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Abstract

While existing methods for estimating the in-
trinsic dimension of datasets require to know
distances between data points, we consider a
situation where one has considerably less in-
formation. Given a sample of points, all we
get to see is who are the k nearest neighbors
of every point. In other words, we get the
adjacency matrix of the directed, unweighted
k-nearest neighbor graph on the sample, but
do not know any point coordinates or dis-
tances between the points. We provide two
estimators for this situation, a naive one and
a more elaborate one. Both of them can be
proved to be statistically consistent. How-
ever, further theoretical and experimental ev-
idence shows that the naive estimator per-
forms rather poorly, whereas the elaborate
one achieves results comparable to those of
estimators based on distance information.

1 INTRODUCTION

In this paper we consider the problem of estimat-
ing the intrinsic dimension of a dataset observed in
a high-dimensional space. This is a well-studied prob-
lem in the context of dimensionality reduction, with
many publications around the time of the develop-
ment of multidimensional scaling and with renewed
attention after the invention of manifold learning al-
gorithms (Trunk, 1968; Bennett, 1969; Fukunaga and
Olsen, 1971; Pettis et al., 1979; Grassberger and Pro-
caccia, 1983; Camastra and Vinciarelli, 2002; Kégl,
2002; Costa and Hero, 2004; Costa et al., 2005; Hein
and Audibert, 2005; Levina and Bickel, 2005; Farah-
mand et al., 2007; Sricharan et al., 2010; Eriksson and
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Crovella, 2012). All these existing methods require the
distance matrix of a data sample, or at least parts of
it, as input. We are interested in a situation where we
have considerably less information. Instead of know-
ing actual distance values, we just assume to have some
knowledge about their relative ordering. Specifically,
we assume to only know who are the k nearest neigh-
bors of each data point, but we do not know anything
more than that (like distances to the neighbors).

Why would anyone be interested in such a scenario?
It turns out that in many modern applications of ma-
chine learning it is relatively easy to gather informa-
tion about comparisons between objects, but consid-
erably more difficult to estimate accurate distance or
similarity scores. For example, humans are much bet-
ter in comparing objects (“Movie A is more similar to
movie B than to movie C”) than in assigning scores
(“The similarity between A and B is 0.9 and the sim-
ilarity between A and C is 0.5”). There is a whole
branch of machine learning that deals with data in
ordinal (rather than cardinal) form (see, e.g., Ros-
ales and Fung (2006), Shaw and Jebara (2009), McFee
and Lanckriet (2009, 2011), Tamuz et al. (2011), Ailon
(2012), von Luxburg and Alamgir (2013), Kleindess-
ner and von Luxburg (2014), and references therein).
Note that knowing the k nearest neighbors is one kind
of such ordinal data though it contains different infor-
mation than a collection of similarity triplets like in
the motivating example with the movies.

In this paper, we provide two dimension estimators
which just take information about the sets of k near-
est neighbors as input. The first one is a straight-
forward estimator based on the doubling property of
the Lebesgue measure. Even though we prove that
it converges to the true dimension as the sample size
increases, it turns out to severely underestimate the
true dimension and needs a ridiculously high amount
of sample points before it gives accurate results. Our
second estimator is also based on geometric ideas, can
also be proved to be statistically consistent, but is
much more well-behaved in practice. Our experiments
show that it can even compete with standard estima-
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Figure 1: The idea behind our estimators EDP (left) and ECAP (right).

tors based on distance information.

2 OUR ESTIMATORS

Setup and problem statement. Let X ⊆ Rd be
a low-dimensional set, ϕ : X → M ⊆ RD a smooth
embedding of X in a high-dimensional space and f a
continuous probability density function supported on
X . Sample points {x̃1, . . . , x̃n} ⊆ X are drawn from
f and embedded into the observation space RD via ϕ,
possibly disturbed by noise ηi ∈ RD, resulting in the
sample D = {x1, . . . , xn} with xi = ϕ(x̃i) + ηi. Given
some information about D, our task is to infer d.

Note that although this problem is mathematically
well-defined, it comes along with an inherent problem
in practice: Data “looks” different at different scales,
on the one hand due to the presence of noise, on the
other hand due to the curvature of the manifold M.
For example, if our data lives in a small ε-tube around
a one-dimensional sphere in R2, we will only be able to
identify its one-dimensionality if we look at the data
on a proper scale. If we “zoom in too closely”, say
we consider an ε-ball of the data, it appears to have
dimension 2. If we “zoom out very far”, the data will
even look like a single point and thus may be consid-
ered as zero-dimensional.

