
Distance-Based Classification with Lipschitz
Functions

Ulrike von Luxburg and Olivier Bousquet

Max Planck Institute for Biological Cybernetics, Tübingen, Germany
{ule, olivier.bousquet}@tuebingen.mpg.de

Abstract. The goal of this article is to develop a framework for large
margin classification in metric spaces. We want to find a generalization
of linear decision functions for metric spaces and define a corresponding
notion of margin such that the decision function separates the training
points with a large margin. It will turn out that using Lipschitz func-
tions as decision functions, the inverse of the Lipschitz constant can be
interpreted as the size of a margin. In order to construct a clean ma-
thematical setup we isometrically embed the given metric space into a
Banach space and the space of Lipschitz functions into its dual space.
Our approach leads to a general large margin algorithm for classification
in metric spaces. To analyze this algorithm, we first prove a representer
theorem. It states that there exists a solution which can be expressed
as linear combination of distances to sets of training points. Then we
analyze the Rademacher complexity of some Lipschitz function classes.
The generality of the Lipschitz approach can be seen from the fact that
several well-known algorithms are special cases of the Lipschitz algo-
rithm, among them the support vector machine, the linear programming
machine, and the 1-nearest neighbor classifier.

1 Introduction

Support vector machines construct linear decision boundaries in Hilbert spaces
such that the training points are separated with a large margin. The goal of this
article is to extend this approach from Hilbert spaces to metric spaces: we want
to find a generalization of linear decision functions for metric spaces and define
a corresponding notion of margin such that the decision function separates the
training points with a large margin.

SVMs can be seen from two different points of view. In the regularization
interpretation, for a given positive definite kernel k, the SVM chooses a decision
function of the form f(x) =

∑
i αik(xi, x) + b which has a low empirical error

Remp and is as smooth as possible. According to the large margin point of view,
SVMs construct a linear decision boundary in a Hilbert space H such that the
training points are separated with a large margin and the sum of the margin
errors is small. Both viewpoints can be connected by embedding the sample
space X into the reproducing kernel Hilbert space H via the so called “feature
map” and the function space F into the dual H′. Then the regularizer ‖f‖2

corresponds to the inverse margin ‖ω‖2H′ and the empirical error to the margin
error (cf. sections 4.3 and 7 of [6]) . The benefits of these two dual viewpoints
are that the regularization framework gives some intuition about the geometrical
meaning of the norm ‖ · ‖H, and the large margin framework leads to statistical
learning theory bounds on the generalization error of the classifier.

Now consider the situation where the sample space is a metric space (X, d).
From the regularization point of view, a convenient class of functions on a metric
space is the class of Lipschitz functions, as functions with a small Lipschitz
constant have low variation. Thus it seems desirable to separate the different
classes by a decision function which has a small Lipschitz constant. In this article
we want to construct the dual point of view to this approach. To this end, we
embed the metric space (X, d) in a Banach space B and the space of Lipschitz
functions into its dual space B′. Remarkably, both embeddings can be realized
as isometries simultaneously. By this construction, each x ∈ X will correspond
to some mx ∈ B and each Lipschitz function f on X to some functional Tf ∈ B′
such that f(x) = Tfmx and the Lipschitz constant L(f) is equal to the operator
norm ‖Tf‖. Then we can construct a geometrical margin in B which allows
to apply the usual large margin generalization bounds from statistical learning
theory. The size of the margin will be given by the inverse of the operator norm
of the decision functional. The basic algorithm implementing this approach is

minimize Remp(f) + λL(f)

in regularization language and

minimize L(f) + C
∑

i
ξi subject to yif(xi) ≥ 1− ξi, ξi ≥ 0

in large margin language. In both cases, L(f) denotes the Lipschitz constant of
the function f , and the minimum is taken over a subset of Lipschitz functions on
X. To apply this algorithm in practice, the choice of this subset will be important.
We will see that by choosing different subsets we can recover the SVM (in cases
where the metric on X is induced by a kernel), the linear programming machine
(cf. [4]), and even the 1-nearest neighbor classifier. In particular this shows that
all these algorithms are large margin algorithms. So the Lipschitz framework can
help to analyze a wide range of algorithms which do not seem to be connected
at the first glance. Furthermore, the Banach space in which we will embed X is
in some sense the largest possible Banach space in which X can be embedded
isometrically. This means that the Lipschitz algorithm on this space can be seen
as a prototype for large margin algorithms on metric spaces. All other large
margin algorithms are special cases of this general one.

This paper is organized as follows: in section 2 we provide the necessary
functional analytic background for the Lipschitz algorithm, which is then derived
in section 3. We investigate representer theorems for this algorithm in section 4.
It will turn out that the algorithm always has a solution which can be expressed
as a vector lattice combination of the functions d(xi, ·) where xi are the training
points. In plain words this means that we always find solutions which are linear

combinations of distances to sets of training points. In section 5 we analyze the
Lipschitz algorithm in terms of its Rademacher complexities. In particular, this
gives valuable information about how fast the algorithm converges for different
choices of subsets of Lipschitz functions.

