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Abstract

In explainable machine learning, local post-
hoc explanation algorithms and inherently inter-
pretable models are often seen as competing ap-
proaches. This work offers a partial reconciliation
between the two by establishing a correspondence
between Shapley Values and Generalized Addi-
tive Models (GAMs). We introduce n-Shapley
Values, a parametric family of local post-hoc ex-
planation algorithms that explain individual pre-
dictions with interaction terms up to order n. By
varying the parameter n, we obtain a sequence
of explanations that covers the entire range from
Shapley Values up to a uniquely determined de-
composition of the function we want to explain.
The relationship between n-Shapley Values and
this decomposition offers a functionally-grounded
characterization of Shapley Values, which high-
lights their limitations. We then show that n-
Shapley Values, as well as the Shapley Taylor-
and Faith-Shap interaction indices, recover GAMs
with interaction terms up to order n. This implies
that the original Shapely Values recover GAMs
without variable interactions. Taken together, our
results provide a precise characterization of Shap-
ley Values as they are being used in explainable
machine learning. They also offer a principled in-
terpretation of partial dependence plots of Shapley
Values in terms of the underlying functional de-
composition. A package for the estimation of dif-
ferent interaction indices is available at https:
//github.com/tml-tuebingen/nshap.

1 INTRODUCTION

Local post-hoc explanation algorithms and inherently inter-
pretable models are two of the most prominent approaches
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in explainable machine learning (Molnar, 2020; Holzinger
et al., 2022). Despite a number of arguments about their rel-
ative benefits, the differences and similarities between these
two approaches remain largely unresolved Rudin (2019). In
the current literature, post-hoc explanations and inherently
interpretable models are often framed as different concepts,
with research papers, book chapters, and tutorials divided
along these lines (Lundberg et al., 2020; Molnar, 2020;
Lakkaraju et al., 2020). We take a different perspective and
highlight the similarities between post-hoc explanations and
interpretable models. We do so for the particular case of
Shapley Values, a prominent feature attribution method, and
GAMs, a popular class of interpretable models.

Post-hoc explanations with Shapley Values. The sem-
inal work by Lundberg and Lee (2017) introduced the
SHAP feature attributions. These are based on the literature
on Shapley Values in game theory. The authors showed
that for linear functions f(x) = wTx and statistically in-
dependent features, the SHAP attributions take the form
Φi = wi(xi − E(xi)), thus establishing a link between the
post-hoc explanation method and a very simple type of in-
terpretable model. This work has inspired a whole branch
of literature on explainable machine learning. Most relevant
to us are Shapley Interaction Values (Lundberg et al., 2020),
which extend Shapley Values with local interaction effects
between pairs of features.

An important building block of our work is the general-
ization of Shapley Interaction Values towards n-Shapley
Values, a novel type of Shapley-based post-hoc explana-
tion that is able to incorporate arbitrarily many variable
interactions. Similarly to the Shapley Taylor- (Sundararajan
et al., 2020) and the Faith-Shap interaction index (Tsai et al.,
2022), n-Shapley Values are a parametric family of local
post-hoc explanation algorithms that explain individual pre-
dictions with interaction terms up to order n. As n increases,
the explanations become more complex and expressive and
are able to faithfully explain more complex models.

Generalized Additive Models (GAMs hereafter) are a pop-
ular class of interpretable models with a restricted form of
non-linearity (Hastie and Tibshirani, 1990; Caruana et al.,
2015; Agarwal et al., 2021a). Traditionally, GAMs are
allowed to exhibit (arbitrary) non-linearity in individual
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features, but no interaction between features is allowed.
GA2Ms (Lou et al., 2012) relax this restriction and allow
for interaction between pairs of features. Conceptually, it
is straightforward to extend GAMs with interaction effects
of any desired order n (this comes, however, at the cost of
human interpretability). Important to us, the model class of
GAMs suffers from an identification problem. As soon as
we introduce variable interactions, the way in which a given
function can be written as a GAM is no longer uniquely
determined Lengerich et al. (2020).

Shapley-based explanations faithfully explain GAMs. In
this work, we show that different kinds of Shapley-based
post-hoc explanations (Lundberg and Lee, 2017; Lundberg
et al., 2020; Sundararajan et al., 2020; Tsai et al., 2022) are
completely faithful to GAMs: if the function to be explained
is a GAM, then the explanations recover its individual non-
linear component functions. We link the order of the GAM
– the maximum degree of variable interaction that is present
in a function – with the order of an explanation that we use
to explain that function. If the order of the explanation is
at least as large as the maximum variable interaction that
is (locally) present in the model, then the explanations are
guaranteed to recover a faithful representation of the func-
tion as a GAM. This result applies to the newly proposed
n-Shapley Values, as well as to the Shapley Taylor- and
Faith-Shap interaction indices. As a special case, our re-
sults imply that the interventional SHAP feature attributions
(Lundberg and Lee, 2017; Janzing et al., 2020) are perfectly
faithful to GAMs without variable interactions, even if the
features are arbitrarily dependent.

What is more, we show that Shapley-based post-hoc ex-
planations of any function implicitly solve the problem
of representing the function as a GAM (potentially with
variable interactions of very high order). This means that
our results provide insights into the mechanics of Shapley
Values not only if the function to be explained is a lower-
order GAM, but any (learned) function, for example a neural
network. Concretely, we identify a necessary and sufficient
regularity condition – subset compliance – under which a
value function gives rise to a well-defined functional decom-
position of the function that we attempt to explain. Because
this decomposition connects Shapley Values with GAMs,
we term it the Shapley-GAM.

Taken together, our results offer a precise functionally-
grounded analysis of Shapley Values, one of the most
widely used approaches in explainable machine learning
(Doshi-Velez and Kim, 2017). They also highlight the pecu-
liar properties of these explanations, and the way in which
they are different from other feature attribution methods
(Covert et al., 2021; Krishna et al., 2022). For example,
contrary to popular belief, Shapley Values only depend on
the coordinates of the point that we attempt to explain, but
not on the local neighbourhood of that point. This in turn
implies that the explanations are unrelated to the gradient

and do not perform any kind of local function approximation
(Han et al., 2022).

We consider n-Shapley Values to be a useful tool for prac-
titioners who want to debug black-box models. Moreover,
we introduce a novel method to plot feature attributions of
higher order that is consistent with the underlying theory (de-
picted, for example, in Figure 1). We also introduce a way
to estimate the amount of variable interaction that is neces-
sary to represent a given function. Finally, we study the link
between accuracy and the average degree of variable inter-
action present in different standard classifiers (Section 7).

2 RELATED WORK

Shapley Values. The seminal paper by Lundberg and Lee
(2017) has led to a line of work that investigates the usage
of Shapley Values in explainable machine learning (Chen
et al., 2020; Heskes et al., 2020; Slack et al., 2020; Al-
bini et al., 2022). Shapley Values originate in a literature
on economic game theory (Shapley, 1953), and our work
builds on a particular paper from this literature, namely the
seminal work by Grabisch (1997) on additive set functions.
The idea to extend Shapley Interaction Values towards n-
Shapley Values is closely related to other approaches that
also extend the Shapley Value (Grabisch, 1997; Lundberg
et al., 2020; Sundararajan et al., 2020; Tsai et al., 2022).
The efficient computation of Shapley Values is a topic of
ongoing research interest (Lundberg et al., 2020; Jethani
et al., 2021). Our results also relate to the debate about the
choice of value function (Sundararajan and Najmi, 2020;
Janzing et al., 2020). Shapley Values have been explored
in various tasks with human decision makers, a topic about
which there is much debate (Kumar et al., 2020).

