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Abstract

We consider machine learning in a
comparison-based setting where we are
given a set of points in a metric space, but
we have no access to the actual distances
between the points. Instead, we can only ask
an oracle whether the distance between two
points i and j is smaller than the distance
between the points i and k. We are concerned
with data structures and algorithms to find
nearest neighbors based on such comparisons.
We focus on a simple yet effective algorithm
that recursively splits the space by first
selecting two random pivot points and then
assigning all other points to the closer of
the two (comparison tree). We prove that if
the metric space satisfies certain expansion
conditions, then with high probability the
height of the comparison tree is logarithmic
in the number of points, leading to efficient
search performance. We also provide an
upper bound for the failure probability to re-
turn the true nearest neighbor. Experiments
show that the comparison tree is competitive
with algorithms that have access to the
actual distance values, and needs less triplet
comparisons than other competitors.

1 INTRODUCTION

In many machine learning problems, data is given in the
form of points and similarity or distance values between
these points. Recently, comparison-based settings have
become increasingly popular (Schultz and Joachims,
2003, Agarwal et al., 2007, van der Maaten and Wein-
berger, 2012, Amid and Ukkonen, 2015, Ukkonen et al.,
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2015, Balcan et al., 2016). Here the assumption is that
points come from some metric space (X , d), but the
metric d is unknown. We only have indirect access to
the metric in the form of triplet comparisons: for a
particular triplet of points (x, y, z) we can ask whether

d(x, y) ≤ d(x, z) (1)

is true or not. Such settings are popular in the crowd
sourcing literature (Tamuz et al., 2011, Heikinheimo
and Ukkonen, 2013, Ukkonen et al., 2015).

Assume that we are given a set of objects together with
the answers to triplet comparisons for some (or even
all) triplets of objects, and our task is to solve machine
learning problems such as clustering or classification.
There are two possible strategies we could pursue. The
first is to construct an ordinal embedding of the objects
into the Euclidean space Rd, that is an embedding such
that the answers to the triplet comparisons are pre-
served (Agarwal et al., 2007, van der Maaten and Wein-
berger, 2012, Terada and von Luxburg, 2014, Kleindess-
ner and von Luxburg, 2014, Arias-Castro, 2015, Amid
and Ukkonen, 2015, Jain et al., 2016). Subsequently, the
machine learning problem can be solved by standard
methods in Euclidean spaces. The second approach
would be to use the triplet comparisons to find the
k nearest neighbors (kNN) of the points directly. We
could then use kNN classification, clustering methods
on the kNN graph, etc. In our paper, we focus on the
second approach, and in particular on the question how
many triplet comparisons are needed in order to find
the kNNs of data points.

Many algorithms for exact or approximate nearest
neighbor search use data structures based on space
partitioning. Most popular is the setting where points
live in the Euclidean space. KD-Tree (Bentley, 1975),
PA-Tree (McNames, 2001), Spill-Tree (Liu et al., 2004),
RP-Tree (Dasgupta and Freund, 2008), and MM-Tree
(Ram and Gray, 2013) are among the algorithms in
Euclidean setting. In addition, the setting where data
points only lie on a more abstract metric space has
been explored considerably. Metric Skip List (Karger
and Ruhl, 2002), Navigating Net (Krauthgamer and
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Lee, 2004), and Cover-Tree (Beygelzimer et al., 2006)
are some of the methods in this category. However, in
nearly all these algorithms, we either need to know the
vector representation of the points or the distance val-
ues between the points. Few exceptional methods exist
that even work in the setting where we only have ac-
cess to triplet comparisons (Goyal et al., 2008, Lifshits
and Zhang, 2009, Tschopp et al., 2011, Houle and Nett,
2015).

To our taste, the most appealing comparison-based
data structure is what we call the comparison tree. The
structure has been introduced as “metric tree based on
a generalized hyperplane decomposition” in Uhlmann
(1991). For the sake of simplicity we refer to it as the
comparison tree. To partition the space into smaller
subsets, two pivot points are picked uniformly at ran-
dom from the given dataset. The space is then sepa-
rated into two “generalized half-spaces”, namely the
two sets of points that are closer to the two respec-
tive pivots. This is done recursively until the resulting
subsets become smaller than a given size. Once this
tree structure has been constructed, the nearest neigh-
bor search proceeds by comparing the query point to
the two pivot points. On an intuitive level, comparison
trees are promising: (i) the splits seem to adapt to the
geometry of the data, (ii) it seems that the splits are not
extremely unbalanced, (iii) there is “enough random-
ness” in the construction. Unfortunately, none of these
intuitions has been proved or formally investigated yet.