2 Preliminaries: Lipschitz function spaces

In this section we introduce several Lipschitz function spaces and their proper-
ties. For a more detailed treatment we refer to [10].
A metric space (X, d) is a set X together with a metric d (i.e., d is non-
negative, symmetric, fulfills d(x, y) = 0 ⇔ x = y and the triangle inequal-
ity d(x, y) + d(y, z) ≤ d(x, z)). A function f : X → IR on a metric space
(X, d) is called a Lipschitz function if there exists a constant L such that
|f(x)− f(y)| ≤ Ld(x, y) for all x, y ∈ X. The smallest constant L such that this
inequality holds is called the Lipschitz constant of f , denoted by L(f). For Lip-
schitz functions f, g and scalars a ∈ IR the Lipschitz constant has the properties
L(f + g) ≤ L(f) + L(g), L(af) ≤ |a|L(f) and L(min(f, g)) ≤ max{L(f), L(g)},
where min(f, g) denotes the pointwise minimum of the functions f and g. For a
metric space (X, d) consider the set

Lip(X) := {f : X → IR; f is a bounded Lipschitz function}.

It forms a vector space, and the Lipschitz constant L(f) is a seminorm on
this space. To define a convenient norm on this space we restrict ourselves to
bounded metric spaces, i.e., spaces which have a finite diameter diam(X) :=
supx,y∈X d(x, y). For the learning framework this is not a big drawback as the
training and test data can always be assumed to come from a bounded region
of the underlying space. For a bounded metric space X we choose the norm

‖f‖L := max
{
L(f),

‖f‖∞
diam(X)

}
as our default norm on the space Lip(X). It is easy to see that this indeed is
a norm. One reason why it fits nicely in the learning setting is the following.
Functions that are used as classifiers are supposed to take positive and neg-
ative values on the respective classes and thus satisfy ‖f‖∞ = supx |f(x)| ≤
supx,y |f(x)− f(y)| ≤ diam(X)L(f), that is ‖f‖L = L(f). Hence, the norm of a
classification function is determined by the quantity we use as regularizer later
on. Some technical reasons for the choice of ‖ · ‖L will become clear later.

Another important space of Lipschitz functions is constructed as follows. Let
(X0, d) be a metric space with a distinguished “base point” e which is fixed in
advance. Then,

Lip0(X0) := {f ∈ Lip(X0); f(e) = 0}.

On this set, the Lipschitz constant L(·) is a norm. However, its disadvantage in
the learning framework is the condition f(e) = 0 which is an inconvenient a priori
restriction on our classifier. To overcome this restriction, for a given bounded

metric space (X, d) we define a corresponding extended space X0 := X ∪{e} for
a new base element e with the metric

dX0(x, y) =

{
d(x, y) for x, y ∈ X
diam(X) for x ∈ X, y = e.

(1)

Note that diam(X0) = diam(X). Then we define the map

ψ : Lip(X) → Lip0(X0), ψ(f)(x) =

{
f(x) if x ∈ X
0 if x = e

(2)

Obviously, ψ is bijective, and it is even an isometry: for f0 := ψ(f) we have

L(f0) = sup
x,y∈X0

|f0(x)− f0(y)|
dX0(x, y)

= max{ sup
x,y∈X

|f(x)− f(y)|
d(x, y)

, sup
x∈X

|f(x)− f(e)|
dX0(x, e)

} =

= max{L(f),
‖f‖∞

diam(X)
} = ‖f‖L

The space (Lip0(X0), L(·)) has some very useful duality properties. Let (X0, d) be
a metric space with distinguished base element e. A molecule of X0 is a function
m : X0 → IR such that its support (i.e., the set where m has non-zero values)
is a finite set and

∑
x∈X0

m(x) = 0. For x, y ∈ X0 we define the basic molecules
mxy := 1x−1y. It is easy to see that every molecule m can be written as a (non
unique) finite linear combination of basic molecules. Thus we can define

‖m‖AE := inf

{∑
i

|ai|d(xi, yi); m =
∑

i

aimxiyi

}

which is a norm on the space of molecules. We call the completion of the space
of molecules with respect to ‖ · ‖AE the Arens-Eells space AE(X0). Denoting its
dual space (i.e., the space of all continuous linear forms on AE(X0)) by AE(X0)′

the following theorem holds (cf. [10]).

Theorem 1. AE(X0)′ is isometrically isomorphic to Lip0(X0).

