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ten Brinke, Stimson, and Carney (2014; tBSC14) reported that unconscious processes detect 

liars better than conscious processes, the latter being typically close to chance (~54% correct; 

Bond and DePaulo, 2006). tBSC14 concluded that “although humans cannot consciously 

discriminate liars from truth tellers, they do have a sense, on some less-conscious level, of 

when someone is lying” (p. 1103) and argued that “accurate unconscious assessments are 

made inaccurate either by consolidation with or correction by conscious biases and incorrect 

decision rules” (p. 1104). In short: tBSC14 suggested that humans unconsciously know quite 

well whether somebody is lying and that it is conscious deliberations that render these 

accurate unconscious assessments inaccurate.  

Such conclusions could potentially have far reaching practical consequences. For example, 

based on these conclusions, we could advise jurors and eye-witnesses at court to trust mainly 

their intuition and avoid conscious deliberations. However, this is a dangerous road to travel. 

There are well-documented cases in which eye-witnesses erred in their intuitive judgment and 

only conscious deliberation led to the truth (Loftus, 2003). Therefore, before concluding that 

"accurate lie detection is, indeed, a capacity of the human mind, potentially directing survival- 

and reproduction-enhancing behavior from below introspective access" (tBCS14 p. 1104), we 

should make sure that there is strong scientific evidence. While the plausibility of tBSC14's 

data has already been challenged (Levine and Bond, 2014; but see ten Brinke and Carney, 

2014), we show that tBSC14's statistical reasoning is flawed and that a more appropriate 

analysis of their data does not provide evidence for accurate unconscious lie detection.  

The R–code of all analyses can be found at https://osf.io/7825t 
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In tBSC141, participants watched 12 videos of interrogations, 6 showing a liar, 6 a truth-

teller (participants were not told who was liar/truth-teller). Then participants performed two 

tasks. In the direct (conscious) task they saw pictures of the suspects, classified them as liars 

or truth–tellers and performed poorly (percent-correct: PC = 49.6% chance-level: 50%). In the 

indirect (unconscious) task, the pictures of the suspects (“primes”) were masked, such that 

they could not be perceived consciously. Participants sorted well visible words (“targets”) like 

“deceitful” or “honest” into the categories “lie” or “truth”. Participants were significantly 

faster if prime and target were congruent (e.g., the word “deceitful” preceded by a picture of a 

liar) than if they were incongruent. Based on this significant congruency effect, tBSC14 

concluded that there are “accurate unconscious assessments” (p. 1104) of liars vs. truth–tellers 

in the indirect (unconscious) task; better than the chance–level performance in the direct 

(conscious) task. 

However, this conclusion is flawed. The test for a significant congruency effect is only 

concerned with the question whether a ‘true’ difference in reaction times (RTs) exists in the 

population, no matter how big. We can only conclude from this effect that some classification 
                                                

1 We concentrate on Exp. 2 of tBSC14, as only this experiment presented unconscious 

stimuli. Exp. 1 investigated whether consciously well-visible pictures of the suspects had 

indirect effects on another task. Nevertheless, our critique also applies to Exp. 1, because 

there tBSC14 also infer good classification from a significant RT-difference for these 

indirect effects, while our analysis --- using the method described under (i) in our main 

text --- results in PC = 51.1% (SD = 3.71%), which is again clearly below the 54% 

described as “detection incompetence” by tBSC14 (p. 1098). 
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of the suspects has happened, but we do not know how accurate this was and whether it was 

more accurate than in the direct task. To make the claim that the RTs are evidence for good 

unconscious classification, tBSC14 would have needed to show that the RTs can be used to 

classify whether the suspects were truth-tellers or liars. Only then is it possible to compare this 

‘indirect classification accuracy’ to the accuracy in the direct task. 

How can such an indirect classification be performed? Due to the experimental design, 

classifying suspects as truth-tellers vs. liars is equivalent to classifying trials as congruent vs. 

incongruent (e.g., if a trial is classified as congruent and the well visible target was 

“deceitful”, then the suspect is classified as liar). Because tBSC14 argued that the congruency 

effect is evidence for accurate unconscious classification (fast RTs in congruent trials, slow 

RTs in incongruent trials), all we need to do is find an appropriate threshold t and classify all 

trials with RTs smaller than t as congruent and trials with RTs larger than t as incongruent.  

We	  performed	  this	  classification	  on	  the	  tBSC14	  data	  with	  different	  choices	  of	  

thresholds:	  (i)	  Under	  the	  assumption	  that	  RTs	  follow	  normal	  or	  lognormal	  distributions	  

(Ulrich	  &	  Miller,	  1993),	  the	  threshold	  that	  leads	  to	  the	  best	  expected	  accuracy	  in	  a	  design	  

with	  equal	  number	  of	  congruent	  and	  incongruent	  trials	  is	  the	  median	  of	  the	  RTs	  (e.g.,	  

MacKay,	  2003;	  p.	  190).	  Therefore,	  we classified the trials of each participant using her/his 

median RT as threshold, computed the accuracy over all trials of the participant, and averaged 

the accuracies across participants. This results in an average accuracy of PC = 50.6% (SD = 

2.65%). (ii) Avoiding assumptions about the RT distributions, we selected a threshold 

according to the standard procedures of machine learning (Shalev-Shwartz, Ben-David, 2014): 

We randomly split the trials of each participant into equal-sized training and test sets (other 
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split sizes led to similar results). On the training set, we determined the threshold that leads to 

the best accuracy and used it to classify the test set. We repeated this procedure ten times with 

different random splits of the data for each participant. This leads to an average accuracy of 

PC = 49.5%  (SD = 2.60%) (iii) To construct an overly optimistic upper bound---that is, the 

highest accuracy that possibly can be achieved on the given data---we evaluated the accuracy 

of all possible thresholds over all trials of each participant, determined the best result, and 

averaged the obtained accuracies across participants. This results in an accuracy of PC = 

53.7% (SD = 1.99%), meaning that for these data, no possible classifier exists with an 

accuracy larger than 54% — the very number that was interpreted as “detection 

incompetence” by tBSC14 (p. 1098). In short: the classification accuracy in the indirect task is 

just as poor as in the direct task and can for all practical purposes be considered as being at 

chance. There is no evidence for accurate unconscious assessments.  