The first contribution of our paper is to analyze the per-
formance of comparison trees in general metric spaces.
Under certain assumptions on the expansion rates of
the space, we prove that comparison trees are nicely
balanced and their height is of the order Θ(log n). This
means that to construct a comparison tree, we only
need of the order n log n triplet comparisons. Moreover,
we can bound the probability that the nearest neigh-
bor algorithm finds the correct nearest neighbor. Our
second contribution consists of simulations that com-
pare the behavior of comparison trees to standard data
structures in Euclidean spaces and other comparison-
based data structures on metric spaces. We find that
the comparison tree performs surprisingly well even if
compared to competitors that access vector represen-
tations in Euclidean spaces (KD-Tree, RP-Tree and
PA-Tree), and favorably in comparison to one of the
recent comparison-based algorithms proposed in Houle
and Nett (2015).

2 COMPARISON TREE

Let S be a set of n points in some metric space (X , d).
To construct a comparison tree on S, we proceed
as follows (see Algorithm 1 below). The root of the tree

T.root consists of the whole set S, and each of the subse-
quent nodes represents a partition of the set S. In each
step of the tree construction, the elements of the cur-
rent node are partitioned into two disjoint sets, which
in turn are the root nodes for the left and right sub-
trees denoted by T.leftchild and T.rightchild. More
concretely, to form a partition of the current node
of the tree, we randomly choose two pivot elements
among its current elements, denoted by T.leftpivot and
T.rightpivot. Then we group the remaining elements
according to whether they are closer to the left or right
pivot. Observe that this step does not require actual
distance values, but just triplet comparisons. Then we
recurse, until the current set of elements has at most
size n0 for some pre-specified n0.

Algorithm 1 CompTree(S, n0): Comparison tree
construction

Input: S ⊆ X , and maximum leaf size n0
Output: Comparison tree T
1: T.root← S
2: if |S| > n0 then
3: Uniformly sample distinct points x1, x2 ∈ S
4: S1 ← {x ∈ S : d(x, x1) ≤ d(x, x2)}
5: T.leftpivot← x1, T.rightpivot← x2
6: T.leftchild← CompTree(S1, n0)
7: T.rightchild← CompTree(S\S1, n0)
8: end if
9: return T

The computational complexity of the tree construction
is governed by the number of triplet comparisons re-
quired in the procedure, which depends on the height
of tree. In the next section, we show that under certain
growth assumptions on the metric, the comparison tree
has height h = O(log n) with high probability.

To use the comparison tree for (approximate)
nearest neighbor search, we employ the obvi-
ous greedy procedure (sometimes called the defeatist
search; see Algorithm 2): starting at the root, we com-
pare the query element q to the current two pivot
elements, and using a triplet comparison we decide
whether to proceed in the left or right branch. When
we reach a leaf, we carry out an exhaustive search
among all its elements to determine the one that is
closest to the given query. This step requires n0 triplet
comparisons. Overall, the nearest neighbor search in
a comparison tree of height h requires at most h+ n0
triplet comparisons, which boils down to O(log n).

3 THEORETICAL ANALYSIS

In this section, we analyze the complexity and perfor-
mance of the tree construction as well as the nearest
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Algorithm 2 NN(q, T ): Nearest neighbor search

Input: Comparison tree T , and query q.
Output: x̂q =approximate nearest neighbor of q in S
1: if T.leftchild 6= null then
2: if d(q, T.leftpivot) ≤ d(q, T.rightpivot) then
3: x̂q ← NN(q, T.leftchild)
4: else x̂q ← NN(q, T.rightchild)
5: end if
6: else choose x̂q s.t. d(q, x̂q) ≤ d(q, x) ∀x ∈ T.root
7: end if
8: return x̂q

neighbor search. We first provide a high probability
bound on the height of the comparison tree, which
in turn bounds the number of triplet comparisons re-
quired for both tree construction and nearest neighbor
search. In addition, we derive an upper bound on the
probability that the above approach fails to return the
exact nearest neighbor of a given query.