Generalized Additive Models. Generalized additive mod-
els originate in statistics (Hastie and Tibshirani, 1990) and
have recently become popular in combination with trees
(Lou et al., 2012, 2013) and neural networks (Agarwal et al.,
2021a). On tabular data sets, interpretable GAMs with
few interactions (Caruana et al., 2015) can often achieve
competitive accuracy, which has led to an active line of re-
search on these models (Wang et al., 2022; Lengerich et al.,
2022). From a statistical perspective, the decomposition of
a function as a GAM is underdetermined, which has led to
the development of additional uniqueness criteria such as
functional ANOVA (Hooker, 2007; Lengerich et al., 2020).

Explainable Machine Learning. Shapley Values are one
of many different feature attribution methods (Ribeiro et al.,
2016; Sundararajan et al., 2017; Kommiya Mothilal et al.,
2021) about which there is a large literature (Lee et al., 2019;
Garreau and von Luxburg, 2020; Slack et al., 2021; Covert
et al., 2021; Krishna et al., 2022; Han et al., 2022) and much
debate (Lipton, 2018; Rudin, 2019; Bordt et al., 2022). Con-
siderable debate also exists around the question whether
there is an accuracy-explainability trade-off or a cost of us-
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ing interpretable models (Rudin, 2019; Moshkovitz et al.,
2020). Apart from GAMs, there are many other inter-
pretable models such as rule lists (Wang and Rudin, 2015)
and sparse decision trees (Lin et al., 2020). Since our work
is exclusively focused on Shapley Values and GAMs, we
do not offer a comprehensive review of the literature on
explainable machine learning. This can be found in many
other places (Molnar, 2020; Samek et al., 2021; Holzinger
et al., 2022; Rudin et al., 2022).

3 BACKGROUND AND NOTATION

We consider data points x ∈ Rd with d features, and a
function f : Rd → R whose behavior we want to explain.
We consider the local post-hoc explanation setting with
feature attributions: For a point x ∈ Rd, our goal is to
explain which input features (or combinations thereof) were
most influential in determining the “decision” f(x). In order
to do so, we assign real numbers to input features and their
combinations. The higher the absolute value of this number,
the more influential the feature is considered to be (for an
illustration consider Figure 1).

In what follows, we denote [n] = {1, . . . , n} and use
subsets of coordinates S = {s1, . . . , sn} ⊂ [d] to index
both data points xS = (xs1 , . . . , xsn) and collections of
functions fS(xS) = fxs1

,...,xsn
(xs1 , . . . , xsn) where we

assume the ordering s1 < · · · < sn.

3.1 Value Functions and Shapley Values

For a data point x ∈ Rd, a subset of coordinates S ⊂ [d],
and a function f , the value function v(x, S) is supposed to
quantify how much the features that are present in S con-
tribute towards the prediction f(x). Two important value
functions are the observational SHAP value function Lund-
berg and Lee (2017)

v(x, S) = Ez∼D [f(z) |xS ] (1)

and the interventional SHAP value function (Chen et al.,
2020; Janzing et al., 2020)

v(x, S) = Ez∼D [f(z) | do(xS)] . (2)

Shapley Values, denoted by Φi(x), are obtained from the
value function via the well-known Shapley formula (Shap-
ley, 1953). We first introduce the Shapley Interaction Index
(Grabisch and Roubens, 1999), given by ∆S(x) =∑
T⊂[d]\S

(d− |T | − |S|)!|T |!
(d− |S|+ 1)!

∑
L⊂S

(−1)|S|−|L|v(x, L ∪ T ).

(3)
The Shapley Value Φi(x) of feature i at x is then simply
given by ∆i(x). Importantly, different value functions give
rise to different Shapley Values, so that there effectively
exists a multiplicity of possible Shapley Values, depending

on our choice of value function (Sundararajan and Najmi,
2020). The popular KernelSHAP algorithm (Lundberg and
Lee, 2017) approximates Shapley Values with respect to
the interventional SHAP value function. The corresponding
attributions are also known as the SHAP feature attributions.
The following regularity condition, satisfied by both (1) and
(2), will guarantee that the value function gives rise to a
well-defined functional decomposition of the function that
we attempt to explain.
Definition 1 (Subset-Compliant Value Function). We say
that v(x, S) is a subset-compliant value function for f :
Rd → R if v(x, [d]) = f(x) and if the value v(x, S) de-
pends only on those coordinates of x that are indexed by
S. For a subset-compliant value function, we also write
v(x, S) = v(xS , S).

3.2 Generalized Additive Models

We employ the following definition of a generalized additive
model (GAM) of order n.
Definition 2 (Generalized Additive Model of order n). We
say that f : Rd → R is a generalized additive model of
order n if f can be written in the form

f(x) =
∑

S⊂[d], |S|≤n

fS(xS) (4)

In words, the function f can be described as a simple sum
with interaction terms of at most n variables at a time. The
individual functions fS are called component functions of
f . GAMs with few interactions (n = 1, 2, 3) are often
considered interpretable and called Glassbox-GAMs (Lou
et al., 2012; Caruana et al., 2015). The reason for this is that
the feature-wise shape functions f1, . . . , fd can be easily
visualized, see for example Figure 4.

If we allow for interactions of arbitrary order, that is n = d,
then every function can be written as a GAM. However, it
is a well-known fact that representing an arbitrary function
according to (4) is under-determined: Many such represen-
tations might be possible for the same function. Any such
representation is called a functional decomposition of f .
This non-identifiability has led to the development of ad-
ditional criteria on the decomposition, such as functional
ANOVA, that resolve the identification problem (Hooker,
2007; Lengerich et al., 2020).

4 FROM SHAPLEY VALUES TO
GENERALIZED ADDITIVE MODELS

We now introduce n-Shapley Values, a parametric family of
local-post hoc explanation algorithms that extends Shapley
Values (Lundberg and Lee, 2017) and Shapley Interaction
Values (Lundberg et al., 2020). We then show that every
subset-compliant value function implicitly provides a func-
tional decomposition of the function that we attempt to
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Figure 1: n-Shapley Values generate a sequence of explanations of increasing complexity, ranging from the original Shapley
Values to the Shapley-GAM. From left to right: Shapley Values (n = 1), Shapley Interaction Values (n = 2), 4-Shapley
Values (n = 4) and the Shapley-GAM (n = d). In each plot, we distributed the higher-order interaction effects uniformly
onto all involved features (as justified by Theorem 6). Taking into account the signs of the attributions, the different
contributions to each of the bars sum to the Shapley Value of that feature (Equation (13)). Taking the overall sum over all
bars for all features recovers the prediction f(x). See Appendix Section B for more details regarding this visualization.
In this example, the function f is a random forest on the Folktables Income classification task, the data point is the first
observation in our test set, and we used the value function of interventional SHAP.

explain. Due to its connection with Shapley Values, we de-
nominate this decompositions the Shapley-GAM. We then
show that for n = d, n-Shapley Values are equal to this
decomposition.