While existing methods assume to know coordinates
(x1i , . . . , x

D
i ) or distance values ‖xi−xj‖RD , we assume

to only know about memberships to the sets of k near-
est neighbors. This information can be conveniently
encoded by the directed, unweighted kNN-graph G
built on D. It has the vertex set V = {1, . . . , n} and
a directed, unweighted edge from i to j (written as
i→ j) if and only if xj is among the k nearest sample
points to xi with respect to ‖ · ‖RD . The parameter
k � n controls the scale as discussed in the previous
paragraph: the larger k, the more we “zoom out”.

In the following, we denote by BSP(i, r) the closed ball
with center i ∈ V and radius r > 0 in the graph G with
respect to the (directed) shortest path distance dSP,
that is BSP(i, r) = {j ∈ V : dSP(i, j) ≤ r}. A closed

ball in Rd with center x ∈ Rd and radius r > 0 is de-
noted by B(x, r). By λd we denote the d-dimensional
Lebesgue measure and by ηd = λd(B(0, 1)) the volume
of the d-dimensional unit ball.

2.1 Estimator based on Doubling Property

Recall the doubling property of λd: for any x ∈ Rd and
r > 0 we have λd(B(x, 2r)) = 2dλd(B(x, r)). Conse-
quently, we can determine the dimension d by

d = − log2(λd(B(x, r))/λd(B(x, 2r))).

This is the property we are going to exploit in our
first naive estimator. To carry it over to the finite
sample setting, fix any sample point xi (sufficiently
far from the boundary of M) and consider BSP(i, 1)
and BSP(i, 2). If the sample size n is large enough and
k is relatively small, points xj with j ∈ BSP(i, 2) lie
in such a small neighborhood of xi on M that we can
actually think ofM as flat and identify it with Rd (here
we do not take the noise into account). Then, as we
will see in the proofs in Section 3, the balls BSP(i, 1)
and BSP(i, 2) in G approximately correspond to balls
B(xi, r) and B(xi, 2r) in Rd for some small radius r
(see the left side of Figure 1 for an illustration: in green
we see the point xi, in red points xj with j ∈ BSP(i, 1)
and in blue points xj with j ∈ BSP(i, 2) \ BSP(i, 1)).
On these small balls we can consider the density f as
roughly constant and obtain

LDP(i) :=
|BSP(i, 1)|
|BSP(i, 2)|

≈ n f(xi) λd(B(xi, r))

n f(xi) λd(B(xi, 2r))
=

1

2d
.

Note that |BSP(i, 1)| always equals k + 1.

Hence, an estimate of d is given by − log2 LDP(i).
However, in order to obtain a more robust estimator
we average over LDP(i) for various vertices i ∈ A ⊆ V .
With LDP(A) := 1

|A|
∑
i∈A LDP(i) this leads to our

first dimension estimator

EDP(A) := − log2 LDP(A).
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Figure 2: The functions T (d) = 1/2d and S. The
latter is more well-behaved in terms of inversion.

2.2 Estimator based on Spherical Caps

Our second estimator relies on a different geometric
idea. Fix x, y ∈ Rd with ‖x − y‖Rd = r and consider
the set B(x, r) ∩ B(y, r). This set is the union of two
congruent and disjoint spherical caps with height r/2
of a ball with radius r. An illustration is shown in the
right figure of Figure 1 (dark grey area). According to
Li (2011), the volume of such a cap is given by

1

2
ηdr

dI 3
4

(
d+ 1

2
,

1

2

)
,

where Ix(a, b) is the regularized incomplete beta func-
tion. Consequently,

λd(B(x, r) ∩B(y, r))

λd(B(x, r))
= I 3

4

(
d+ 1

2
,

1

2

)
=: S(d), (1)

a quantity injectively depending on d > 0. A plot of
the function S can be seen in Figure 2. Hence, the
dimension d can be retrieved by inverting S.

