T

Figure 1: Relations between Banach spaces and subspaces of Lipschitz functions. The left
part shows the commutative diagram corresponding to the free Banach space prop-
erty of AE(X0). The right part shows the adjoint mapping T ′ of T . The dotted
arrows in the middle show the relationships we want to investigate.

Lemma 24 (Construction of F for given V ) Let (X0, d) be a pointed metric space,
(V, ‖ · ‖V ) a normed space and Ψ : X0 → V a dense isometric embedding. Then V ′ is iso-
morphic to a closed subspace F ⊂ Lip0(X0), and the canonical injection i : F → Lip0(X0)
satisfies ‖i‖ ≤ 1.

Proof Recall the notation mx := Φ(x) from Section 3 and analogously denote vx := Ψ(x).
Let T : AE(X0) → V the linear mapping with T ◦ Φ = Ψ as in Definition 21. As Ψ is an
isometry, T satisfies ‖T‖ = 1, and maps AE(X0) on some dense subspace of V . Consider
the adjoint T ′ : V ′ → AE(X0)′. It is well known (e.g., Chapter 4 of Rudin, 1991) that
‖T‖ = ‖T ′‖ and that T ′ is injective iff the range of T is dense. Thus, in our case T ′ is
injective. As by construction also 〈Tmx, v

′〉 = 〈T ′v′,mx〉, we have a unique correspondence
between the linear functions in V ′ and some subspace F := T ′V ′ ⊂ AE(X0)′: for g ∈ V ′

and f = T ′g ∈ Lip0(X0) we have g(vx) = f(mx) for every x ∈ X0. The canonical inclusion
i corresponds to the adjoint T ′. ,

Lemma 24 shows that the hypothesis space V ′ constructed by embedding X into V is
isomorphic to a subset F ⊂ Lip0(X0). But it is important to note that this isomorphism is
not isometric in general. Let g ∈ V ′ and f ∈ Lip0(X0) be corresponding functions, that is
f = T ′g. Because of ‖T ′‖ = 1 we know that ‖f‖AE′ ≤ ‖g‖V , but in general we do not have
equality. This means that the margins ‖g‖V ′ and ‖f‖AE′ of corresponding functions are
measured with respect to different norms and might have different sizes. As a consequence,
the solutions of the two large margin problems

min
g∈V ′

‖g‖V ′ subject to yig(vxi) ≥ 1

and

min
f∈F

‖f‖L subject to yif(xi) ≥ 1

might be different, even though the sets of feasible functions are the same in both cases.
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To illustrate this we will consider two examples. The first one shows how the large margin
classifier in V can give different results than the one constructed by using the corresponding
subspace for the Lipschitz classifier. In the second example we show a situation where both
classifiers coincide.

Example 6 (Kuratowski embedding) Let (X , d) be an arbitrary compact metric space
and (C(X ), ‖ · ‖∞) the space of continuous functions on X . Define Ψ : X → C(X ), x 7→
d(x, ·). This mapping is an isometric embedding called Kuratowski embedding, and it has
been used in Hein and Bousquet (2003) to construct a large margin classifier. We want
to compare the large margin classifiers resulting from the Kuratowski embedding and the
embedding in the Arens-Eells space. As an example consider the finite metric space X =
{x1, ..., x4} with distance matrix

D =


0 5 3 6
5 0 4 1
3 4 0 5
6 1 5 0

 .

Let V = span{d(x, ·); x ∈ X} ⊂ C(X ), endowed with the norm ‖ · ‖∞. V is a 4-dimensional
vector space. Let V ′ its dual space. Via the mapping T ′, each linear operator g ∈ V ′

corresponds to the linear operator f ∈ Lip0(X0) with f(xi) = 〈g, d(xi, ·)〉 =: ci. Now we
want to compare the norms of g in V ′ and f in Lip(X ).The norm of g in V ′ can be computed
as follows:

‖g‖V ′ = sup{〈g, v〉 : v ∈ V, ‖v‖V ≤ 1}

= sup{〈g,
4∑

i=1

aid(xi, ·)〉 : ai ∈ R, ‖
4∑

i=1

aid(xi, ·)‖∞ ≤ 1}

= sup{
4∑

i=1

aici : ai ∈ R, −1 ≤
4∑

i=1

aid(xi, xj) ≤ 1 for all j = 1, ..., 4 }.