4.1 n-Shapley Values

The definition of n-Shapley Values relates to the function f
that we want to explain implicitly via the value function.
Definition 3 (n-Shapley Values). Fix a function
f : Rd → R. Let v(x, S) be a value function for f .
n-Shapley Values Φn

S provide an an attribution to all
groups of at most n features at a time, that is for all sets
S ⊂ [d] with |S| ≤ n. We define them recursively, starting
from the original Shapley Values at n = 1 up to n = d, by

Φn
S =


∆S if |S| = n

Φn−1
S +Bn−|S|

∑
K⊂[d]\S

|K|+|S|=n

∆S∪K if |S| < n.

(5)
The coefficients Bn that balance the different terms are the
Bernoulli numbers (see Appendix A). All terms except the
Bernoulli numbers additionaly depend on the point x.

While this definition might seem rather abstract, n-Shapley
Values are actually a straightforward extension of Shapley
Interaction Values (Lundberg et al., 2020). These corre-
spond to the case n = 2. The original Shapley Values
correspond to the case n = 1. Similar to the original Shap-
ley Values, n-Shapley Values are additive and always sum

to the function value f(x) (when summed over all subsets
S ⊂ [d]) of size ≤ n).1 The overall intuition behind the
recursive definition of n-Shapley Values is that starting from
the original Shapley Values at n = 1, we successively add
higher-order variable interactions to the explanations.

n-Shapley Values give rise to a sequence of explanations of
increasing complexity, ranging from the original Shapley
Values up to a functional decomposition of the function that
we attempt to explain (see Theorem 4 below). Figure 1 de-
picts such a sequence of explanations for a random forest on
the Folktables Income classification task (Ding et al., 2021).
To visualize the n-Shapley Values, we evenly distribute all
higher-order interactions onto the involved features. As we
detail in Appendix B, this technique is justified by the re-
cursive relationship between n-Shapley Values of different
order. Note that n-Shapley Values of higher order are differ-
ent from those of lower order only if the function that we
attempt to explain actually contains higher-order variable
interactions (this intuition will be made precise in Section
6). For this reason, n-Shapley Values can be used as a tool
to assess the amount of variable interaction that is present
in a given black-box predictor. For the random forest, we
can see from the rightmost part of Figure 1 that it relies on
very high degrees of variable interaction (for a quantitative
analysis, see Section 7).

1The proof of Proposition 12 in the Appendix shows that the
Bernoulli numbers are exactly the coefficients that balance equa-
tion (5) in this way.
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Figure 2: As n → d, the n-Shapley Values provide increasingly precise representations of the component functions fS of the
Shapley-GAM. This figure depicts partial dependence plots of Φ1

AGEP (Shapley Values, n = 1), Φ2
AGEP (Shapley Interaction

Values, n = 2), Φ4
AGEP (4-Shapley Values, n = 4) and Φ10

AGEP (Shapley-GAM, n = d). The leftmost partial dependence plot
is the usual plot that is often used in order to visualize Shapley Values (Lundberg et al., 2020) (the plot depicts the original
Shapley Values for the observations in the test set). It takes the often observed form where the Shapley Values are scattered
around an overall functional relationship. Theorem 4 and Theorem 6 make this intuition precise by specifying how the
Shapley Values are related to the component functions of the Shapley-GAM. The middle and right plots illustrate that as
we move towards higher-order explanations, interaction effects can be appropriately represented. As a consequence, the
partial dependence plots of individual feature attributions approach the component functions of the Shapley-GAM. In this
example, the function f is a kNN classifier on the Folktables Income classification task. Appendix Figure K.8 depicts the
partial dependence plots of all other features.

4.2 The Shapley-GAM

The following Theorem 4 shows two things. First, a subset-
compliant value function gives rise to a well-defined func-
tional decomposition. Second, d-Shapley Values are equal
to this decomposition. The transformation of the value func-
tion that defines the decomposition is well-known as the
Harsanyi Dividend (Harsanyi, 1982) or Möbius transform.

Theorem 4 (d-Shapley Values provide a functional
decomposition of f ). Fix a function f : Rd → R. Let
v(x, S) be a subset-compliant value function for f . Then
the d-Shapley Values represent the function f as a specific
GAM that we denominate the Shapley-GAM. It is given by

f(x) =
∑
S⊂[d]

fS(xS) (6)

with component functions

f∅ = v(∅) and fS(xS) = Φd
S(x) (7)

where
Φd

S(x) =
∑
L⊂S

(−1)|S|−|L|v(xL, L). (8)

For intuition about Theorem 4, consider Figure 2. It is a
well-known fact that the Shapley Value of feature i not only
depends on the value of that feature, but also on the values of
the other features of x (compare the leftmost partial depen-
dence plot in Figure 2). The reason for this is that Shapley
Values subsume higher-order variable interactions into the
attributions of individual features (according to formula (11),
as we will see below). Now, as we successively increase n,
more and more variable interactions are appropriately repre-
sented in the explanations. This means that they no longer

have to be subsumed into lower-order effects, which implies
in turn that the lower-order components of the explanations
become more distinct (middle parts of Figure 2). For n = d,
all possible variable interactions can be represented in the
explanations, which implies that d-Shapley Values become
well-defined functions of the respective features (rightmost
plot in Figure 2).

n-Shapley Values depend on the value function, and so
does the associated functional decomposition. For the ob-
servational and interventional SHAP value functions, the
functional decompositions are given as follows.
Corollary 5 (Observational and Interventional SHAP). For
the observational SHAP value function (1), the component
functions of the Shapley-GAM are given by f∅ = E[f ],

fi(xi) = E[f |xi]− E[f ]

fi,j(x) = E[f |xi, xj ]− E[f |xi]− E[f |xj ] + E[f ]

fS(xS) =
∑
L⊂S

(−1)|S|−|L|E[f |xL].

(9)

For the interventional SHAP value function, the component
functions are given by the same expression, but with the
conditional expectations replaced by the causal do-operator.

As will see below (Theorem 7), there is actually a one-to-
one relationship between subset-compliant value functions
and different functional decompositions of f .

5 FROM GENERALIZED ADDITIVE
MODELS TO SHAPLEY VALUES

In the previous section, we have seen that Shapley Values
give rise to a functional decomposition of the original func-
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Figure 3: Visualizing the Shapley-GAM of interventional SHAP. Figures depict d-Shapley Values, visualized as in Figure 1.
Different functions on different data sets require a different degree of variable interaction. (Left) A GAM without variable
interactions on the German Credit data set. (Middle Left) A gradient boosted tree on the California Housing data set.
(Middle Right) A kNN classifier on the Folktables Travel data set. (Right) The 8-dimensional checkerboard function (14).
Additional figures for more data points and classifiers can be found in Appendix K.

tion (via the associated value function). In this section, we
show that the original Shapley Values as well as n-Shapley
Values of any order are linear combinations of the com-
ponent functions of this decomposition. This provides a
novel motivation for Shapley Values that does not require
value functions or the Shapley formula. This alternative
motivation of Shapley Values is equivalent to the original
motivation via value functions: For every functional decom-
position of f , there is a corresponding subset-compliant
value function v such that the Shapley Values derived from
the decomposition and v are equal (and vice-versa).