3.1 Expansion Conditions

Finding the nearest neighbor for a query point q in
a general metric space (X , d) can require up to Ω(n)
comparisons in the worst case, using any data struc-
ture built on the given set S (Beygelzimer et al., 2006).
Hence, most similarity search methods are analyzed un-
der the natural assumption that the metric d is growth-
restricted (Karger and Ruhl, 2002, Krauthgamer and
Lee, 2004). Informally, such restrictions imply that the
volume of a closed ball in the space does not increase
drastically when its radius is increased by a certain
factor. Various related notions are used to character-
ize the growth rate of such metrics, for instance As-
souad dimension (Assouad, 1979), doubling dimension
(Gupta et al., 2003), homogeneity (Luukkainen and
Saksman, 1998), and expansion rate (Karger and Ruhl,
2002) among others. The analysis of most tree based
search methods in the Euclidean setting requires only a
doubling property of the metric (Dasgupta and Sinha,
2015). Such results hold for metric spaces with finite
doubling dimension or Assouad dimension. When deal-
ing with general metric spaces, it is more convenient to
consider the expansion rate, which is an empirical vari-
ant of the doubling property defined for a given finite
set S ⊆ X . Typically, the analysis of data dependent
tree constructions requires even stronger restrictions.

In this work, we use a slightly weaker variant of the
strong expansion rate condition used in Ram and Gray
(2013). Intuitively, we need bounds on the expansion
rate for all the finite point sets that can possibly occur
in the non-leaf nodes of the comparison tree.

Let (X , d) be a metric space, S ⊆ X and n0 < |S|. We

construct a collection CS ⊆ 2S as follows:

1. S ∈ CS ,

2. If A ∈ 2S and there exist x, y ∈ S such that
d(z, x) ≤ d(z, y) ∀z ∈ A, then A ∈ CS , S\A ∈ CS ,

3. If A,B ∈ CS , then A ∩B ∈ CS .

We finally remove all A ∈ CS with size |A| ≤ n0. Ob-
serve that CS characterizes the collection of all possible
non-leaf nodes of the tree1. We define the strong ex-
pansion rate of S as the smallest c̃ ≥ 1 such that

|B(x, 2r) ∩A| ≤ c̃|B(x, r) ∩A| (2)

for all A ∈ CS , x ∈ A and r > 0, where B(x, r) is the
closed ball in (X , d) centered at x with radius r.

Inequality (2) states that every A ∈ CS has an expan-
sion rate at most c̃ similar to the definition in Karger
and Ruhl (2002). This requirement for all A ∈ CS is
strong, but seems unavoidable due to the data depen-
dent, yet random, tree construction.

3.2 Main Results

The following theorem provides an upper bound on the
height of the comparison tree.

Theorem 1 (Height of a comparison tree). Con-
sider a set S of size n in a metric space that satisfies
the strong expansion rate condition with constant c̃. Fix
some n0 ∈ N. Then for any ε > 0, with probability 1−ε,
the comparison tree construction algorithm returns a
tree with height smaller than

h∗ = 3 log
(e
ε

)
+ 96c̃2 log

(
n

n0

)
. (3)

We prove the theorem later in the section. Theorem 1
implies that if the expansion rate c̃ = O(1), then the
height of the randomly constructed tree tends to be
bounded by O(log n). In particular, one can expect
this to happen if the set of points is sampled from an

“evenly” spread distribution in a growth-restricted space
X . As a consequence of Theorem 1, one can comment
on the number of triplet comparisons required for tree
construction and nearest neighbor search. We state this
in the following corollary.

Corollary 2 (Number of triplet comparisons).
For ε > 0, let h∗ be defined as in (3). Then with proba-
bility 1− ε, the comparison tree construction algorithm
requires at most nh∗ triplet comparisons to construct
the comparison tree. Furthermore, for any q ∈ X , with
probability 1−ε, nearest neighbor search algorithm uses
at most h∗ + n0 triplet comparisons to find an approx-
imate nearest neighbor of q.