Our goal is now to follow this idea in the finite sample
setting. As in the previous section, we fix a sample
point xi and replace B(xi, r) by BSP(i, 1). We need
to find a vertex j0 such that xj0 sits on the boundary
of B(xi, r) and then consider |BSP(i, 1) ∩ BSP(j0, 1)|.
Because |BSP(i, 1) ∩ BSP(j, 1)| tends to decrease with
increasing distance between xi and xj , we can find such
a vertex j0 as the minimizer of the term |BSP(i, 1) ∩
BSP(j, 1)| over vertices j connected to i. This leads to

LCAP(i) :=
minj∈V :i→j |BSP(i, 1) ∩BSP(j, 1)|

k + 1
≈ S(d).

An estimate for d is then given by S−1(LCAP(i)). As
in the previous section, we make the estimator more
robust by averaging over LCAP(i) for various vertices
i ∈ A ⊆ V . With LCAP(A) := 1

|A|
∑
i∈A LCAP(i), our

second dimension estimator is given by

ECAP(A) := S−1(LCAP(A)).

r
2r

Figure 3: Explanation for the bias of EDP: the union of
the small balls approximates the large ball, but ignores
a substantial part close to its boundary (shaded area).

2.3 First Comparison of EDP and ECAP

A closer look at the construction of our two estimators
reveals two reasons why ECAP might perform better
than EDP. This theoretical finding will later be con-
firmed in the experiments of Section 4.

The rationale of EDP is to find an expression LDP that
approximates T (d) := 1/2d, whereas in ECAP we find
an expression LCAP approximating S(d) as given in
(1). In both cases, the final estimate is obtained by
inverting T or S, respectively, to retrieve d. Invert-
ing a function f is easy and robust in areas where the
function is reasonably steep, but is difficult in areas
where it is flat. In flat areas of f , small deviations in
f(x) lead to large deviations in x = f−1(f(x)). Now
consider the plot of the functions T and S in Figure 2.
It is plain to see that S has a much larger range where
it is well-behaved (say, from d = 1 to 20) than T (say,
from d = 1 to 8). Consequently, in the range of d = 9
to d = 20 the estimator ECAP is still rather robust
against deviations of LCAP(A) from S(d), while small
deviations of LDP(A) from 1/2d lead to large devia-
tions of EDP(A) = − log2(LDP(A)) from d.

Our second insight is that EDP systematically underes-
timates the true dimension, in particular if the latter is
high. The estimator EDP is based on approximating
B(xi, 2r) by BSP(i, 2). However, as Figure 3 shows,
there is a bias in this approximation: BSP(i, 2) is the
union of BSP(i, 1) and balls BSP(j, 1) for vertices j
with i → j. Hence, BSP(i, 2) actually corresponds to
points in the union of B(xi, r) and balls B(xj , r). In
the limit, as n and k go to infinity, this union ap-
proximates B(xi, 2r) up to arbitrary precision, but for
finite values of n and k this union is only a poor ap-
proximation of B(xi, 2r), just filling it partially and
ignoring a substantial part close to the boundary of
B(xi, 2r). As a consequence, we systematically un-
derestimate λd(B(xi, 2r)) and thus underestimate d.
This effect is increased if d is high by the fact that in
high-dimensional spaces almost all of the volume of a
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ball is concentrated in a thin shell close to the ball’s
boundary.

3 CONSISTENCY

In this section we prove that both our estimators
EDP({i}) and ECAP({i}) converge to the true dimen-
sion d in probability if n → ∞, k = k(n) is chosen
reasonably, and i ∈ {1, . . . , n} is chosen uniformly at
random. For simplicity, we focus on the case when the
manifoldM is flat (that is ϕ is a global isometry) and
there is no noise. The consistency of EDP and ECAP

will hold in the general case as well, but the proofs will
require a technical overhead that we want to avoid.

We make the following regularity assumptions:
The domain X ⊆ Rd is compact and has boundary
of measure 0, i.e. λd(∂X ) = 0. Furthermore, the
boundary is nice in the sense that there exist constants
α, ε0 > 0 such that

λd(B(x, ε) ∩ X ) ≥ α · λd(B(x, ε)), x ∈ X , ε < ε0.

The density f : X → R is lower and upper bounded
by 0 < fmin ≤ f(x) ≤ fmax <∞ for all x ∈ X and is
Lipschitz continuous with constant L.

Main Theorem (Consistency of EDP and ECAP)
Let the regularity assumptions hold. Let D =
{x1, . . . , xn} ⊆ X be an i.i.d. sample from f and G
be the directed, unweighted kNN-graph on D. Given
G as input and a vertex i ∈ {1, . . . , n} chosen uni-
formly at random, both EDP({i}) and ECAP({i}) con-
verge to the true dimension d in probability as n→∞
if k = k(n) satisfies k ∈ o(n), log n ∈ o(k), and there
exists k′ = k′(n) with k′ ∈ o(k) and log n ∈ o(k′).