This means that we can regard a Lipschitz function f onX0 as a linear functional
Tf on the space of molecules, and the Lipschitz constant L(f) coincides with
the operator norm of the corresponding functional Tf . For a molecule m and a
Lipschitz function f this duality can be expressed as

〈f,m〉 =
∑

x∈X0

m(x)f(x). (3)

It can be proved that ‖mxy‖AE = d(x, y) holds for all basic molecules mxy.
Hence, it is possible to embed X0 isometrically in AE(X0) via

Γ : X0 → AE(X0), x 7→ mxe (4)

In this context note that the Arens-Eells space is a free Banach space over X0.
This means that we can express every map g : X0 → V in some vector space V
as a linear functional Tg on AE(X0) via Tgmxe := g(x). In particular, we can
realize every isometric embedding g of X in some vector space V by composing
Γ with the linear functional Tg. In this sense, AE(X0) is the biggest Banach
space in which X can be embedded isometrically.
The norm ‖ · ‖AE has a nice geometrical interpretation in terms of the mass
transportation problem: some product is manufactured in varying amounts at
several factories and has to be distributed to several shops. The (discrete) trans-
portation problem is to find an optimal way to transport the product from the
factories to the shops. The costs of such a transport are defined as

∑
aijd(fi, sj)

where aij denotes the amount of the product transported from factory fi to
shop sj and d(fi, sj) the distance between them. To connect the Arens-Eells
space to this problem we identify the locations of the factories and shops with a
molecule m. The points x with m(x) > 0 represent the factories, the ones with
m(x) < 0 the shops. It can be proved that ‖m‖AE equals the minimal trans-
portation costs for molecule m. A special case is when the given molecule has
the form m0 =

∑
mxiyj

. In this case, the transportation problem reduces to the
bipartite minimal matching problem: given 2m points (x1, . . . , xm, y1, . . . , ym)
in a metric space, we want to match each of the x-points to one of the y-points
such that the sum of the distances between the matched pairs is minimal (cf. [8]).

In section 4 we will also need the notion of a vector lattice. A vector lattice is a
vector space V with an ordering � which respects the vector space structure (i.e.,
for x, y, z ∈ V, a > 0: x � y =⇒ x+z � y+z and ax � ay) and such that for any
two elements f, g ∈ V there exists a greatest lower bound inf(f, g). In particular,
the space of Lipschitz functions with the ordering f � g ⇔ ∀x f(x) ≤ g(x)
forms a vector lattice.

3 The Lipschitz classifier

Let (X, d) be a metric space and (xi, yi)i=1,...,n ⊂ X×{±1} some training data.
In order to be able to define hyperplanes, we want to embed (X, d) into a vector
space, but without loosing or changing the underlying metric structure. Our
first step is to embed X by the identity mapping into the extended space X0 as
described in (1), which in turn is embedded into AE(X0) via (4). We denote the
resulting composite embedding by

Φ : X → AE(X0), x 7→ mx := mxe

Secondly, we identify Lip(X) with Lip0(X0) according to (2) and then Lip0(X0)
with AE(X0)′ according to Theorem 1. Together this defines the map

Ψ : Lip(X) → AE(X0)′, f 7→ Tf

Proposition 2. The mappings Φ and Ψ have the following properties:

1. Φ is an isometric embedding of X into AE(X0): to every point x ∈ X cor-
responds a molecule mx ∈ AE(X0) such that d(x, y) = ‖mx−my‖AE for all
x, y ∈ X.

2. Lip(X) is isometrically isomorphic to AE(X0)′: to every Lipschitz function
f on X corresponds an operator Tf on AE(X0) such that ‖f‖L = ‖Tf‖ and
vice versa.

3. It makes no difference whether we evaluate operators on the image of X in
AE(X0) or apply Lipschitz functions on X directly: Tfmx = f(x).

4. Scaling a linear operator is the same as scaling the corresponding Lipschitz
function: for a ∈ IR we have aTf = Taf .

Proof. All these properties are direct consequences of the construction and equa-
tion (3). ,

The message of this proposition is that it makes no difference whether we classify
our training data on the space X with the decision function sgn f(x) or on
AE(X0) with the hyperplane sgn(Tfmx). The advantage of the latter is that
there we can construct the margin of the classifier in a straightforward way:
for a functional Tf ∈ AE(X0)′ let Hf := {m ∈ AE(X0); Tfm = 0} be the
hyperplane induced by Tf . We normalize the representation of the hyperplane
such that mini=1,...,n |Tfmxi | = 1. Note that normalizing Tf is the same as
normalizing f itself according to part 4 of Proposition 2. We define the margin
of Hf , which we also call the margin of f , as

ρ := inf
i=1,...,n
mh∈Hf

‖mxi −mh‖AE .

Now for each training point mxi and each point mh on the hyperplane,

1 ≤ |Tfmxi
| = |Tfmxi

− Tfmh| = |Tf (mxi
−mh)| ≤ ‖Tf‖‖mxi

−mh‖AE

and thus ρ ≥ 1/‖Tf‖ = 1/‖f‖L because of part 2 of Proposition 2. If the training
data are nontrivial (i.e., they contain points from both classes), then the decision
function f has to take positive and negative values. Hence, ‖f‖L = L(f) holds
as we already explained in the last section. So we have proved the following
theorem:

Theorem 3 (Margin of the Lipschitz classifier). Let (X, d) be a met-
ric space, (xi, yi)i=1,...,n ⊂ X × {±1} some training data containing points
of both classes, and f ∈ Lip(X) such that yif(xi) ≥ 1 (i = 1, . . . , n) and
mini=1,...,n |f(xi)| = 1. Then the margin ρ of the decision function sgn f(x)
satisfies ρ ≥ 1/L(f).