1Technically, CS is a subset of the algebra generated by
the “generalized half spaces” of the induced space (S, d).
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The proof is a simple consequence of Theorem 1.

Other applicable methods in our setting made various
assumptions on the dataset, thus the upper bound on
the required number of triplets is hardly comparable
with them. If we neglect this fact and only compare
the dependency to n, we can summarize the asymp-
totic bounds on the required number of comparisons in
Table 1. We ignore all dependencies on the constants
describing the geometric properties of the space (such
as doubling, expansion, or disorder constants).

Table 1: Theoretical comparison with existing methods

Method Construction Query

Comparison Tree n log n log n
(Goyal et al., 2008) n2 log n log n

(Lifshits and Zhang, 2009) n log2 n log n

(Tschopp et al., 2011) n log2 n log2 n

(Houle and Nett, 2015) n log3 n log3 n

While the above discussion sheds light on the required
number of triplet comparisons, it still leaves one wonder-
ing about the quality of the nearest neighbor obtained
from the comparison tree. In the following result, we
show that under certain conditions on the behavior
of the metric in a neighborhood of a given query q,
the search method succeeds in finding the true nearest
neighbor of q. We use xq ∈ S to denote the true nearest
neighbor of q, while x̂q is the element returned by the
nearest neighbor search. We write B(x, r) and B◦(x, r)
to denote closed and open balls, respectively.

Theorem 3 (Exact nearest neighbor). Given S ⊆
X and q ∈ X . If there exist constants C > 0 and
α ∈ (0, 1] such that for every A ∈ CS containing xq,
and for all x ∈ A\{xq},∣∣B(q, d(q, x) + 2d(q, xq)

)
∩A

∣∣
≤
∣∣B◦(q, d(q, x)

)
∩A

∣∣+ C|A|1−α , (4)

then

P (x̂q 6= xq) ≤
360Cc̃2

α
n−α0 , (5)

where the probability is with respect to the random con-
struction of the tree.

The condition on q implies that there are not many
points that have the same distance to q as the nearest
neighbor. Under the local restrictions defined in (4)
on the query q, the error bound (5) states that one
can achieve an arbitrarily small error probability if
n0 is chosen large enough, depending on the strong
expansion rate c̃.

Remark 4. The assumption in (4) can also be sub-
stituted by alternative conditions. For instance, the er-
ror bound in (5) holds (up to constants) if there exists

D > 1 such that

|B(q, λr) ∩A| ≤ λD|B(q, r) ∩A| (6)

for all A ∈ CS, λ > 1, and r > d(q, xq). One can see
the inherent resemblance of (6) to the notion of strong
expansion rate (2).

We remark again on the required conditions. The no-
tion of strong expansion rate, though used in Ram and
Gray (2013), is stronger than standard conditions used
in many works (Dasgupta and Sinha, 2015, Karger and
Ruhl, 2002). Our main reason for resorting to this no-
tion is because of the data dependent random splits
used in comparison tree construction. While projection-
based methods also use random hyperplanes for split-
ting each node, such hyperplanes are independent of
the given set, making the analysis simpler (Dasgupta
and Sinha, 2015). On the other hand, prior works in
non-Euclidean setting construct data structures that
naturally adhere to the structure of the metric balls
(Karger and Ruhl, 2002). Unlike both these works, in
the present setting, one cannot guarantee that a condi-
tion defined on the whole set will also hold for each of
the partitions obtained during splits. Hence, the con-
dition of strong expansion rate has been used in our
analysis. The additional assumption on q seems essen-
tial since one can construct trivial examples where the
nearest neighbor search is quite likely to fail.

3.2.1 Proof of Theorem 1

We now prove Theorem 1 using two lemmas.

Lemma 5 (Probability of unbalanced split). For
any A ∈ CS and δ ∈ (0, 1), the probability that the ran-
dom split in the comparison tree construction algorithm
creates a child of A with less than δ|A| elements is at
most 4c̃2δ.

Thus, each split in the tree is reasonably balanced, and
hence, it is likely that the size of the nodes decays
rapidly with their depth. This fact is formalized below.