The growth conditions on k are the ones to be ex-
pected for random kNN-graphs. There are several
ways of choosing k and k′ in order to satisfy them.
For example, we could choose k = (log n)1+τ and
k′ = (log n)1+τ/2 for some τ > 0.

Note that for proving the theorem it is sufficient
to prove convergence of LDP({i}) and LCAP({i}) to
1/2d and S(d), respectively, since both log2 and S−1

are continuous functions. Furthermore, note that for
showing convergence in probability of random vari-
ables Un to a constant U it is sufficient to prove

f(δ, n)U − e(δ, n) ≤ Un ≤ F (δ, n)U + E(δ, n) (2)

with probability at least P (δ, n) for all 0 < δ <
δ0 and n ≥ N(δ), such that f(δ, n), F (δ, n) → 1,
e(δ, n), E(δ, n)→ 0 as n→∞, δ → 0 and P (δ, n)→ 1
as n→∞ (for fixed δ).

Showing an inequality of the type of (2) for LDP({i})
and LCAP({i}) consists of a number of steps, which we

formulate as separate propositions and lemmas. Due
to space constraints we can only provide compact ver-
sions. A central role will be played by the kNN-radius

rk,n(xi) = max{‖xi − xj‖ : i→ j in G}.

Furthermore, we will repeatedly encounter a quantity
uk,n given by uk,n = (k/(nηd))

1/d. Note that the con-
ditions on k imply that uk,n → 0.

All following statements hold for n sufficiently large
and δ sufficiently small. The constants ci in Proposi-
tions 1 and 3 depend on d, α, fmin, fmax and L.

Proposition 1 (kNN-radius is concentrated)
There exist c1, c2 > 0 such that with probability at least
1− n exp(−c1δ2k) we have

Rk,n(xi, δ) ≤ rk,n(xi) ≤ Rk,n(xi, δ) (3)

for all xi ∈ D sufficiently distant to ∂X , where

Rk,n(xi, δ) =
1

(1 + δ)(1 + c2(k/n)1/d)
· uk,n
f(xi)1/d

,

Rk,n(xi, δ) =
1

(1− δ)(1− c2(k/n)1/d)
· uk,n
f(xi)1/d

.

This can be shown by standard concentration argu-
ments. For example, a proof for a closely related state-
ment can be found in von Luxburg et al. (2014). Note
that Rk,n(xi, δ), Rk,n(xi, δ) → 0 under the conditions
on k.

Lemma 2 (Locally rk,n varies only slightly) As-
sume the event considered in Proposition 1 holds.
Then we have for a sample point xi ∈ D sufficiently
distant to ∂X and all y ∈ D ∩B(xi, Rk,n(xi, δ))

rk,n(y) ≥ Rk,n(xi, δ)− ak,n(δ)u
1+1/d
k,n , (4)

rk,n(y) ≤ Rk,n(xi, δ) + ak,n(δ)u
1+1/d
k,n , (5)

where ak,n(δ) > 0 converges to a positive constant as
n→∞, δ → 0, assuming the conditions on k hold.

Lemma 2 immediately follows from the Lipschitz conti-
nuity of f . Due to the growth conditions on k we have

ak,n(δ)u
1+1/d
k,n ∈ o(Rk,n(xi, δ)) and ak,n(δ)u

1+1/d
k,n ∈

o(Rk,n(xi, δ)).

Proposition 3 (Dense sampling lemma) There ex-
ist c3, c4 > 0 such that for all γ ≤ ε0 we have

∀x ∈ X ∃xi ∈ D : ‖xi − x‖ ≤ γ (6)

with probability at least 1− c3γ−d exp(−c4γdn).

The proof of Proposition 3 uses a simple covering argu-
ment and can be found in the supplementary material
of Tenenbaum et al. (2000).
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The next two lemmas are specific to LDP({i}) and
LCAP({i}), respectively. Recall that i → j in G if
and only if ‖xi − xj‖ ≤ rk,n(xi).