5.1 Shapley Values from the Shapley-GAM

Theorem 6 specifies the way in which the different compo-
nent functions of the Shapley-GAM give rise to n-Shapley
Values.

Theorem 6 (n-Shapley Values from the Shapley-GAM). Let
f(x) =

∑
S⊂[d] fS(xS) be the decomposition of f provided

by the Shapley-GAM, and let Φn
S(x) be the n-Shapley Values

of f . Then, it holds that

Φn
S = fS +

∑
K⊂[d]\S

n+1≤|S|+|K|

Cn−|S|,|K| fS∪K (10)

with coefficients Cn,m =
∑n

k=0

(
n
k

)
Bk

1+m−k . Specifically,
the Shapley Value of feature i is given by

Φ1
i = fi+ · · ·+ 1

k + 1

∑
S⊂[d]\{i},|S|=k

fS∪{i}+ · · ·+ 1

d
f[d]

(11)
where all terms additionally depend on the point x.

Theorem 6 specifies how higher-order variable interactions
that are present in f are subsumed into lower-order expla-
nations. In the case of the original Shapley Values, this
is particularly intuitive: Higher-order effects are evenly
distributed among the involved features.2 Theorem 6 also
specifies what information about the function f is and is not
contained in Shapley Values. We see that different functions
f can give rise to the same n-Shapley Values as long as
n < d (Grabisch, 2016). We also see that it is impossible
to tell from individual Shapley Values whether the model
consists of main effects or complex variable interactions.
Furthermore, a feature can have zero attribution although it
appears in multiple interaction effects with different signs.

For a bit more intuition about the Shapley-GAM, Figure
3 illustrates the Shapley-GAM of interventional SHAP for
different functions. A main point is that different predictors
require a different degree of variable interaction in order to
be represented as a GAM. By definition, a Glassbox-GAM
(leftmost part of Figure 3) does not require any variable
interaction. The other extreme is the k-dimensional checker-
board function (14) (rightmost part of Figure 3), which only
consists of interaction terms of order k. Many learned func-
tions such gradient boosted trees (Figure 3, middle left) and
the k-Nearest Neighbor (kNN) classifier (Figure 3, middle
right) lie in between. Overall, there is a significant amount
of variation between different methods and problems. This
is also illustrated in many additional figures in Appendix K.
For a quantitative analysis, see Section 7.

2For individual value functions, equation (11) is known in the
literature on economic game theory (Grabisch, 1997)[Theorem 1].
Variants of it were independently re-discovered in Keevers (2020),
Herren and Hahn (2022) and Hiabu et al. (2023).
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5.2 From Functional Decompositions to
Subset-Compliant Value Functions

We have show that every subset-compliant value function
corresponds to a functional decomposition of f . We now
show that the reverse is also true, that is every functional
decomposition of f corresponds to a subset-compliant value
function. The transformation that defines the value function
is also known as the Zeta transform.

Theorem 7 (From Generalized Additive Models to Value
Functions). Let f(x) =

∑
S⊂[d] gS(x) be any functional

decomposition of f . Define the subset-compliant value func-
tion

v(x, S) =
∑
L⊂S

gL(x). (12)

Then the functional decomposition gS is the Shapley-GAM
with respect to the value function (12).

Taken together, Theorem 4 and Theorem 7 establish a bi-
jection between subset-compliant value functions and func-
tional decompositions of f . In a sense, this implies that
every functional decomposition implicitly corresponds to a
notion of feature attribution via its associated value function
and the Shapley formula (or, more directly, via equation
(11) which is just the same).

6 RECOVERY

In this section, we connect Shapley Values with interpretable
models by showing that n-Shapley Values, as well as the
Shapley Taylor- and Faith-Shap interaction indices, recover
GAMs. In order for this to be the case, the order of the ex-
planation has to be at least as large as the order of the GAM.

Theorem 8 (Shapley-based Explanations Recover GAMs).
Let f be a generalized additive model of order n. Assume
that either

(a) the value function is given by observational SHAP
and the individual features are independent random
variables, or

(b) the value function is given by interventional SHAP.

Then, n-Shapley Values, as well as the Shapley Taylor- and
Faith-Shap interaction indices of order n, recover a repre-
sentation of f as a GAM. In fact, all the interaction indices
are equal to each other and given by

Φn
S(x) = fS(xS)

where fS are the component functions of the Shapley-GAM.

Theorem 8 implies that the SHAP feature attributions re-
cover GAMs without variable interactions and that Shapley
Interaction Values recover GAMs with interactions of at

most two variables at a time. Unlike our previous results,
Theorem 8 depends on the choice of the value function.
This is because the recovery property holds if (1) the inter-
action index can be written like in equation (10), and (2) the
Shapley-GAM is a GAM or order n — and the second point
depends on the value function.

As it turns out, the independence assumption in part (a)
of Theorem 8 is indeed necessary (see Appendix D). This
is interesting insofar as it establishes the usefulness of the
interventional SHAP value function from a purely statistical
perspective, that is without any causal motivation (for a
discussion about the differences between observational and
interventional SHAP, see also Chen et al. (2020)).

Figure 4 (Top) illustrates the recovery result for a GAM
without variable interactions. For this example, we explic-
itly resort to the default implementation of the Kernel SHAP
algorithm, in order to see whether there is any significant ap-
proximation error (Kernel SHAP approximates the Shapley
Values of the interventional SHAP value function). The top
part of Figure 4 depicts the shape curve of the feature POW-
PUMA in the GAM (blue curve), as well as the associated
Kernel SHAP values (red dots). The Kernel SHAP values
lie almost exactly on the shape curve of the GAM, which
means that the recovery property holds fairly precisely, at
least in this simple example.

7 IS THERE AN ACCURACY-
COMPLEXITY TRADE-OFF?

In the previous sections, we have outlined the connections
between Shapley Values and GAMs on a theoretical level.
In this section, as well as in the next section, we turn to
more practical concerns. In this section, we investigate the
number of variable interactions that are present in various
standard classifiers. In order to do so, we rely on a number
of low-dimensional data sets on which we can reliably es-
timate the Shapley-GAM decompositions of the different
learned predictors (compare Section 8). It is interesting to
compare this against the accuracy: Because models with
more variable interactions can represent strictly more func-
tions than models with less variable interactions, it is natural
to suspect that more accurate classifiers might exhibit higher
degrees of variable interaction (Dziugaite et al., 2020).

We suggest to measure the extent of variable interaction that
is present in a given classifier with the following quantity

E
x∼D

 ∑
S⊂[d]

|S| · |fS(xS)|

/
E

x∼D

 ∑
S⊂[d]

|fS(xS)|

 .

(13)
where fS are the component functions of the Shapley-GAM
decomposition of f , using interventional SHAP.