Lemma 6 (Maximum node size at depth h). Let
A ∈ CS be a node at depth h of the tree. If 4c̃2δ ≤ 1,
then the probability that A has more than m elements

is at most (8c̃2δ)h−1 (n/m)
(1/δ) log(1/4c̃2δ)

.

We finish the proof of Theorem 1 by observing that
the height of the tree is greater than h only if there
is a node at depth h of size greater than n0. By tak-
ing a union over all possible 2h nodes at depth h, one
can see that the probability of this event is at most

2(16c̃2δ)h−1 (n/n0)
(1/δ) log(1/4c̃2δ)

. This probability is
less than ε if we fix δ = 1/32c̃2, and

h =

(
1 + 2 log

(e
ε

)
+ 96c̃2 log

(
n

n0

))
≤ h∗ .
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We now prove the above two lemmas.

Proof of Lemma 5. Let |A| = m, and 1(·) denote the
indicator function. Then the probability of splitting A
to create a child of size smaller than δm is at most

1
m(m−1)

∑
x1∈A

x2∈A\{x1}

1
(
{|{x ∈ A : d(x, x2) ≤ d(x, x1)}| ≤ δm}

∪ {|{x ∈ A : d(x, x1) < d(x, x2)}| ≤ δm}
)

≤ 1

(m2 )

∑
x1∈A

x2∈A\{x1}

1
(∣∣{x ∈ A : d(x, x1) < d(x, x2)}

∣∣ ≤ δm).
Note that the set {x ∈ A : d(x, x1) < d(x, x2)} contains
the setB

(
x1,

1
4d(x1, x2)

)
∩A, where B(·, ·) is the closed

ball. Thus, one may bound the above probability by
the fraction of x1, x2 pairs for which this ball contains
less than δm elements. Moreover, using the condition
of strong expansion rate (2), one has∣∣B(x1, d(x1, x2)

)
∩A

∣∣ ≤ c̃2 ∣∣B (x1, 14d(x1, x2)
)
∩A

∣∣ .
Thus, one may only count the x1, x2 pairs for which
B(x1, d(x1, x2)) ∩ A contains at most c̃2δm elements.
Now, for every x1, if one sorts x2 in the increasing order
of d(x1, x2), then the indicator is true only for the first
c̃2δm of x2’s. Thus, the probability of an unbalanced
split is at most 2c̃2δm2/m(m− 1) ≤ 4c̃2δ.

Proof of Lemma 6. We denote the path from the root
of the tree to A by S = A1 ⊃ A2 ⊃ . . . ⊃ Ah−1 ⊃
Ah = A. Let A′j denote the sibling of Aj for j ≥ 2. By
the Markov inequality, one can write for any t > 0,

P(|A| > m) ≤
( n
m

)t
E

[
|Ah|t

|A1|t

]
=
( n
m

)t
E

[
|Ah−1|t

|A1|t
E

[
|Ah|t

|Ah−1|t

∣∣∣∣Ah−1]] .
One can bound the inner conditional expectation as

E

[
|Ah|t

|Ah−1|t

∣∣∣∣Ah−1]
= E

[
|Ah|t

|Ah−1|t
1
(
|Ah| > (1− δ)|Ah−1|

)∣∣∣∣Ah−1]
+ E

[
|Ah|t

|Ah−1|t
1
(
|Ah| ≤ (1− δ)|Ah−1|

)∣∣∣∣Ah−1]
≤ P

(
|A′h| ≤ δ|Ah−1|

)
+ (1− δ)t ,

where the inequality follows by replacing the ratio
by 1 in the first expectation, and |Ah| by its up-
per bound in the second one. Due to Lemma 5, one
can see that this bound is at most

(
4c̃2δ + (1− δ)t

)
.

For t = (1/δ) log(1/4c̃2δ), one can use the fact that

(1/δ) log(1/(1− δ)) ≥ 1 to show that the above expec-
tation is at most 8c̃2δ. Subsequently, we use the same
technique of conditioning with everyAj , j = 2, . . . , h−2
to obtain

P(|A| > m) ≤
( n
m

) 1
δ log( 1

4c̃2δ
)

(8c̃2δ)h−1.