For given function g ∈ V ′ (that is, for given values ci) this norm can be computed by a
linear program. Consider the two functions g1, g2 ∈ V ′ with values on x1, x2, x3, x4 given as
(−1,−1,−1,−1) and (1, 0, 1, 0), respectively, and let f1, f2 ∈ Lip0(X0) be the corresponding
Lipschitz functions. Then we have ‖f1‖L = 0.166 < 0.25 = ‖f2‖L and ‖g1‖V ′ = 0.366 >
0.28 = ‖g2‖V ′. So the norms ‖ · ‖V ′ and ‖ · ‖L do not coincide, and moreover there is
no monotonic relationship between them. If the maximal margin algorithm had to choose
between functions f1 and f2, it would come to different solutions, depending whether the
underlying norm is ‖ · ‖V ′ as for the large margin classifier in V ′ or ‖ · ‖L as for the
Lipschitz classifier in T ′V ′.

Example 7 (Normed space) Let (X , ‖ · ‖X ) be a normed vector space with dual
(X ′, ‖ · ‖X ′). As the norm of linear functions coincides with their Lipschitz constant, X ′

is isometrically isomorphic to a subspace of Lip0(X0). This means that it makes no differ-
ence whether we construct a large margin classifier on the normed space X directly or ignore
the fact that X is a normed space, embed X into AE(X0) and then construct the Lipschitz
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classifier on AE(X0) with the subspace T ′X ′. We already mentioned this fact in Section 3
when we stated that the SVM solution is the same one as the Lipschitz classifier on X ′.

Now we want to investigate our second question: given some subspace F ⊂ Lip0(X0),
is F the dual space of some Banach space V such that X0 can be embedded isometrically
into V and V ′ ' F? To answer this question we have to deal with some technical problems.
First of all, F has to possess a pre-dual, that is a vector space V whose dual V ′ coincides
with F . In general, not every Banach space possesses a pre-dual, and if it exists, it needs
not be unique. Secondly, it turns out that the canonical injection T ′ : F → Lip0(X0) has
to have a pre-adjoint, that is a mapping T : AE(X0) → V whose adjoint coincides with T ′.
Pre-adjoints also not always exist. In general, neither the existence of a pre-dual nor the
existence of pre-adjoints are easy to prove. One situation where both can be handled is the
case where F is closed under pointwise convergence:

Lemma 25 (Construction of V for given F ) Let X0 be a bounded metric space, and
F a subspace of (Lip0(X0), L(·)) which is closed under pointwise convergence and satisfies
the condition

sup
f∈F,L(f)≤1

|f(x)− f(y)| = d(x, y) (15)

for all x, y ∈ X0. Then there exists a normed space V such that X0 can be isometrically
embedded into V and its dual V ′ is isometrically isomorphic to F .

Before we can start with the proof we need two more definitions: Let M be a subspace
of some Banach space V and N a subspace of the dual space V ′. Then the annihilator M⊥

and the pre-annihilator ⊥N are defined as M⊥ = {T ∈ V ′; Tm = 0 for all m ∈ M} and
⊥N = {e ∈ V ; Te = 0 for all T ∈ N}. As the proof is a bit technical, we refer to Megginson
(1998) for background reading.

Proof For a bounded metric space X0, the topology of pointwise convergence on Lip0(X0)
coincides with its weak* topology. Thus by assumption, F is weak*-closed, which implies
that ⊥F is a closed subspace of AE(X0). Hence, the quotient space V := AE(X0)/⊥F exists,
and there exists an isometric isomorphism between V ′ and (⊥F )⊥. As F is weak*-closed,
(⊥F )⊥ = F . So V is a pre-dual of F . Let T ′ : F → Lip0(X0) be the canonical inclusion.
It has a pre-adjoint, namely the quotient mapping π : AE(X0) → V . Define the mapping
Ψ : X0 → V , x 7→ πmx =: vx. We have

〈f, vx〉 = 〈f, πmx〉 = 〈T ′f,mx〉 = 〈f,mx〉 = f(x).

Hence, by assumption (15), Ψ is an isometry:

‖Ψ(x)−Ψ(y)‖V = sup
f∈F,L(f)≤1

{|〈f, vx − vy〉|} = sup
f∈F,L(f)≤1

{|f(x)− f(y)|} = d(x, y).

,
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Lemma 25 gives a nice interpretation of what it means geometrically to choose a subspace
F of Lipschitz functions: the Lipschitz classifier with hypothesis space F corresponds to
embedding X isometrically into the pre-dual V of F and constructing the large margin
classifier on V directly. Condition (15), which F has to satisfy to allow this interpretation,
intuitively means that F has to be a “reasonably large” subspace.