Lemma 4 (Geometric argument for LDP({i}):
BSP(i, 2) approximates B(xi, 2rk,n(xi)) Assume the
events considered in Proposition 1 and Proposition 3
(with γ replaced by εk,n) hold. Then we have for a
sample point xi ∈ D sufficiently distant to ∂X and all
xj ∈ D the following implications:

‖xi − xj‖ ≤ 2Rk,n(xi, δ)− ak,n(δ)u
1+1/d
k,n − 2εk,n

=⇒ dSP(i, j) ≤ 2,

‖xi − xj‖ > 2Rk,n(xi, δ) + ak,n(δ)u
1+1/d
k,n

=⇒ dSP(i, j) > 2.

Proof: If ‖xi − xj‖ ≤ 2Rk,n(xi, δ)− ak,n(δ)u
1+1/d
k,n −

2εk,n, consider the point z on the line segment from xi
to xj such that ‖xi−z‖ = Rk,n(xi, δ)−εk,n. Due to the
assumption that (6) holds (with γ replaced by εk,n)
there exists a sample point xl ∈ D with ‖z−xl‖ ≤ εk,n.
Then ‖xi − xl‖ ≤ ‖xi − z‖ + ‖z − xl‖ ≤ Rk,n(xi, δ)
and hence i → l according to (3). Similarly,

‖xj − xl‖ ≤ Rk,n(xi, δ) − ak,n(δ)u
1+1/d
k,n such that

l → j because of xl ∈ B(xi, Rk,n(xi, δ)) and (4). If

‖xi − xj‖ > 2Rk,n(xi, δ) + ak,n(δ)u
1+1/d
k,n , then (3)

and (5) immediately imply dSP(i, j) > 2. �

Lemma 5 (Geometric argument for LCAP({i}):
BSP(i, 1) ∩ BSP(j0, 1) approximates union of
spherical caps) Assume the events considered in
Proposition 1 and Proposition 3 (with γ replaced by
εk,n) hold. Then we have for a sample point xi ∈ D
sufficiently distant to ∂X and all j ∈ {1, . . . , n} with
i→ j

‖xi − xj‖ ≤ ak,n(δ)u
1+1/d
k,n =⇒

B(xi, R) ∩B(xj , T ) = B(xj , T ),

‖xi − xj‖ > ak,n(δ)u
1+1/d
k,n =⇒

B(xi, R) ∩B(xj , T ) ⊇
C(xi, R, h1, xj) ∪ C(xj , T , h2, xi).

Here we abbreviate

R = Rk,n(xi, δ), T = R− ak,n(δ)u
1+1/d
k,n ,

R = Rk,n(xi, δ), T = R+ ak,n(δ)u
1+1/d
k,n ,

h1 = R− 1

2
R+

T 2 −R2

2R
, h2 = T − 1

2
R+

R2 − T 2

2R

and C(z, r, h, w) denotes a spherical cap of a ball
B(z, r) with height h (0 ≤ h ≤ 2r) and apex on the
half-line from z to w.

Furthermore, there exists a sample point xl with i→ l
such that

B(xi, R) ∩B(xl, T ) ⊆
C(xi, R, h

′
1, xl) ∪ C(xl, T , h

′
2, xi)

with

h′1 = R− 1

2
(R− 2εk,n) +

T
2 −R2

2(R− 2εk,n)
,

h′2 = T − 1

2
(R− 2εk,n) +

R
2 − T 2

2(R− 2εk,n)
.

The proof of Lemma 5 mainly consists of determin-
ing the heights of the two spherical caps which arise
when one intersects two balls. Once one has a closed
formula for these heights (depending on the radii of
the balls and the distance of their centers) the proof is
straightforward and as simple as the one of Lemma 4.

Proof of the Main Theorem (sketch): We
choose εk,n = (k′/n)1/d for some k′ = k′(n) sat-
isfying k′ ∈ o(k) and log n ∈ o(k′). Then both
the events of Propositions 1 and 3 (with γ re-
placed by εk,n) hold jointly with probability at least
1− n exp(−c1δ2k)− c3(n/k′) exp(−c4k′). This proba-
bility tends to 1. Furthermore, due to the assumption
that λd(∂X ) = 0, the probability of choosing a vertex i
such that xi is too close to ∂X tends to 0 (note that in
the statements above “sufficiently distant” is defined
in terms of rk,n(xi), which uniformly tends to 0). So
with high probability the implications in Lemmas 4
and 5 hold for xi with the chosen i. By standard con-
centration arguments we can lower and upper bound
|BSP(i, 2)| and minj∈V :i→j |BSP(i, 1) ∩BSP(j, 1)|,
which yields estimates of the form (2) for LDP({i})
and LCAP({i}), respectively. �

4 EXPERIMENTS

4.1 Implementation of our Estimators

There is no closed form for the inverse of the function S
as given in (1). If one is merely interested in an integer
estimate, the simplest procedure is to set ECAP(A) to
d∗ = arg mind∈N |S(d)− LCAP(A)|. In case one would
rather like a real-valued estimate, the simplest way is
to create a fine-meshed lookup table.