3.2.2 Proof of Theorem 3

The nearest neighbor search for a query point q is done
by traversing the tree from the root to one of the leaves.
Let us denote the visited path by S = A1 ⊃ A2 ⊃
. . . ⊃ Ak−1 ⊃ Ak, where Ak is the leaf node containing
x̂q. We assume that q /∈ S, as otherwise the nearest
neighbor search algorithm returns the query. By simple
reasoning, it follows that x̂q 6= xq only if xq /∈ Ak,
which happens if there is l ∈ {1, 2, . . . , k−1} such that
xq ∈ Al\Al+1. Hence,

P(x̂q 6= xq) = P

(
k−1⋃
l=1

{xq ∈ Al, xq /∈ Al+1}

)

≤
k−1∑
l=1

P(xq /∈ Al+1|xq ∈ Al)P(xq ∈ Al)

≤
k−1∑
l=1

P (xq /∈ Al+1 |xq ∈ Al, |Al| ≥ ml )P (|Al| ≥ ml) +

P (xq /∈ Al+1 |xq ∈ Al, |Al| < ml )P (|Al| < ml) (7)

where ml = n0/(1− γ)k−1−l for some γ ∈ (0, 1). The
first inequality is due to union bound, while the second
one uses P(xq ∈ Al) ≤ 1 and further decomposes based
on |Al|.
Lemma 7 (Probability of missing nearest neigh-
bor in one branch). Under the condition on q stated
in Theorem 3, for any l = 1, 2, . . . , k − 1,

P(xq /∈ Al+1|Al, xq ∈ Al) ≤ C|Al|−α .

Note that for the two conditional probabilities in (7),
|Al| is at least ml and n0, respectively. Using Lemma 7,
one can bound these probabilities. To obtain a bound
on P (|Al| < ml), we follow Lemma 6.

Observe that Lemma 6 implies that after repeated
splits, it is less likely that the ratio of the final node
to the root node will be large. In the present context,
we know that |Ak−1| ≥ n0. Thus, for any l < k − 1,
the bound in Lemma 6 can be used to argue that
|Ak−1|/|Al| cannot be large. Formally,

P (|Al| < ml) = P

(
|Ak−1|
|Al|

>
n0
ml

)
≤ (8c̃2δ)k−1−l

(
1

(1− γ)k−1−l

) 1
δ log( 1

4c̃2δ
)

=

(
0.25

(1− γ)96c̃2 log 2

)k−1−l
,
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using δ = 1/32c̃2 as in Theorem 1. Substituting the
above bound in (7) and using Lemma 7, we have

P(x̂q 6= xq) ≤
k−1∑
l=1

Cn−α0 (1− γ)α(k−1−l)

+ Cn−α0

(
0.25

(1− γ)96c̃2 log 2

)k−1−l
.

Choosing γ = 1− (0.25)1/(α+96c̃2 log 2), one can see that
the second term is smaller than the first, and hence,

P(x̂q 6= xq) ≤
2Cn−α0

1− (1− γ)α
≤ 2Cn−α0

1− (0.25)α/67.5c̃2
.

From above, we obtain the bound in (5) by using the
relation 1−a ≤ b(1−a1/b), which holds for any a ∈ (0, 1)
and b > 1. This proves Theorem 3.

We end the section with the proof of Lemma 7.

Proof of Lemma 7. Let |Al| = m, and let us order the
elements such that d(q, xi) ≤ d(q, xj) for i < j. Since
xq ∈ Al, we have x1 = xq. Note that if xq /∈ Al+1, then
it is certainly not a pivot element. Moreover, if xi, xj ∈
Al are the pivot elements for i < j, then xq /∈ Al+1

implies d(xq, xi) ≥ d(xq, xj). The inequality can even
be strict depending on which is chosen as the left pivot.
Hence, we have

P(xq /∈ Al+1|Al, xq ∈ Al)

≤ 1

m(m− 1)

∑
2≤i<j≤m

1
(
d(xq, xi) ≥ d(xq, xj)

)
.

By the triangle inequality,

d(xq, xi) ≤ d(q, xi) + d(q, xq) and

d(xq, xj) ≥ d(q, xj)− d(q, xq) .