Example 8 (Linear combination of distance functions) Let F be the subspace of
Lip(X ) consisting of functions of the form f(x) =

∑
i aid(xi, x) + b, and F̄ ⊂ Lip(X )

its closure under pointwise convergence. As norm on F̄ we take the Lipschitz constant. On
F̄ , condition (15) is satisfied: trivially, we always have ≤ in (15), and for given x, y ∈ X ,
equality is reached for the function f = d(x, ·). So we can conclude by Lemma 25 that the
Lipschitz classifier on F̄ has the geometrical interpretation explained above.

7. Discussion

We derived a general approach to large margin classification on metric spaces which uses
Lipschitz functions as decision functions. Although the Lipschitz algorithm, which imple-
ments this approach, has been derived in a rather abstract mathematical framework, it boils
down to an intuitively plausible mechanism: it looks for a decision function which has a
small Lipschitz constant. This agrees with the regularization principle that tries to avoid
choosing functions with a high variation. The solution of the Lipschitz algorithm is well
behaved as, by the representer theorems of Section 4, it can always be expressed by distance
functions to training points. For some special cases, the solution corresponds to solutions of
other well known algorithms, such as the support vector machine, the linear programming
machine, or the 1-nearest neighbor classifier. We provide Rademacher complexity bounds
for some of the involved function classes which can be used to bound the generalization
error of the classifier.

In spite of all those nice properties there are several important questions which remain
unanswered. To apply the Lipschitz algorithm in practice it is important to choose a suitable
subspace of Lipschitz functions as hypothesis space. In Section 6 we found a geometrical
explanation of what the choice of certain subspaces F means: it is equivalent to using a
different isometric embedding of the metric space into some Banach space. But this expla-
nation does not solve the question of which subspace we should choose in the end. Moreover,
there exist isometric embeddings in certain Banach spaces which have no such interpreta-
tion in terms of subspaces of Lipschitz functions. For example, Hein and Bousquet (2003)
studied the Kuratowski embedding of a metric space into its space of continuous functions
to construct a large margin algorithm. As we explained in Example 6, the large margin
classifier resulting from this embedding can be different from the Lipschitz classifier. It is an
interesting question how different embeddings into different Banach spaces should be com-
pared. One way to do this could be comparing the capacities of the induced function spaces.
An interesting question in this context is to find the “smallest space” (for instance, in terms
of the Rademacher complexities) in which a given data space can be embedded isometrically.

There is also a more practical problem connected to the choice of the subspace of Lip-
schitz functions. To implement the Lipschitz algorithm for a given subspace of Lipschitz
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functions, we need to know some way to efficiently compute the Lipschitz constants of the
functions in the chosen subspace. For example, in case of the linear programming machine
it was possible to bound the Lipschitz constants of the functions in the parameterized sub-
space of functions

∑
i aid(xi, ·) + b in terms of their parameters by

∑
i |ai|. But in many

cases, there is no obvious parametric representation of the Lipschitz constant of a class of
functions. Then it is not clear how the task of minimizing the Lipschitz constant can be
efficiently implemented.

An even more heretic question is whether isometric embeddings should be used at all.
In our approach we adopted the point of view that a meaningful distance function between
the training points is given by some external knowledge, and that we are not allowed to
question it. But in practical applications it is often the case that distances are estimated by
some heuristic procedure which might not give a sensible result for all the training points.
In those cases the paradigm of isometric embedding might be too strong. Instead we could
look for bi-Lipschitz embeddings or low distortion embeddings of the metric space into some
Banach space, or even into some Hilbert space. We would then loose some (hopefully unim-
portant) information on the distances in the metric space, but the gain might consist in a
simpler structure of the classification problem in the target space.

Finally, many people argue that for classification only “local properties” should be
considered. One example is the assumption that the data lies on some low dimensional
manifold in a higher dimensional space. In this case, the meaningful information consists
of the intrinsic distances between points along the manifold. In small neighborhoods, those
distances are close to the distances measured in the enclosing space, but for points which
are far away from each other this is not true any more. In this setting it is not very useful to
perform an isometric embedding of the metric space into a Banach space as the additional
linear structure the Banach space imposes on the training data might be more misleading
than helpful. Here a different approach has to be taken, but it is not clear how a large
margin algorithm in this setting can be constructed, or even whether in this case the large
margin paradigm should be applied at all.
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Appendix A: Proof of Theorem 16

The idea of the proof of Theorem 16 is the following. Instead of bounding the Rademacher
complexity on the whole set of functions F , we first consider a maximal ε-separating subset
Fε of F . This is a maximal subset such that all its points have distance at least ε to each
other. To this special set we will apply the classical entropy bound of Dudley (1987):

Theorem 26 (Classical entropy bound) For every class F of functions there exists a
constant C such that

R̂n(F) ≤ C√
n

∫ ∞

0

√
logN(F , u, L2(µn)) du
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where µn is the empirical distribution of the sample.