One nice aspect about the above construction is that the margin also has a
geometrical meaning in the input space X itself: it is the minimal distance
between the “separation surface” S := {s ∈ X; f(s) = 0} and the train-
ing points. To see this, observe that for normalized f and s ∈ S we have
1 ≤ |f(xi) − f(s)| ≤ Ld(xi, s), and thus d(xi, s) ≥ 1/L(f). Note also that

the relation between margins and Lipschitz constants in the context of normed
vector spaces has already been observed in [7].
As a consequence of Theorem 3, a large margin algorithm on a metric space has
to construct decision functions with small Lipschitz constant. This leads to the
following optimization problem:

minimizef∈Lip(X) L(f) subject to yif(xi) ≥ 1, i = 1, . . . , n (∗)

We call a solution of this problem a (hard margin) Lipschitz classifier. Analo-
gously to SVMs (e.g., [6]) we define the soft margin version of this algorithm

minimizef∈Lip(X) L(f) + C
n∑

i=1

ξi subject to yif(xi) ≥ 1− ξi, ξi ≥ 0 (∗∗)

To implement this algorithm in practice we will have to choose reasonable sub-
sets of Lipschitz functions. Consider the following special cases: if the metric
on X is induced by a kernel k and we choose a classifier of the form f(x) =∑

i αik(xi, x) + b, then the solution of the Lipschitz classifier coincides with the
solution of the SVM. The reason is that the norm of a linear functional coincides
with its Lipschitz constant. In the case where we choose the subset of all linear
combinations of distance functions of the form f(x) =

∑n
i=1 aid(xi, x)+b the Lip-

schitz algorithm is the same as the linear programming machine (cf. [4]). The rea-
son for this is that the Lipschitz constant of a function f(x) =

∑n
i=1 aid(xi, x)+b

is upper bounded by
∑
|ai|. Furthermore, if we do not restrict the function space

at all, then we will see in the next section that the 1-nearest neighbor classifier
is a solution of the algorithm. These examples show that the Lipschitz algorithm
is a very general approach. By choosing different subsets of Lipschitz functions
we recover several well known algorithms. As the Lipschitz algorithm is a large
margin algorithm according to Theorem 3, the same thus holds for the recovered
algorithms. For instance the linear programming machine, originally designed
with little theoretical justification, can now be understood as a large margin
algorithm.

4 Representer theorems

A crucial theorem in the context of SVMs and other kernel algorithms is the
representer theorem (cf. [6]). It states that, even though the space of possible
solutions of these algorithms forms an infinite dimensional space, there always ex-
ists a solution in the finite dimensional subspace spanned by the training points.
It is because of this theorem that SVMs overcome the curse of dimensionality
and yield computationally tractable solutions. In this section we prove a sim-
ilar theorem for the Lipschitz classifier (∗). To simplify the discussion, denote
D := {d(x, ·); x ∈ X} ∪ {1} and Dtrain := {d(xi, ·); xi training point } ∪ {1}
where 1 is the constant-1 function.

Theorem 4 (Representer theorem I). Problem (∗) has a solution in the
vector lattice spanned by Dtrain.

This is remarkable as the space Lip(X) of possible solutions of (∗) contains the
whole vector lattice spanned by D. The theorem thus states that even though
the Lipschitz algorithm searches for solutions in the whole lattice spanned by
D it always manages to come up with a solution in the sublattice spanned by
Dtrain. Another way to state this theorem is the following:

Theorem 5 (Representer theorem II). Problem (∗) always has a solution
which is a linear combination of distances to sets of training points.

To prove these theorems we first need a simple proposition. We denote the set
of all training points with positive label by X+, the set of the training points
with negative label by X−, and for two subsets A,B ⊂ X we define d(A,B) :=
infa∈A,b∈B d(a, b).

Proposition 6. The Lipschitz constant L∗ of a solution of (∗) satisfies
L∗ ≥ 2

d(X+,X−) .