Hence, one may count the pairs i < j for which

d(q, xj) ≤ d(q, xi) + 2d(q, xq) .

As a consequence, we can write

P(xq /∈ Al+1|Al, xq ∈ Al) ≤
1

m(m− 1)
·

m∑
i=2

∣∣{x ∈ A : d(q, xi) ≤ d(q, x) ≤ d(q, xi)+2d(q, xq)}
∣∣,

where each term in the sum is at most Cm1−α due to
the assumption on q. Thus, the claim of the lemma is
true.

4 EXPERIMENTS

4.1 Euclidean Setting

In this section we compare the performance of compar-
ison trees to standard space partitioning trees in Eu-
clidean spaces. Note that the latter have access to the
vector representation of the points (and thus also to all
pairwise distances), whereas the comparison tree only
has access to triplet comparisons. Thus, the purpose of
this comparison cannot be to show that the compari-
son tree “outperforms” the other ones, but to examine
whether it is much worse or not. There are numerous
tree constructions in Euclidean spaces. Based on the
results in Ram and Gray (2013) we decided to compare
with KD-Tree (Bentley, 1975), RP-Tree (Dasgupta and
Freund, 2008) and PA-Tree (McNames, 2001).

A description of the datasets is presented in Table 2.
MNIST is a dataset of hand-written digits (LeCun
et al., 1998). Gisette, CoverType and Chess (King-Rook
vs. King) are from the UCI repository (Lichman, 2013).
Corel is a subset of histograms as it is used in Liu et al.
(2004). CoAuth is the collaboration network of Arxiv
High Energy Physics from Davis and Hu (2011). We
used the largest connected component of the graph and
the shortest path as metric. MSC (Boeing/msc10848)
is a similar but weighted graph from Davis and Hu
(2011)2.

Table 2: Description of datasets

Dataset Size Dimension Distance

MNIST 70000 784 Euclidean
Gisette 12500 5000 Euclidean

CoverType 50000 53 Euclidean
Corel 19787 44 Euclidean
Chess 28056 6 Mismatch

CoAuth 11204 - Shortest Path
MSC 10848 - Shortest Path

We assess the performance of the nearest neighbor
search by the leave-one-out method. We report the
empirical probability of missing the nearest neighbor:
(1/|S|)

∑
q∈S 1 (NNalg(q) 6= NN(q)) as a performance

measure. Here S is the whole dataset, NNalg denotes
the result of nearest neighbor search by the algorithm
while the true nearest neighbor is NN(q).

Figure 1 shows the performance of the comparison tree
versus other methods in the Euclidean space. The com-
parison tree has less error compared to RP-Tree and
KD-Tree, and has slightly worse performance compar-
ing with the PA-Tree. However, the differences are not

2There are negative edge weights in the graph, however
we used absolute values of edge weights to have a metric
by using shortest path distances.
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Figure 1: Performance comparison of the comparison tree versus other binary space partitioning trees with respect
to the maximum leaf size, n0.

huge, and we find the behavior of the comparison tree
quite satisfactory, given that it receives much less input
information than the other methods.

4.2 Comparison-Based Setting

Among the few comparison-based methods cited in
the introduction, many are not practical or have al-
ready been shown to perform sub-optimally. The most
promising competitor to our method is the Rank Cover
Tree (RCT) (Houle and Nett, 2015). As the original
implementation of the authors was not available, we
implemented the method ourselves in Matlab.

We have two objectives when comparing the two
comparison-based trees: the number of required triplet
questions, and the accuracy they achieve in the nearest
neighbor search. While the latter is easy to compare,
the former is more of a challenge. It is impossible to
construct an RCT with the same number of triplets
that the comparison tree requires in construction phase,
since the RCT needs orders of magnitude more triplets
in construction. Thus, we decided to construct both
trees in such a way that the number of triplet compar-
isons in the query phase is matched. We then compare
the search performance, but also the number of triplets
in the tree construction phase. For the RCT, the perfor-
mance and the number of comparisons can be balanced
by adjusting the coverage parameter ω, see Houle and
Nett (2015) Section 4. For comparison trees, n0 plays
a similar role. By varying these two parameters we
match the number of comparisons in the query phase.