As a second step we then bound the error we make by computing the Rademacher complexity
of Fε instead of F . This will lead to the additional offset of 2ε in Theorem 16. The following
lemma can be found as Lemma 3.10 in Bousquet (2002) (for the definition of a separable
process see also van der Vaart and Wellner 1996).

Lemma 27 (ε-separations of an empirical process) Let {Zt; t ∈ T} be a separable
stochastic process satisfying for λ > 0 the increment condition

∀s, t ∈ T : E
(
eλ(Zt−Zs)

)
≤ eλ

2c2d2(s,t)/2.

Let ε ≥ 0 and δ > 0. If ε > 0, let Tε denote a maximal ε-separated subset of T and let
Tε = T otherwise. Then for all t0,

E

(
sup

t∈Tε,d(t,t0)≤δ
Zt − Zt0

)
≤ 4

√
2c
∫ δ/2

ε/4

√
logN(T, u, d)du.

To apply this lemma to the Rademacher complexity of a function class F , we choose
the index set T = F , the fixed index t0 = f0 for some f0 ∈ F , the empirical pro-
cess Zf = 1

n

∑
σif(Xi), and δ → ∞. Note that the Rademacher complexity satisfies

the increment condition of Lemma 27 with respect to the L2(µn)–distance with constant
c =

√
n. Moreover, observe that E(supt Zt − Zt0) = E(supt Zt) − E(Zt0) and E(Zt0) =

E( 1
n

∑
σif0(Xi)) = 0. Together with the symmetry of the distribution of Zf we thus get

the next lemma:

Lemma 28 (Entropy bound for ε-separations) Let (Xi)i=1,...,n be iid training points
with empirical distribution µn, F an arbitrary class of functions, and Fε a maximal ε-
separating subset of F with respect to L2(µn)- norm. Then

E

(
sup
f∈Fε

1
n
|
∑

i

σif(Xi)|
∣∣∣X1, . . . , Xn

)
≤ 4

√
2√
n

∫ ∞

ε/4

√
logN(F , u, L2(µn)) du.

With this lemma we achieved that the integral over the covering numbers starts at ε/4
instead of 0 as it is the case in Theorem 26. The price we pay is that the supremum on the
left hand side is taken over the smaller set Fε instead of the whole class F . Our next step
is to bound the mistake we make by this procedure.

Lemma 29 Let F be a class of functions and Fε a maximal ε-separating subset of F with
respect to ‖ · ‖L2(µn). Then |Rn(F)−Rn(Fε)| ≤ 2ε.

Proof We want to bound the expression

|Rn(F)−Rn(Fε)| = E
1
n

∣∣∣∣∣sup
f∈F

|
∑

σif(Xi)| − sup
f∈Fε

|
∑

σif(Xi)|

∣∣∣∣∣.
First look at the expression inside the expectation, assume that the σi and Xi are fixed
and that supf∈F |

∑
σif(xi)| = |

∑
σif

∗(xi)| for some function f∗ (if f∗ does not exist we
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additionally have to use a limit argument). Let fε ∈ Fε such that ‖f∗ − fε‖L2(µn) ≤ 2ε.
Then,

1
n

∣∣∣∣∣sup
f∈F

|
∑

σif(xi)| − sup
f∈Fε

|
∑

σif(xi)|

∣∣∣∣∣ ≤ 1
n

∣∣∣|∑σif
∗(xi)| − |

∑
σifε(xi)|

∣∣∣
≤ 1
n

∣∣∣∑σi(f∗(xi)− fε(xi))
∣∣∣ ≤ ‖f∗ − fε‖L1(µn) ≤ ‖f∗ − fε‖L2(µn) ≤ 2ε

As this holds conditioned on all fixed values of σi andXi we get the same for the expectation.
This proves the lemma. ,

To prove Theorem 16 we now combine lemmas 28 and 29.
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M. Talagrand. The Ajtai-Komlós-Tusnády matching theorem for general measures. In
Probability in Banach spaces, 8 (Brunswick, ME, 1991), volume 30 of Progr. Probab.,
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