Proof. For a solution f of (∗) we have

L(f) = sup
x,y∈X

|f(x)− f(y)|
d(x, y)

≥ max
i,j=1,...,n

|f(xi)− f(xj)|
d(xi, xj)

≥ max
i,j=1,...,n

|yi − yj |
d(xi, xj)

=
2

minxi∈X+,xj∈X− d(xi, xj)
=

2
d(X+, X−)

. ,

Proposition 7. Let L∗ = 2
d(X+,X−) . The following functions solve (∗):

fl(x) := max
i

(yi − L∗d(x, xi))

fu(x) := min
i

(yi + L∗d(x, xi))

f0(x) :=
d(x,X−)− d(x,X+)

d(X+, X−)

Proof. It is easy to see that fl,fu, and f0 fulfill the constraint yif(xi) ≥ 1. Using
the properties of Lipschitz constants stated in section 2 and the fact that the
function d(x, ·) has Lipschitz constant 1 we see that all three functions have
Lipschitz constants ≤ L∗. Thus they are solutions of (∗) by Proposition 6. ,

The functions fl,fu, and f0 lie in the vector lattice spanned by Dtrain. This
proves Theorem 4. As f0 is a linear combination of distances to sets of training
points we also have proved Theorem 5.
A further remarkable fact of Proposition 7 is that the function f0 realizes the 1-
nearest neighbor classifier. This means that according to section 3 this classifier
actually is a large margin classifier.
So far we have proved that (∗) always has a solution which can be stated as a
linear combination of distances to sets of training points. But maybe we even get
a theorem stating that we always find a solution which is a linear combination of
distance functions to single training points? Unfortunately, in the metric space
setting such a theorem is not true in general. This can be seen by the following
counterexample:

Example 8. Assume four training points x1, x2, x3, x4 with (singular!) distance
matrix [0 2 1 1; 2 0 1 1; 1 1 0 2; 1 1 2 0] (in matlab notation) and label vector
y = (1, 1,−1,−1). Then the system f(x) =

∑4
i=1 aid(xi, x) + b, yif(xi) ≥ 1 of

linear inequalities has no solution. Hence, in this example, (∗) has no solution
which is a linear combination of distances to single training points. But it still has
a solution as linear combination of distances to sets of training points according
to Theorem 5.

This means that, in order to construct solutions for (∗), we are in the interesting
situation that it is not enough to consider distances to single training points –
we have to deal with distances to sets of training points.

5 Rademacher complexities

In this section we compute capacities of ‖ · ‖L-balls of Lipschitz functions. The
measures of capacity we consider are the Rademacher complexity Rn and the
related maximum discrepancy R̃n. Both can be used effectively to bound the
generalization error of a classifier (cf. [1]). For an arbitrary class F of functions,
they are defined as

Rn(F) := E(
1
n

sup
f∈F

|
n∑

i=1

σif(Xi)|) ≥
1
2
E(

1
n

sup
f∈F

|
n∑

i=1

f(Xi)− f(Yi)|) =: R̃n(F)

where σi are iid Rademacher random variables (i.e., Prob(σi = +1) = Prob(σi =
−1) = 1/2), Xi and Yi are iid sample points according to the (unknown) sample
distribution, and the expectation is taken with respect to all occurring random
variables. We will describe two different ways to compute these complexities for
sets of Lipschitz functions. One way is a classical approach using entropy numbers
and leads to an upper bound on Rn. For this approach we always assume that
the metric space (X, d) is precompact (i.e., it can be covered by finitely many
balls of radius ε for every ε > 0). The other way is more elegant: because of
the definition of ‖ · ‖L and the resulting isometries, the maximum discrepancy
of a ‖ · ‖L-unit ball of Lip(X) is the same as of the corresponding unit ball in
AE(X0)′. Hence it will be possible to express R̃n as the norm of an element of
the Arens-Eells space. This norm can then be computed via bipartite minimal
matching. In the following, B always denotes the unit ball of the considered
function space.

5.1 The duality approach

The main insight to compute the maximum discrepancy by the duality approach
is the following observation:

sup
‖f‖L≤1

|
n∑

i=1

f(xi)− f(yi)| = sup
‖Tf‖≤1

|
n∑

i=1

Tfmxi
− Tfmyi

| =

= sup
‖Tf‖≤1

|〈Tf ,
n∑

i=1

mxi
−myi

〉| = ‖
n∑

i=1

mxiyi
‖AE

Applying this to the definition of the maximum discrepancy immediately yields

R̃n(B) =
1
n
E‖

n∑
i=1

mXiYi‖AE (5)

As we already explained in section 2, the norm ‖
∑n

i=1mXiYi
‖AE can be in-

terpreted as the costs of a minimal bipartite matching between {X1, . . . , Xn}
and {Y1, . . . , Yn}. To compute the right hand side of (5) we need to know the
expected value of random instances of the bipartite minimal matching problem
where we assume that the points Xi and Yi are drawn iid from the sample dis-
tribution. In particular we want to know how this value scales with the number
n of points as this indicates how fast we can learn. This question has been solved
for some special cases of random bipartite matching. Let the random variable
Cn describe the minimal bipartite matching costs for a matching between the
points X1, . . . , Xn and Y1, . . . , Yn drawn iid according to some distribution P . In
[11] it was has been proved that for an arbitrary distribution on the unit square
of IRd with d ≥ 3 we have limCn/n

d−1/d = c > 0 a.s. for some constant c. The
upper bound ECn ≤ c

√
n log n for arbitrary distributions on the unit square in

IR2 was presented in [9]. These results, together with equation (5), lead to the
following maximum discrepancies:

Theorem 9 (Maximum discrepancy of unit ball of Lip([0, 1]d)). Let X =
[0, 1]d ⊂ IRd with the Euclidean metric. Then the maximum discrepancy of the
‖ · ‖L-unit ball B of Lip(X) is given by

R̃n(B)

{
= c1

1
d
√

n
if d ≥ 3

≤ c2
√

log n√
n

if d = 2

for some constants c1, c2 which are independent of n.