Figure 4 (Middle) illustrates the relationship between the
predictive accuracy and our measure (13) for different pre-
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Figure 4: Top: Shapley Values recover GAMs without vari-
able interactions (Theorem 8). To create this figure, we first
trained a GAM on the Folktables Travel data set using the
InterpretML package (Nori et al., 2019). We then computed
the Kernel SHAP values for the decision function of the
GAM using the shap package (Lundberg and Lee, 2017).
For the feature POWPUMA, the Figure depicts the ground-
truth variable effect in the GAM in blue, and the associated
Kernel SHAP values for data points from the test set as red
dots. We see that the red dots lie on the blue line, that is
Kernel SHAP recovers the component function of the GAM.
Middle: The average degree of variable interaction (13)
in the Shapley-GAM of interventional SHAP for various
standard classifiers. The figure depicts predictive accuracy
versus the average degree of variable interaction. Bottom:
Estimating higher-order variable interactions requires pre-
cise evaluations of the value function. A simple way to study
this is by estimating the k-dimensional checkerboard func-
tion (14). Left: 3-way variable interactions can be precisely
estimated. Right: 7-way variable interactions can be reliably
detected, but precise estimation requires prohibitively many
samples.

dictors f . The figure depicts four different kinds of classi-
fiers: A Glassbox-GAM without variable interactions (Nori
et al., 2019), a gradient boosted tree (Chen and Guestrin,
2016), a random forest, and a kNN classifier (Pedregosa
et al., 2011). We compare these classifiers on four different
data sets: Folktables Travel and Income (Ding et al., 2021),
Iris, and German Credit. Details on the data sets and training
procedures are in Appendix J.

As far as accuracy is concerned, we see from Figure 4 that
GAMs without variable interactions perform fairly well
against the more complicated classifiers — a fact that has
often been observed in the literature (Caruana et al., 2015;
Agarwal et al., 2021a). On the more complex data sets,
however, there is usually a model with variable interactions
and slightly better accuracy3 As far as the degree of variable
interaction is concerned, we see that there is a large amount
of variation in between the different classifier.

Especially interesting is the kNN classifier. It tends to per-
form worse in terms of accuracy than the interpretable GAM,
but exhibits very high degree of variable interaction. Ob-
serve that the kNN classifier can also be considered inter-
pretable (by explaining the workings of the classifier and
providing the k data points that are responsible for the clas-
sification). Therefore, this example shows that a high degree
of variable interaction in the Shapley-GAM does not imply
that a function is hard to explain per se.

This simple empirical investigation suggests that the rela-
tion between accuracy and the average degree of variable
interaction in the Shapley-GAM is nuanced: While some
degree of interaction seems necessary in order to achieve
competitive accuracy, some classifiers seem to exhibit more
interaction than that. In some cases, the correlation might
even be negative (as for the kNN classifier).

8 COMPUTATION AND ESTIMATION

We now turn to the practical question of computing n-
Shapley Values. In this work, we take the trivial approach
and simply evaluate the value function for all possible sub-
sets S ⊂ [d], then combine the respective terms according
to Definition 3. A Python package to compute n-Shapley
Values, as well as the Shapley Taylor- and Faith-Shap in-
teraction indices, is available https://github.com/
tml-tuebingen/nshap. Even for the original Shap-
ley Values, it is well-known that the number of required
evaluations of the value function grows exponentially in the
number of features. For this reason, there exist efficient
approximations such as Kernel SHAP, as well as efficient
implementations for certain function classes such as tree
based models (Lundberg and Lee, 2017). We hold that

3The InterpretML package (Nori et al., 2019) allows to include
interactions between pairs of variables which reportedly allows to
be on par with black-box models on many data sets. Compare also
(Lou et al., 2012).

https://github.com/tml-tuebingen/nshap
https://github.com/tml-tuebingen/nshap
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such computationally efficient approximations are also be
possible for n-Shapley Values.

Instead of focusing on the well-known computational aspect
of the problem, we want to focus on the estimation aspect
which seems much less studied. Note that n-Shapley Values
are a statistic that is subject to sampling variation. The same
is true for our visualizations (as in Figure 1), which are
summary statistics of n-Shapley Values. This is because
both the observational and the interventional SHAP value
function require to estimate an expectation.

We now asses with a simple empirical analysis up to
which order interaction effects can be estimated in prac-
tice. We consider the k-dimensional checkerboard function
Bk : [0, 1]d → {0, 1} given by

Bk(x1, . . . , xd) =

{
0 if

∑k
i=0⌊(λ · xi)⌋ mod 2 = 0

1 otherwise
(14)

where λ > 2 parameterizes the number of checkers along
each axis. If data points are uniformly distributed in the
unit cube [0, 1]d, then the Shapely-GAM of interventional
SHAP of Bk is given by the single k-th order interaction
effect fx1,...,xk

(x1, . . . , xk) = Bk(x1, . . . , xk, 0, . . . , 0).
The question now is how precisely we have to estimate the
expectation Ez∼D [f(z) | do(xS)] if we want to precisely
estimate a kth-order interaction effect.

The bottom part of Figure 4 depicts the result of estimating
10-Shapley Values when the underlying function is the 3-
or 7-dimensional checkerboard function, respectively. The
x-axis depicts the number of samples used to estimate the
value function, ranging from 100 to 1 000 000. The y-axis
depicts the order of the estimated effects, with confidence
bands that account for 5 randomly sampled data sets. From
the figure, we observe that if the number of samples is small
in relation to the magnitude of the interaction effect, then
the estimation results in spurious lower-order effects. For
k = 3, these effects vanish with sufficiently many samples,
which means that the checkerboard function is precisely
estimated. For k = 7, the presence of the higher-order
interaction effect can be reliably detected, but not precisely
estimated given reasonably many samples.

In this simple analysis, we see that interaction effects of or-
der larger that 2 can be precisely estimated given sufficiently
many samples. We also see that functions with high-order
interactions are difficult to estimate and can result in arti-
facts. Figures for all interaction orders k = 2, . . . , 10 and a
discussion of the precision of the depicted visualizations of
n-Shapley Values can be found in Appendix C.

9 DISCUSSION

This work provides a functionally-grounded characteriza-
tion of Shapley Values as they are being used in explainable

machine learning (Doshi-Velez and Kim, 2017). Explain-
able machine learning is often believed to be an impor-
tant component in societal applications of machine learning
(Wachter et al., 2017; Kaminski and Urban, 2021; Kästner
et al., 2021). At the same time, current approaches face a
lot of criticism, for example because they are non-robust or
unable to provide the desired level of model understanding
(as well as for a variety of other concerns) (Lipton, 2018;
Kumar et al., 2020; Slack et al., 2020; Bordt et al., 2022).
In this situation, we believe that a precise understanding of
the mechanics of popular explainability methods, such as
the one presented in this work, is a good first step toward an
informed discussion of what we can and cannot achieve.

Some of our results stand in contrast to conventional wis-
dom around Shapley Values, and offer a novel perspective
on local-post hoc explanation algorithms. For example, we
have seen that Shapley Values depend on the coordinates
of the point that we attempt to explain, but not on the lo-
cal neighbourhood of that point — the recovery example
with the step function in Figure 4 suggests that this is also
the case for the approximations of the Shapley Value that
are used in practice. We have further seen that the original
Shapley Values are able to faithfully explain non-linear func-
tions, as long as the non-linearity is restricted to the specific
form permitted by GAMs. As such, our results highlight
the differences between Shapley Values and other feature
attribution methods, for example those that are related to the
gradient (Garreau and von Luxburg, 2020; Agarwal et al.,
2021b), and those that perform local function approximation
(Han et al., 2022).