We randomly choose 1000 data points in each exper-
iment as test set for the query phase and the rest of
the dataset for the tree construction. The empirical
error defined in previous section is not well-defined for
some of datasets in this section. In CoAuth and Chess
dataset, many points have more than one nearest neigh-
bor. Thus, we report the average relative distance er-

ror defined as (1/|S|)
∑
q∈S

(
dalg
dNN
− 1
)

(Liu et al., 2004).

Here dalg denotes the distance of query to the predicted
nearest neighbor by the algorithm and dNN denotes the
distance of the query to the true nearest neighbor.

Figure 2 shows the performance of the comparison tree
compared to the RCT on four datasets from Table 2.
The results on the remaining Eulidean datasets are
very similar to MNIST, hence we do not present them.
We consider different parameter settings and match the
average number of triplets used in the query phase. In
terms of the relative distance errors, the RCT works
slightly better in datasets with low intrinsic dimension,
specially when we are provided with more triplets in
query phase. However, as the bottom row in Figure 2
shows, to achieve this performance the RCT needs or-
ders of magnitude more triplet comparisons in the tree
construction phase. Therefore, if answering triplet com-
parisons is expensive, then the comparison tree clearly
is a good alternative to the RCT.

4.3 Expansion Rate Approximation

In our theoretical analysis, we used the strong expan-
sion condition defined in Equation (2). It is an obvious
question to find out how strong these conditions re-
ally are and what the corresponding constants in our
datasets would be. To this end, we provide a method to
estimate the expansion rates for our datasets. We fix a
dataset, for each point x we look for the smallest c̃ such
that Equation (2) holds for that particular point. We
find the smallest value with respect to various radii r. In
this way we estimate an empirical pointwise c̃(x) value
for each point. Since the definition depends on the
number of points in the dataset, we randomly choose
10000 points from each dataset for these experiments.
The distribution of empirical expansion rates c̃(x) are
plotted by box-and-whisker plots in Figure 3.

For our theoretical analysis, we used the smallest pos-
sible c̃ for the whole dataset. However the distribution
of pointwise values c̃(x) is a more practical criterion to
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Figure 2: Comparing the performance of the comparison tree versus the RCT with various parameters in the
construction phase. The top row corresponds to the average relative distance error with respect to the average
number of triplets that each method used in the query phase. The bottom row shows the number of triplets used
in the construction phase for both methods. Note that x-axis is the same in both rows.
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Figure 3: Distribution of empirical expansion rates c̃(x)
estimated for various datasets. Each bar represents the
distribution of pointwise expansion rates for the corre-
sponding dataset. CoAuth and CoverType datasets are
abbreviated as “CA” and “CT” respectively. Note that
the range of the expansion rates is 10 times higher for
the first two datasets, thus we plotted them separately.

consider. Except for MNIST and Gisette, these values
are reasonably small. Therefore, the values can justify
the validity of the assumption on real datasets.

5 CONCLUSIONS

Comparison-based nearest neighbor search is a funda-
mental ingredient in machine learning algorithms in the
comparison-based setting. Because triplet comparisons
are expensive, we investigate the query complexity of

comparison-based nearest neighbor algorithms. In par-
ticular, we study the comparison tree, which leads to a
nice and simple, yet adaptive data structure. We prove
that under strong conditions on the underlying met-
ric, the comparison tree has logarithmic height, and we
can bound the error of the nearest neighbor search. We
also show in simulations that comparison trees perform
not much worse than Euclidean data structures (albeit
using much less information about the data), and per-
form favorably to other comparison-based methods if
we take both the number of triplet comparisons and
the nearest neighbor errors into account.

There are still a number of interesting open questions
to address. The conditions we use in our analysis are
rather strong, and this seems to be the case for all
other papers in this area as well. Can they be consider-
ably weakened? Can we prove that our conditions will
be satisfied with small constants if we sample point
from a nice metric or Euclidean space? Finally, all the
above work assumes that a ground truth for the triplet
comparisons exists and that the answers to the triplet
queries are always correct. It would be interesting to
see how the query complexity of the comparison tree
increases if the error in the triplets increases.
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