Although this result seems clear and consistent, one might ask whether it is fair to assess 

indirect classification performance with RTs from single trials. One might argue that it would 

be better to average the RTs of multiple trials, thereby reducing measurement error and 

possibly improving accuracy. It is known from machine learning that such procedures can 

under certain conditions improve accuracy (e.g., Bühlmann, 2004). We tested this idea in two 

variants: (iv) For each participant we averaged all trials related to each suspect, classified 

these averages using the median across all suspects as threshold, and averaged the accuracies 

over all participants. This resulted in PC = 51.9% (SD = 16.30%) (v) We averaged the RTs 

related to each suspect across all trials and all participants, thereby including all available 

information for the classification.  This resulted in PC = 50.0%. In short, even if we combine 
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RTs from multiple trials and multiple participants, there is no evidence for better accuracy in 

the indirect task than in the direct task.  

To understand why a significant difference does not indicate accurate classification, 

consider an intuitive example. Suppose we tried to classify individual adults as female versus 

male based on their weights. The weight distributions for the two genders overlap a lot, so we 

would perform poorly2. On the other hand, if we performed a standard significance test, we 

would form two groups of same-gender adults and compared their mean weights. If the groups 

are large enough, we can easily obtain a significant difference. This shows how a significant 

difference can coexist with essentially chance-level classification accuracy and that we cannot 

infer good classification accuracy of the individual adults from the fact that the group-means 

are significantly different. Good classification requires more, namely a clear separation of the 

female/male weight distributions at the level of the individual adults (or the RT-distributions 

at the level of the individual suspects in tBSC14). For tBSC14 we have shown that --- no 

matter how we aggregate the individual trials --- the RT-distributions of liars vs. truth-tellers 

always overlap so heavily that no good classification can be obtained.  

To conclude, the data of tBSC14 do not provide any evidence for accurate unconscious lie 

detection. A significant difference in the indirect task does not indicate accurate unconscious 

classification. For a meaningful comparison of the classification accuracies in the indirect and 
                                                

2 We thank an anonymous reviewer for suggesting this example. The average male/female 

weight difference is app. 13 kg; SD in each group app. 33 kg (McDowell, et  al., 2008). 

This results in an effect size of d=13/33=0.4 and a classification accuracy of PC = 58%. 

This is small, but still well above the accuracy we found for tBSC14. 
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direct tasks, they have to both measure just that: classification accuracy. We thank tBSC14 for 

making their data available (Eich 2014). This allows for a rapid self-correction of science 

without going through lengthy replication attempts first --- which easily can take years, if they 

are successful at all (Ioannidis, 2012). 



8 

Acknowledgments 

We thank Gilles Blanchard and Frank Rösler for comments. UvL was supported by DFG / 

grant LU1718/1-1 / Research Unit 1735 “Structural Inference in Statistics: Adaptation and 

Efficiency”. 

Author contributions 

VHF discovered the methodological flaws and reanalyzed the data of tBSC14 in R, UvL 

verified all arguments and re-implemented the analyses independently in Matlab. Both wrote 

the paper. 



9 

References 

Bond, C. F., & DePaulo, B. M.  (2006). Accuracy of deception judgments. Personality and Social Psychology 

Review, 10, 214–234. 

Bühlmann, P. (2004). Bagging, boosting and ensemble methods. In: Handbook of Computational Statistics: 

Concepts and Methods (eds. Gentle, J., Härdle, W. and Mori, Y.), pp. 877-907. Springer. 

Eich, E.  (2014). Business not as usual. Psychological Science, 25(1), 3–6. 

Ioannidis, J. P. A. (2012). Why science is not necessarily self–correcting. Perspectives on Psychological Science, 

7, 645–654. 

Levine, T. R., & Bond, C. F.  (2014). Direct and indirect measures of lie detection tell the same story: A reply to 

ten Brinke, Stimson, and Carney (2014). Psychological Science. (published online June 25, 2014) 

Loftus, E.  (2003). Science and society — Our changeable memories: Legal and practical implications. Nature 

Reviews Neuroscience, 4, 231–234. 

MacKay, D. J. C.  (2003). Information theory, inference & learning algorithms. New York, NY, USA: 

Cambridge University Press. 

McDowell, M. A., National Center for Health Statistics (US), et al.  (2008). Anthropometric reference data for 

children and adults: United States, 2003–2006. US Department of Health and Human Services, Centers 

for Disease Control and Prevention, National Center for Health Statistics. 

Shalev-Shwartz, S. & Ben-David, S. (2014) Understanding machine learning: from theory to algorithms. 

Cambridge University Press.   

ten Brinke, L., Stimson, D., & Carney, D. R.  (2014). Some evidence for unconscious lie detection. 

Psychological Science, 25(5), 1098–1105. (published online Mar 21, 2014)  

ten Brinke, L., & Carney, D. R.  (2014). Wanted: Direct comparisons of unconscious and conscious lie detection. 

Psychological Science. (published online Aug 15, 2014) 

Ulrich, R., & Miller, J.  (1993). Information–processing models generating lognormally distributed reaction–

times. Journal of Mathematical Psychology, 37, 513–525. 