The demonstrated connections between value functions and
functional decompositions effectively link the literature on
feature attributions with the tools developed in the statis-
tics literature on functional decompositions (Hooker, 2007;
Lengerich et al., 2020). This raises the question of whether
criteria for functional decompositions can be useful to un-
derstand feature attributions. Here, two concurrent works
made significant contributions: Hiabu et al. (2023) show that
the value function of interventional SHAP can be motivated
with a causal assumption on the associated functional de-
composition. Herren and Hahn (2022) outline connections
between observational SHAP and functional ANOVA.

While our work gives a functionally-grounded analysis of
Shapley Values for any function, as well as recovery guar-
antees for Shapley Values and GAMs, we do not claim
that Shapley Values are an appropriate post-hoc explanation
method for any function (Kumar et al., 2021; Tan et al.,
2022). Instead, the purpose of our work is to highlight the
connections between a post-hoc explanation method and a
class of interpretable models. Overall, however, we believe
that many properties of Shapley Values have the potential to
be more clearly understood using our perspective of func-
tional decompositions.
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A n-Shapley Values

This section details the properties of n-Shapley Values.

A.1 Bernoulli numbers

The Bernoulli numbers1 Bn are defined by B0 = 1 and

n∑
k=0

(
n+ 1

k

)
Bk = 0 ∀n ≥ 1. (15)

In this paper, the Bernoulli numbers arise as the coefficients that make n-Shapley Values sum to the prediction (Proposition
12). In fact, equation (15) arises directly from the proof of Proposition 12. The Bernoulli numbers can be computed
recursively by re-writing into (15)

Bn =
−1

n+ 1

n−1∑
k=0

Bk

(
n+ 1

k

)
∀n ≥ 1. (16)

In a certain sense, the entire combinatorics around n-Shapley Values relies on the properties of the Bernoulli numbers. In
particular, the proofs of Theorem 4 and Theorem 6 rely on the following two Lemmas.

Lemma 9. For all n ≥ 1, it holds that
n∑

k=1

Bk

n− k + 1

(
n

k

)
=

−1

n+ 1
. (17)

Proof. We re-arrange the sum to get

n∑
k=1

Bk

n− k + 1

(
n

k

)
=

1

n+ 1

n∑
k=0

(
n+ 1

k

)
Bk − B0

n+ 1
=

−1

n+ 1
(18)

where the second equality follows from (15).

Lemma 10. For all n,m ≥ 0, it holds that

n∑
k=0

m∑
l=0

(
n

k

)(
m

l

)
(n− k)!(m− l)!

(n+m− k − l + 1)!
(−1)lBk+l =

1 if n = 0

0 otherwise.
(19)

Lemma 10 follows from standard results for the Bernoulli numbers (Gould and Quaintance, 2014)[Theorem 2]. A proof is
contained in Appendix I.

A.2 Additivity and Efficiency

From the recursive definition of the n-Shapley Values in Definition 3, a straightforward calculation shows that

Φn
S(x) =

n−|S|∑
k=0

∑
K⊂[d]\S, |K|=k

Bk ∆S∪K(x) (20)

which is an alternative non-recursive definition of n-Shapley Values.

1An introduction and discussion about Bernoulli numbers can be found, for example, in the corresponding Wikipedia article at
https://en.wikipedia.org/wiki/Bernoulli_number.

https://en.wikipedia.org/wiki/Bernoulli_number
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Bn 1 −1
2

1
6 0 −1

30 0 1
42 0 −1

30 0 5
66 0 −691

2730 0 7
6 0 −3617

510 0 43867
798 0

Table A.1: The first 20 Bernoulli numbers.

Proposition 11 (Additivity). For all 1 ≤ n ≤ d and all f, g : Rn → R, we have

Φn
S(x; f + g) = Φn

S(x; f) + Φn
S(x; g). (21)

Proof. By definition, Φn
S is linear in ∆S , and ∆S is linear in the value function v. Therefore, the linearity of Φn

S in f
follows from the linearity of v in f , i.e. from the fact that vf+g(x, S) = vf (x, S) + vg(x, S).

Proposition 12 (Efficiency). For all 1 ≤ n ≤ d, it holds that∑
S⊂[d]

1≤|S|≤n

Φn
S(x) = v([d])− v(∅). (22)

Proof. For n = 1, the statement follows from the efficiency of the original Shapley Values. We assume that the statement
holds for n− 1 and re-arrange the sum∑

S⊂[d]
1≤|S|≤n

Φn
S(x) =

∑
S⊂[d]

1≤|S|<n

Φn
S(x) +

∑
S⊂[d]
|S|=n

Φn
S(x)

=
∑
S⊂[d]

1≤|S|<n

Φn−1
S (x) +Bn−|S|

∑
K⊂[d]\S

|K|+|S|=n

∆S∪K(x)

+
∑
S⊂[d]
|S|=n

∆S(x)

=
∑
S⊂[d]

1≤|S|≤n−1

Φn−1
S (x) +

∑
S⊂[d]

1≤|S|<n

∑
K⊂[d]\S

|K|+|S|=n

Bn−|S| ∆S∪K(x) +
∑
S⊂[d]
|S|=n

∆S(x).

(23)

Notice that the first term is equivalent to v([d])− v(∅) by the induction hypothesis. It remains to show that∑
S⊂[d]

1≤|S|<n

∑
K⊂[d]\S

|K|+|S|=n

Bn−|S| ∆S∪K(x) +
∑
S⊂[d]
|S|=n

∆S(x) = 0. (24)

Notice that both sums are over sets of length n. In the first sum, each sets occurs multiple times. In the second sum, each set
occurs exactly once. By counting the occurrences of each set in the first sum we see that (24) holds if

n−1∑
s=1

Bn−s

(
n

s

)
+ 1 = 0. (25)

If we set B0 = 1, this holds if and only if
n−1∑
k=0

Bk

(
n

k

)
= 0, (26)

which is the defining property of the Bernoulli numbers (15). In summary, we see that the Bernoulli numbers are the
coefficients that balance the terms in the first sum in equation (24).
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Figure B.1: Examples that illustrate the proposed visualization technique for n-Shapley Values.

A.3 Relationship Between n-Shapley Values of Different Order

The following proposition is a straightforward extension of Theorem 6.
Proposition 13 (Relationship Between n-Shapley Values of Different Order). For m ≤ n, let Φm

S and Φn
S be the m- and

n-Shapley Values, respectively. Then, the m-Shapley Values can be computed from the n-Shapley Values by

Φm
S (x) = Φn

S +
∑

K⊂[d]\S,
m−|S|<|K|≤n−|S|

βm−|S|,|K| Φ
n
S∪K(x). (27)

Specifically, it holds that

Φ1
i = Φn

i +
1

2

∑
j ̸=i

Φn
i,j + · · ·+ 1

n

∑
K⊂[d]\{i}
|K|=n−1

Φn
K∪i (28)

which is the basis for the visualizations in the paper.

Proof. The proposition follows from the counting argument used in the proof of Theorem 6.

B Visualizing n-Shapley Values

Due to the large number of terms involved in n-Shapley Values of higher order, visualizing these explanations is difficult.
However, Proposition 13 (which is really a variant of Theorem 6) states that higher-order variable interactions in n-Shapley
Values are related to the original Shapley Values via a simple lump-sum formula. This gives rise to the idea of simply
visualizing, for each feature, the respective components of the sum.