Assuming that G is given by its unsorted adjacency
lists, it is easy to see that both LDP(i) and LCAP(i) can
be computed with worst case running time O(k2 log k).
Hence, the computation of both EDP(A) and ECAP(A)
can be performed in O(|A| k2 log k), assuming that the
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Table 1: Estimated dimensions for several datasets. n denotes the size of the dataset and d its true dimension.

Our estimators
(kNN-graph)

Standard estimators
(distance information)

n Distribution / Dataset d ECAP(V ) EDP(V ) MLE CorrDim RegDim

Artificial datasets (results averaged over 100 runs, ±STD)

1 1000 uniform on a helix in R3 1 1.00 (±0.05) 0.88 (±0.01) 1.00 (±0.01) 1.00 (±0.11) 0.99 (±0.01)

2 1000 Swiss roll in R3 2 2.14 (±0.05) 1.44 (±0.01) 1.94 (±0.02) 1.99 (±0.23) 1.87 (±0.04)

3 1000 N5(0, I) 5 5.33 (±0.07) 2.47 (±0.01) 5.00 (±0.04) 4.91 (±0.56) 4.86 (±0.05)

4 1000 uniform on sphere S7 ⊆ R8 7 5.88 (±0.06) 2.82 (±0.01) 6.53 (±0.07) 6.85 (±0.66) 6.23 (±0.09)

5 5000 uniform on sphere S7 ⊆ R8 7 6.85 (±0.03) 3.21 (±0.00) 6.72 (±0.03) 6.95 (±0.98) 6.46 (±0.04)

6 1000 uniform on [0, 1]12 12 7.74 (±0.08) 3.04 (±0.01) 9.32 (±0.10) 10.66 (±1.18) 8.78 (±0.10)

7 5000 uniform on [0, 1]12 12 9.24 (±0.04) 3.50 (±0.00) 9.76 (±0.05) 10.83 (±1.49) 9.26 (±0.05)

Real datasets (D = dimension of observation space)

8 698 Isomap faces, D = 4096 = 642 ? 3.04 1.73 3.99 3.53 4.22

9 481 Hands, D = 245760 ? 1.27 0.95 2.88 3.92 2.56

10 7141 MNIST digit 3, D = 784 = 282 ? 8.92 3.21 15.95 14.17 14.75

11 6824 MNIST digit 4, D = 784 = 282 ? 8.13 3.07 14.44 9.54 13.16

12 6313 MNIST digit 5, D = 784 = 282 ? 8.40 3.12 15.55 18 14.28

inversion of S as addressed above can be done in con-
stant time. When G is given by its adjacency matrix
J (that is Jij = 1 if i → j and 0 otherwise), it is
usually faster to exploit the following observations, in
particular if |A| is large (e.g., A = V ):(

J̃ · J̃
)
ij
> 0⇔ j ∈ BSP(i, 2),(

J̃ · J̃T
)
ij

= |BSP(i, 1) ∩BSP(j, 1)| .

Here, J̃ is the matrix J with the diagonal entries set
to 1. Note that J and J̃ are sparse.

Both our estimators are statistically consistent for
any random choice of A. The variance of EDP(A)
and ECAP(A) decreases approximately like 1/|A| if A
is chosen uniformly at random without replacement
(which is hard to prove theoretically due to depen-
dency issues, but can be easily verified in simulations),
so we suggest to choose |A| as large as one can afford
due to computational reasons.