Note that this gives exact results rather than upper bounds in cases where we
have exact results on the bipartite matching costs. This is for example the case
for cubes in IRd, d ≥ 3 as Yukich’s theorem gives an exact limit result, or for IR2

with the uniform distribution.

5.2 Covering number approach

To derive the Rademacher complexity in more general settings than Euclidean
spaces we use an adapted version of the classical entropy bound of Dudley. The
proof of this theorem can be found in the appendix.

Theorem 10 (Generalized entropy bound). Let F be a class of functions
and X1, . . . , Xn iid sample points with empirical distribution µn. Then, for every
ε > 0,

Rn(F) ≤ 2ε+
4
√

2√
n

∫ ∞

ε/4

√
logN(F , u, ‖ · ‖L2(µn)) du

To apply this theorem we need to know covering numbers of spaces of Lipschitz
functions. This can be found for example in [5], pp.353–357.

Theorem 11 (Covering numbers for Lipschitz function balls). For a
totally bounded metric space (X, d) and the unit ball B of (Lip(X), ‖ · ‖L),

2N(X,4ε,d) ≤ N(B, ε, ‖ · ‖∞) ≤
(

2
⌈

2 diam(X)
ε

⌉
+ 1
)N(X, ε

4 ,d)

.

If, in addition, X is connected and centered (i.e., for all subsets A ∈ X with
diam(A) ≤ 2r there exists a point x ∈ X such that d(x, a) ≤ r for all a ∈ A),

2N(X,2ε,d) ≤ N(B, ε, ‖ · ‖∞) ≤
(

2
⌈

2 diam(X)
ε

⌉
+ 1
)
· 2N(X, ε

2 ,d)

Combining Theorems 10 and 11 and using N(F , u, ‖ · ‖L2(µn)) ≤ N(F , u, ‖ · ‖∞)
now gives a bound on the Rademacher complexity of balls of Lip(X):

Theorem 12 (Rademacher complexity of unit ball of Lip(X)). Let (X, d)
be a totally bounded metric space with diameter diam(X) and B the ball of
Lipschitz functions with ‖f‖L ≤ 1. Then, for every ε > 0,

Rn(B) ≤ 2ε+
4
√

2√
n

∫ 4 diam(X)

ε/4

√
N(X,

u

4
, d) log

(
2
⌈

2 diam(X)
u

⌉
+ 1
)
du

If, in addition, X is connected and centered, we have

Rn(B) ≤ 2ε+
4
√

2√
n

∫ 2 diam(X)

ε/4

√
N(X,

u

2
, d) log 2 + log(2

⌈
2 diam(X)

u

⌉
+ 1) du

In our framework this is a nice result as the bound on the complexity of balls of
Lip(X) only uses the metric properties of the underlying space X.

Example 13. Let X = [0, 1]d ⊂ IRd, d ≥ 3, with the Euclidean metric ‖ · ‖2.
This is a connected and centered space. We choose ε = 1/ d

√
n and use that the

covering numbers of X have the form N(X, ε, ‖ ·‖2) = c/εd. After evaluating the
second integral of Theorem 12 we find that Rn(B) scales as 1/ d

√
n.

Example 14. Let X = [0, 1]2 ⊂ IR2 with the Euclidean metric. Applying Theo-
rem 12 similar to Example 13 yields a bound on Rn(B) that scales as log n/

√
n.

In case of example 13 the scaling behavior of the upper bound on Rn(B) obtained
by the covering number approach coincides with the exact result for R̃n(B)
derived in Theorem 9. In case of example 14 the covering number result log n/

√
n

is slightly worse than the result
√

log(n)/
√
n obtained in Theorem 9.

5.3 Complexity of Lipschitz RBF classifiers

In this section we want to derive a bound for the Rademacher complexity of
radial basis function classifiers of the form

Frbf := {f : X → IR| f(x) =
l∑

k=1

akgk(d(pk, x)), gk ∈ G} (6)

where pk ∈ X, ak ∈ IR, and G ⊂ Lip(X) is a (small) set of ‖ · ‖∞-bounded
Lipschitz functions on IR whose Lipschitz constants are bounded from below
by a constant c > 0. As an example, consider G = {g : IR → IR| g(x) =
exp(−x2/σ2), σ ≥ 1}. The special case G = {id} corresponds to the function
class which is used by the linear programming machine. It can easily be seen
that the Lipschitz constant of an RBF function satisfies L(

∑
k akgk(d(pk, ·))) ≤∑

k |ak|L(gk). We define a norm on Frbf by

‖f‖rbf := inf

{∑
k

|ak|L(gk); f =
∑

k

akgk(d(pk, ·))