To illustrate this idea, let us consider a simple example. Let us begin with four different features and the usual Shapley
Values. Say the first two features have attribution zero, the third feature has attribution 0.2, and the fourth feature has
attribution −0.1. These Shapley Values can be visualized as usual, depicted in Figure B.1a. Now, let us add a second-order
interaction effect, say Φ2

2,3 = 0.1. Because this interaction effect would ultimately be added to the attributions of feature 2
and feature 3 with a factor of 1

2 , let us simply add two corresponding bars to the attributions of these features, with the color
indicating that it is a second-order effect. From the resulting Figure B.1b, it can then be seen that we have two main effects
and a single positive interaction effect between features 2 and 3. If there were another interaction effect, say Φ2

3,4 = −0.1,
we would proceed in the same way, taking care of the sign. From the resulting Figure B.1c, it can be seen that there are
two main effects and a number of second-order interactions. With higher-order interactions we proceed accordingly, as
illustrated for Φ3

2,3,4 = 0.1 (Figure B.1d) and Φ4
1,2,3,4 = −0.1 (Figure B.1d).

Note that while this form of visualization faithfully depicts the relative magnitude of the different variable interactions, it is
in general not possible to tell from the figures which variables interact with each other, for example when there are a number
of different second-order effects.

C Estimating n-Shapley Values

Here we collect some additional details regarding the estimation of n-Shapley Values. We note that the discussion here is
not exhaustive. Our objective is to (1) raise awareness for the fact that computing n-Shapley Values incurs an estimation
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Figure B.2: Estimating higher-order variable interactions requires precise evaluations of the value function. A simple way to
study this is by estimating the k-dimensional checkerboard function (14). Compare Figure 4 in the main paper.

problem, and (2) ensure that the results presented in the main paper are precisely estimated and not statistical artifacts.

Figure B.2 depicts the result of estimating the k-dimensional checkerboard function (14) for all values k = 2, . . . , 10
(compare Section 8 in the main paper). As already discussed in the main paper, we can see from the figure that estimation
becomes gradually harder as we increase the order of interaction.

In Figure C.3, we assess the degree up to which our visualizations are effected by the presence of spurious interaction effect
of intermediate order, as observed when estimating a checkerboard function with too few samples. The figure visualizes
the Shapley-GAM decomposition of a kNN classifier on the Folktables Travel data set, estimated with 500, 5000 and
133549 samples per evaluation of the value function, respectively. By comparing the left and middle part of Figure C.3
(estimation with 500 and 5000 samples, respectively), we see that 500 samples are to few and result in the presence of
spurious interaction effects, for example of of order 4 and 5. This can be seen from the fact that some of these effects vanish
as we increase the number of samples. By comparing the middle and right part of Figure C.3 (estimation with 5000 and
133549 samples, respectively), we see that estimation with 5000 samples is already quite precise for this kNN classifier.
This can be seen from the fact that significantly increasing the number of samples does not have any significant effect on the
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Figure C.3: Estimating higher-order interactions with too few samples can result in spurious interaction effects of intermediate
order. These effects are also visible in our visualizations. Left: Estimation with 500 samples per evaluation of the value
function results in spurious interaction effects. Middle: This can be seen from the fact that parts of the estimated effects
vanish if we increase the number of samples to 5000 per evaluation of the value function. Right: Using all 133549
observations in the training data per evaluation of the value function, we get almost the same visualization as for 5000
samples. The function in this example is a kNN classifier and the data set is the Folktables Travel data set.

visualization.2

Table K.2 depicts the individual terms that underlie the visualization in Figure C.3. From Table K.2, we see that main
effects are precisely estimated even with 500 samples. However, many relatively small higher-order coefficients are not very
precisely estimated even for N = 5000. Note that the latter point is not in contrast to the fact that Figure C.3 is precisely
estimated for N = 5000. Figure C.3 depicts summary statistics that are more precisely estimated than the individual
components.

D The Statistical Independence Assumption for Observational SHAP is Necessary

In this section we give a simple example to demonstrate that the assumption of independent random variables for the
observational SHAP value function in Theorem 8 is indeed necessary.

Consider the GAM of order 1
f(x1, x2) = x1 + x2.

Assume that x1 and x2 are correlated normal random variables(
x1

x2

)
∼ N

((
0
0

)
,

(
1, ρ
ρ, 1

))
with 0 ≤ ρ ≤ 1. We have

E[x2|x1] = ρx1.

A simple calculation shows that the Shapley-GAM of observational SHAP is given by

f∅ = 0, f1(x1) = (1 + ρ)x1, f2(x2) = (1 + ρ)x2, f(x1, x2) = −ρ(x1 + x2).

According to Theorem 6, the observational SHAP values are then given by

Φ1 = (1 +
ρ

2
)x1 −

ρ

2
x2, Φ2 = (1 +

ρ

2
)x2 −

ρ

2
x1.

Clearly, recovery does not hold: Despite the fact that the underlying function is a GAM of order 1, the Shapley-GAM is a
GAM of order 2. The Shapley Values also depend on both coordinates – hence they are not well-defined functions of the
individual coordinates.

2This could of course be discussed much more rigorously.
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In contrast, the Shapley-GAM of the interventional SHAP value function is given by

f∅ = 0, f1(x1) = x1, f2(x2) = x2.

Moreover, the interventional SHAP values are given by

Φ1 = x1, Φ2 = x2,

that is recovery holds with the interventional SHAP value function (as guaranteed by Theorem 8).

E Proof of Theorem 4

Proof of Theorem 4. We are going to show that

Φd
S(x) =

∑
L⊂S

(−1)|S|−|L|v(xL, L). (29)

Note that the RHS evaluates the value function v only for sets L ⊂ S. From the assumption that the value function is
subset-compliant, it follows that the RHS is a well-defined function of xS . According to Proposition 12 (efficiency), the
d-Shapley Values sum to v(x)− v(∅) which implies the Theorem.

To show (29), we consider the non-recursive definition of n-Shapley Values 20 and then substitute the definition of ∆S(x)
from Definition 3.

Φd
S(x) =

d−|S|∑
k=0

∑
K⊂[d]\S, |K|=k

Bk ∆S∪K(x)

=

d−|S|∑
k=0

∑
K⊂[d]\S, |K|=k

Bk

∑
T⊂[d]\(S∪K)

(d− |T | − |S| − |K|)!|T |!
(d− |S| − |K|+ 1)!

∑
L⊂S∪K

(−1)|S|+|K|−|L|v(x, L ∪ T ).

=
∑

K⊂[d]\S

∑
T⊂[d]\(S∪K)

B|K|
(d− |T | − |S| − |K|)!|T |!

(d− |S| − |K|+ 1)!

∑
L⊂S∪K

(−1)|S|+|K|−|L|v(x, L ∪ T ).

(30)

Where the last equation follows from the realization that we are summing over all possible subsets of [d] \ S.

In equation (30), we are summing over the value of the same sets multiple times. Let us fix a set M = L ∪ T and count how
often it occurs in the sum. First note that v(x,M) occurs exactly once for every set K, namely by choosing T = M \(S∪K)
and L = M ∩ (S ∪K). Since the coefficients do not only depend on the size of K, but also on |T | and |L|, let us partition
the set K = K1 ∪K2 = {K ∩M} ∪ {K \M}. Let n1 = |M \ S| and n2 = |[d] \ (S ∪M)| denote the maximum sizes of
both partitions. With this counting argument, we arrive at

(−1)|S|−|M |
∑

K1⊂M\S

∑
K2⊂[d]\(S∪M)

B|K1|+|K2|
(n2 − |K2|)!(n1 − |K1|)!