4.2 First Comparison with Estimators from
the Literature

To get a first feeling, we compare our estimators
EDP and ECAP to three standard estimators from
the literature, all of them relying on distance infor-
mation: The recent estimator MLE of Levina and
Bickel (2005), which seems to be state of the art, and
two widely used classical estimators: the correlation
dimension-estimator CorrDim (Grassberger and Pro-
caccia, 1983) and the estimator RegDim. MLE is
the average of estimators m̂k for several values of k

where m̂k in turn is the average of local maximum
likelihood estimators m̂k(xi), which estimate the di-
mension of the data around a sample point xi based
on the distances between xi and its k nearest neigh-
bors. CorrDim estimates the dimension by regressing
logCr on log r over a suitable range of r, where

Cr =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

1 (‖xi − xj‖ ≤ r)

is the normalized number of pairs of sample points
with distance not more than r from each other. Sim-
ilarly, RegDim works by regressing logRk on log k,
where Rk = (1/n)

∑n
i=1 rk,n(xi) and rk,n(xi) is the

kNN-radius of sample point xi. This is a slightly sim-
plified version of the algorithm suggested by Pettis
et al. (1979).

For several artificial and real datasets, Table 1 shows
the estimated dimensions for the various estimators.
All estimators require to set some parameters: a sin-
gle parameter k for EDP and ECAP and two param-
eters k1, k2 for MLE, CorrDim and RegDim. For
MLE these parameters determine the range for av-
eraging over m̂k and for CorrDim and RegDim the
range for regressing (for CorrDim the range is given
as [rk1 , . . . , rk2 ] where ri denotes the i-th smallest en-
try in the distance matrix of the data sample). For all
experiments except (9) we set the parameters for MLE
and RegDim as k1 = 10, k2 = 20 and for CorrDim
as k1 = 10, k2 = 100 like Levina and Bickel, who
also performed the experiments (2), (8) and (9). In
(9), like Levina and Bickel, we changed the parame-
ters for CorrDim to k1 = 500, k2 = 1000 since the
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original choice leads to the obviously wrong result of
an estimated dimension of 19.7. For EDP and ECAP

we simply set k = 15 if the size of the dataset is less
than or equal to 1000 (for the real datasets this is (8)
and (9)) and k = 20 in all other experiments (which
deal with datasets of size 5000 or slightly greater).

For the artificial datasets the interpretation of the re-
sults is straightforward. The naive estimator EDP(V )
only gives reasonable results for the experiments (1)
and (2), where the dimension is small. It is highly
biased in the higher-dimensional cases. This confirms
our arguments of Section 2.3. Our estimator ECAP(V )
performs comparably to the three distance-based esti-
mators MLE, CorrDim and RegDim. This is quite
surprising, given that it gets considerably less infor-
mation about the data (no distance information, just
nearest neighbor memberships).

For the real datasets the interpretation is not so ob-
vious since the true intrinsic dimensions are unknown.
Although the Isomap faces dataset, consisting of im-
ages of the face of a sculpture observed under different
pose and lighting conditions, is usually considered to
be three-dimensional, Levina and Bickel argue that its
dimension should be higher because of the fact that
we only deal with 2D-projections of the face. Simi-
larly, according to them the intrinsic dimension of the
Hands dataset, which is a sequence of snapshots of a
hand moving along a one-dimensional curve, should be
higher than one. In any case, the results of ECAP(V )
do not seem to be unreasonable, in particular if one
additionally compares them to the results obtained
by Hein and Audibert (2005). In their experiments
the authors provide a dimension estimate of 3 for the
Isomap faces dataset and estimates of 14, 13 and 12
for the sets of MNIST digits 3, 4 and 5, respectively.

4.3 Our Estimators in Detail

In the following we investigate in artificial datasets
how our estimators behave with respect to choice of
the parameter k, sample size n, intrinsic and ambient
dimension and the presence of noise. As competitor
we choose the state-of-the-art estimator m̂k: it is also
based on the k nearest neighbors of sample points,
but explicitly uses distances. Because our estimators
do not get any distance information, we cannot expect
EDP and ECAP to perform as well as m̂k, but consider
the latter as a benchmark. In their paper Levina and
Bickel suggest to average over m̂k for a range of k
(yielding the estimator MLE) in order to reduce the
risk of choosing a bad value for it. In principle, this
could also be done with our estimators, but in our
setting this would require additional input information
and so we do not want to pursue this idea any further.

Table 2: Estimated dimensions for data from N7(0, I)
(averaged over 10 datasets, ±STD). R denotes a ran-
dom choice (without replacement) of 10 vertices.