}

and derive the Rademacher complexity of a unit ball B of (Frbf , ‖ · ‖rbf). Sub-
stituting ak by ck/L(gk) in the expansion of f we get

sup
f∈B

|
n∑

i=1

σif(xi)| = sup∑
|ak|L(gk)≤1,pk∈X,gk∈G

|
n∑

i=1

σi

l∑
k=1

akgk(d(pk, xi))|

= sup∑
|ck|≤1,pk∈X,gk∈G

|
n∑

i=1

σi

l∑
k=1

ck
L(gk)

gk(d(pk, xi))|

= sup∑
|ck|≤1,pk∈X,gk∈G

|
l∑

k=1

ck

n∑
i=1

σi
1

L(gk)
gk(d(pk, xi))|

= sup
p∈X,g∈G

|
n∑

i=1

σi
1

L(g)
g(d(p, xi))| (7)

For the last step observe that the supremum in the linear expansion in the second
last line is obtained when one of the ck is 1 and all the others are 0. To proceed we
introduce the notations hp,g(x) := g(d(p, xi))/L(g), H := {hp,g; p ∈ X, g ∈ G},
and G1 := {g/L(g); g ∈ G}. We rewrite the right hand side of equation (7) as

sup
p∈X,g∈G

|
n∑

i=1

σi
1

L(g)
g(d(p, xi))| = sup

hp,g∈H
|

n∑
i=1

σihp,g(xi)|

and thus obtain Rn(B) = Rn(H). To calculate the latter we need the following:

Lemma 15. N(H, 2ε, ‖ · ‖∞) ≤ N(X, ε, d)N(G1, ε, ‖ · ‖∞).

Proof. First we observe that for hp1,g1 , hp2,g2 ∈ H

‖hp1,g1 − hp2,g2‖∞ = sup
x∈X

|g1(d(p1, x))
L(g1)

− g2(d(p2, x))
L(g2)

|

≤ sup
x∈X

(
|g1(d(p1, x))

L(g1)
− g1(d(p2, x))

L(g1)
|+ | |g1(d(p2, x))

L(g1)
− g2(d(p2, x))

L(g2)
|
)

≤ sup
x∈X

|d(p1, x)− d(p2, x)|+ ‖ g1
L(g1)

− g2
L(g2)

‖∞

≤ d(p1, p2) + ‖ g1
L(g1)

− g2
L(g2)

‖∞ =: dH(hp1,g1 , hp2,g2) (8)

For the step from the second to the third line we used the Lipschitz property of
g1. Finally, it is easy to see that N(H, 2ε, dH) ≤ N(X, ε, d)N(G1, ε, ‖ · ‖∞). ,

Plugging lemma 15 in Theorem 10 yields the following Rademacher complexity:

Theorem 16 (Rademacher complexity of unit ball of Frbf). Let B the
unit ball of (Frbf , ‖ · ‖rbf), G1 the rescaled functions of G as defined above, and
w := max{diam(X, d),diam(G1, ‖ · ‖∞)}. Then, for every ε > 0,

Rn(B) ≤ 2ε+
4
√

2√
n

∫ w

ε/4

√
logN(X,

u

2
, d) + logN(G1,

u

2
, ‖ · ‖∞) du

This theorem is a huge improvement compared to Theorem 12 as instead of
the covering numbers we now have log-covering numbers in the integral. As an
example consider the linear programming machine on X = [0, 1]d. Because of
G = {id}, the second term in the square root vanishes, and the integral over the
log-covering numbers of X can be bounded by a constant independent of ε. As
result we obtain that in this case Rn(B) scales as 1/

√
n.

6 Conclusion

We derived a general approach to large margin classification on metric spaces.
Our theoretical analysis led to a general algorithm that works directly on the
given metric space and uses Lipschitz functions as decision functions. It spe-
cializes to well-known algorithms, as the support vector machine or the linear
programming machine. Especially for the latter, our analysis gave new insights
into its learning theoretic properties.

Acknowledgements

We would like to thank Matthias Hein and Bernhard Schölkopf for helpful dis-
cussions.

Appendix: Proof of Theorem 10

The idea of the proof of Theorem 10 is the following. Instead of bounding the
Rademacher complexity on the whole set of functions F , we first consider a
maximal ε-separating subset Fε of F . This is a maximal subset such that all its
points have distance at least ε to each other. To this special set we will apply
the classical entropy bound of Dudley [3]:

Theorem 17 (Classical entropy bound). For every class F of functions
there exists a constant C such that

Rn(F) ≤ C√
n

∫ ∞

0

√
logN(u,F , L2(µn)) du

where µn is the empirical distribution of the sample.

As a second step we then bound the error we make by computing the Rademacher
complexity of Fε instead of F . This will lead to the additional offset of 2ε in
Theorem 10. The following lemma can be found as Lemma 3.10 in [2].