ECAP(R) EDP(R)

n = 5 · 104, k = 500 6.77 (±0.19) 4.36 (±0.01)

n = 5 · 105, k = 1000 7.58 (±0.12) 5.01 (±0.01)

n = 5 · 105, k = 2500 6.99 (±0.13) 4.90 (±0.02)

n = 5 · 106, k = 3000 7.77 (±0.11) 5.48 (±0.01)

n = 5 · 106, k = 8000 7.44 (±0.14) 5.41 (±0.01)

n = 5 · 107, k = 5000 7.95 (±0.20) 5.84 (±0.02)

Dependence on k. The top row of Figure 4
shows the results of the estimators m̂k, EDP(V ) and
ECAP(V ) as a function of k. In the left figure the
data consists of 1000 points sampled from a uniform
distribution on the hypersphere S2 ⊆ R3. We can
see that m̂k performs best and yields a perfect esti-
mate for all values of k in the range of consideration.
However, this estimator explicitly uses distance values.
Although using much less information, our estimators
perform well and yield a correct result after round-
ing for a broad range of k too. The right figure deals
with 2000 points from a 7-dim Gaussian N7(0, I). In
this higher-dimensional case the situation is different:
while ECAP(V ) still performs reasonable and yields a
correct result, at least for a not too small range of
k, EDP(V ) constantly underestimates the dimension.
This confirms our findings of Section 2.3.

Dependence on the sample size n. As we have
proved in Section 3, both ECAP and EDP converge to
the true dimension if n → ∞ and k is chosen appro-
priately. In Table 2 we show the results for increasing
sample size n in the case of a 7-dim Gaussian N7(0, I).
We can see that for EDP the convergence is painfully
slow and even with n = 5 ·107 points it still underesti-
mates the dimension. ECAP needs a lot fewer sample
points in order to give a valuable result — compare
with the previous paragraph. However, here it has
a tendency to slightly “overshoot” (which is a conse-
quence of a suboptimal choice of k).

Bias with respect to the true dimension. The
left figure in the bottom row of Figure 4 shows the
behavior of the estimators with respect to the true di-
mension d. We can see that as the true dimension
d increases, the property of underestimating the di-
mension of EDP is shared by ECAP and even by m̂k

(although to a much slighter extent).

Noisy data. In the right figure in the bottom row of
Figure 4 we plot the estimated dimensions as a func-
tion of the noise level σ for 5000 points drawn from
U(0, 1)4 × N6(0, σI) and k set to 20. Here U(0, 1)
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Figure 4: Top row: The estimators m̂k, EDP(V ) and ECAP(V ) as a function of k (average over 100 datasets
together with min/max over the 100 datasets) for 1000 points from a uniform distribution on the hypersphere
S2 ⊆ R3 (left) and 2000 points from a 7-dim Gaussian N7(0, I) (right). The solid black lines show the true
dimension. Bottom row: Left: Estimated dimensions as a function of the true dimension d (solid black line).
5000 points from a d-dim Gaussian Nd(0, I), k = 20. Right: Estimates as a function of the noise level σ. 5000
points from U(0, 1)4 ×N6(0, σI), k = 20.

denotes a uniform distribution on the unit interval.
When σ is small, the last six components of the data
can be considered as noise and the dimension of the
data should be four. As σ increases, the noise level gets
so high that the data actually should be considered as
10-dimensional. Finally, the role of the “true” data
and the noise gets inverted, the first four components
are dominated by the six last ones and considered as
noise, hence the dimension should be 6. This behavior
is reflected by all three estimators under considera-
tion. However, again the performance of EDP(V ) is
very poor, completely failing to correctly determine
either of the various dimensions.

5 DISCUSSION

As opposed to all existing dimension estimators in the
literature, we consider a setting where we only have
access to very restricted information about the data.
Instead of actual distance measurements all we get to
know is who are the k nearest neighbors of each data
point (but we do not know distances to the neighbors).

In the light of the findings of Kleindessner and von
Luxburg (2014) and Terada and von Luxburg (2014),
who show in different scenarios that such ordinal infor-
mation uniquely determines the geometry of the data,
it is not too surprising that dimensionality estimation
in this setting is possible. However, the question is
how to do it successfully in practice.

The main message of our paper is twofold. First, we
show that the “obvious” estimator EDP, which is based
on the doubling property of the Lebesgue measure, al-
beit being consistent in the large sample limit, per-
forms only poorly in practice. Second, we provide
an alternative, not so obvious estimator ECAP which
appears to be more well-behaved. Our experiments
demonstrate that ECAP achieves results that are com-
parable to those of distance-based estimators from the
literature or are only slightly worse.
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