Lemma 18 (ε-separations of an empirical process). Let {Zt; t ∈ T} be a
separable stochastic process satisfying for λ > 0 the increment condition

∀s, t ∈ T : E
(
eλ(Zt−Zs)

)
≤ eλ2c2d2(s,t)/2.

Let ε ≥ 0 and δ > 0. If ε > 0, let Tε denote a maximal ε-separated subset of T
and let Tε = T otherwise. Then for all t0,

E

(
sup

t∈Tε,d(t,t0)≤δ

Zt − Zt0

)
≤ 4

√
2c
∫ δ/2

ε/4

√
logN(T, u, d)du

To apply this lemma to the Rademacher complexity of a function class F , we
choose the index set T = F , the fixed index t0 = f0 for some f0 ∈ F , the
empirical process Zf = 1

n

∑
σif(Xi), and δ = ∞. Note that the Rademacher

complexity satisfies the increment condition of Lemma 18 with respect to the
L2(µn)–distance with constant c =

√
n. Using E(Zt0) = E(1

n

∑
σif0(Xi)) = 0

and the symmetry of the distribution of Zf we thus get the next lemma:

Lemma 19 (Entropy bound for ε-separations). Let (Xi)i=1,...,n iid train-
ing points with empirical distribution µn, F an arbitrary class of functions, and
Fε a maximal ε-separating subset of F with respect to L2(µn)- norm. Then

E

(
sup
f∈Fε

1
n
|
∑

i

σif(Xi)|
∣∣∣X1, . . . , Xn

)
≤ 4

√
2√
n

∫ ∞

ε/4

√
logN(T, u, L2(µn)) du

With this lemma we achieved that the integral over the covering numbers starts
at ε/4 instead of 0 as it is the case in Theorem 17. The price we pay is that the
supremum on the left hand side is taken over the smaller set Fε instead of the
whole class F . Our next step is to bound the mistake we make by this procedure.

Lemma 20. Let F be a class of functions and Fε a maximal ε-separating subset
of F with respect to ‖ · ‖L2(µn). Then |Rn(F)−Rn(Fε)| ≤ 2ε.

Proof. We want to bound the expression

|Rn(F)−Rn(Fε)| = E
1
n

∣∣∣∣∣sup
f∈F

|
∑

σif(Xi)| − sup
f∈Fε

|
∑

σif(Xi)|

∣∣∣∣∣.
First look at the expression inside the expectation, assume that the σi and Xi

are fixed and that supf∈F |
∑
σif(xi)| = |

∑
σif

∗(xi)| for some function f∗ (if
f∗ doesn’t exist we additionally have to use a limit argument). Let fε ∈ Fε such
that ‖f∗ − fε‖L2(µn) ≤ 2ε. Then,

1
n

∣∣∣∣∣sup
f∈F

|
∑

σif(xi)| − sup
f∈Fε

|
∑

σif(xi)|

∣∣∣∣∣ ≤ 1
n

∣∣∣|∑σif
∗(xi)| − |

∑
σifε(xi)|

∣∣∣
≤ 1
n

∣∣∣∑σi(f∗(xi)− fε(xi))
∣∣∣ ≤ ‖f∗ − fε‖L1(µn) ≤ ‖f∗ − fε‖L2(µn) ≤ 2ε

As this holds conditioned on every fixed values of σi and Xi we get the same for
the expectation. This proves the lemma. ,

To prove Theorem 10 we now combine lemmas 19 and 20. ,

References

1. P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds
and structural results. JMLR, 3:463–482, 2002.

2. O. Bousquet. Concentration inequalities and empirical processes theory applied to
the analysis of learning algorithms. PhD Thesis, 2002.

3. R. M. Dudley. Universal Donsker classes and metric entropy. Ann. Probab.,
15(4):1306–1326, 1987.

4. T. Graepel, R. Herbrich, B. Schölkopf, A. Smola, P. Bartlett, K. Müller, K. Ober-
mayer, and R. Williamson. Classification of proximity data with LP machines. In
Proceedings of the Ninth International Conference on Artificial Neural Networks,
pages 304–309, 1999.

5. A. N. Kolmogorov and V. M. Tihomirov. ε-entropy and ε-capacity of sets in
functional space. Amer. Math. Soc. Transl. (2), 17:277–364, 1961.

6. B. Schölkopf and A. Smola. Learning with Kernels. Support Vector Machines,
Regularization, Optimization and Beyond. MIT press, 2002.

7. B. Schölkopf, A.J. Smola, R.C. Williamson, and P.L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207–1245, 2000.

8. J. Michael Steele. Probability theory and combinatorial optimization, volume 69
of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

9. M. Talagrand. The Ajtai-Komlos-Tusnady matching theorem for general measures.
In Progress in Probability, volume 30, 1991.

10. N. Weaver. Lipschitz algebras. World Scientific, 1999.
11. J. Yukich. Asymptotics for transportation costs in high dimensions. J. Theor.

Probab., 8(1):97–118, 1995.