(n1 + n2 − |K1| − |K2|+ 1)!
(−1)|K2| (31)

occurrences of the term v(x,M). Notice that equation (31) is equal to

(−1)|S|−|M |
n1∑

k1=0

n2∑
k2=0

(
n1

k1

)(
n2

k2

)
(n2 − k2)!(n1 − k1)!

(n1 + n2 − k1 − k2 + 1)!
(−1)k2Bk1+k2

(32)

The desired result now follows from the properties of the Bernoulli numbers. In particular, since M ⊂ S ⇐⇒ n1 = 0, we
see from Lemma 10 that (32) equals (−1)|S|−|M | if M ⊂ S and 0 otherwise. Comparing the terms for all possible sets
M ⊂ [d], we see that (30) equals (29).

Note that if we fix the point x, then the Shapley-GAM at x is equivalent to the Moebious transform of the measure v(x, ·).
From this perspective, Theorem 4 can be seen as an application of Theorem 2 in Grabisch (1997).
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F Proof of Theorem 6

Proof of Theorem 6. According to Theorem 4, the d-Shapley Values can be written as

Φd
S(x) = fS(x) (33)

where fS(x) are the component functions of the Shapley-GAM. Hence, the d-Shapley Values are a linear combination of
the component functions of the Shapley-GAM. From the recursive definition of the n-Shapley Values, we see that

Φn
S(x) = Φn+1

S (x)−B1+n−|S|
∑

K⊂[d]\S,|K|+|S|=n+1

Φn+1
S∪K(x) (34)

that is the n-Shapley Values are a linear combination of the terms involved in the n+ 1-Shapley Values. By induction, we
see that the n-Shapley Values are linear combinations of the component functions of the Shapley-GAM.

It remains to determine the coefficients Cn,m. We present a counting argument that is based on the recurrence relation (34).
In this counting argument, we first determine the coefficients Dn,m where the first index corresponds to the distance between
|S| and the order of the Shapley Values, and the second index corresponds to the different between the size of the interaction
effect and the order of the Shapley Values. Suppose that we are computing n-Shapley Values. If we use equation (34) to
proceed recursively from d-Shapley Values to n-Shapley Values, then the first time that the component function fS∪K is
being added to Φm

S is during the computation of the (|S|+ |K| − 1)-Shapley Values. According to equation (34), the linear
coefficient will simply be D|K|−1,1 = −B|K|. The second time that the component function fS∪K is being added to Φm

S is
during the computation of the (|S|+ |K| − 2)-Shapley Values. This is because we have previously added −B1fS∪K to all
the terms of order |S|+ |K| − 1 that are a subset of S ∪K. There are

(|K|
1

)
such terms, and we are now adding all of them

to fS , using the coefficient −B|K|−1. This means that we arrive at a total coefficient of

D|K|−2,2 = −B|K| +B|K|−1

(
|K|
1

)
B1. (35)

By a similar argument we arrive at a coefficient of

D|K|−3,3 = −B|K| +B|K|−1

(
|K|
1

)
B1 −B|K|−2

(
|K|
2

)
B2 −B|K|−2

(
|K|
2

)
B1

(
2

1

)
B1. (36)

for the (|S|+ |K| − 3)-Shapley Values. In general, that is when we compute n-Shapley Values, the component function
fS∪K is being added to Φn

S once for every possible pathway that goes from a set of order n + 1 to the set S ∪ K by
successively adding different numbers of elements. For k ≥ 1, let

Pk =

{
(p1, . . . , pk) ∈ Nk

≥0

∣∣∣∣ k∑
i=1

pi = k and pi = 0 =⇒ (pj = 0∀j > i)

}
(37)

be the set of pathways of length k. This means that we have P1 =
{
(1)

}
,

P2 =
{
(2, 0), (1, 1)

}
,

P3 =
{
(3, 0, 0), (2, 1, 0), (1, 2, 0), (1, 1, 1)

}
,

P4 =
{
(4, 0, 0, 0), (3, 1, 0, 0), (2, 2, 0, 0), (2, 1, 1, 0),

(1, 3, 0, 0), (1, 2, 1, 0), (1, 1, 2, 0), (1, 1, 1, 1)
} (38)

and so on. By accounting for the coefficients Bk and the signs along each path, the coefficients can be written as

Dn,m =
∑

(p1,...,pm)∈Pm

(−1)
∑m

i=1 sign(pi)

(
n+m

n+ p1

)
Bn+p1

m∏
i=2

Bpi

(
m−

∑i−1
j=1 pj

pi

)
(39)



From Shapley Values to Generalized Additive Models and back

From this, we derive the special case

D0,m =
∑

(p1,...,pm)∈Pm

(−1)
∑m

i=1 sign(pi)

(
m

i1

)
Bp1

m∏
i=2

Bpi

(
m−

∑i−1
j=1 pj

pi

)

=
∑

(p1,...,pm)∈Pm

(−1)
∑m

i=1 sign(pi)
m∏
i=1

Bpi

(
m−

∑i−1
j=1 pj

pi

)

= −Bm −
m−1∑
p1=1

ap1

(
m

p1

) ∑
(p̂1,...,p̂m−p1 )∈Pm−p1

(−1)
∑m−p1

i=1 sign(pi)

m−p1∏
j=1

Bp̂j

(
m− i1 −

∑j−1
s=1 p̂s

p̂j

)

= −Bm −
m−1∑
p1=1

ap1

(
m

p1

)
β0,m−p1

= −Bm −
m−1∑
p1=1

ap1

(
m

p1

)
1

m− p1 + 1

= −
m∑

k=1

Bk

m− k + 1

(
m

k

)
=

1

m+ 1

(40)

where the last equality is due to Lemma 9. Now, this implies that

∆S(x) = Φ
|S|
S (x) = fS(x) +

∑
K⊂[d]\S, |K|≥1

D0,|K| fS∪K(x) =
∑

K⊂[d]\S

1

1 + |K|
fS∪K(x) (41)

which is a version of Theorem 1 in Grabisch (1997). Using (41) and the explicit formula for n-Shapley Values (20), we get

Φn
S(x) =

n−|S|∑
k=0

∑
K⊂[d]\S, |K|=k

Bk ∆S∪K(x)

=

n−|S|∑
k=0

∑
K⊂[d]\S, |K|=k

Bk

∑
T⊂[d]\(S∪K)

1

1 + |T |
fS∪K∪T (x)

(42)

From which we see that the component function fS∪K̃ is being added to Φn
S(x) exactly

Cn−|S|,|K̃| =

n−|S|∑
k=0

(
n− |S|

k

)
Bk

1 + |K̃| − k
(43)

times which concludes the proof.

G Proof of Theorem 7

Proof of Theorem 7. According to Theorem 4, the Shapley-GAM decomposition is given by

fS(x) =
∑
L⊂S

(−1)|S|−|L|v(xL, L). (44)
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By substituting the definition of the value function (12)

fS(x) =
∑
L⊂S

(−1)|S|−|L|v(xL, L)

=
∑
L⊂S

(−1)|S|−|L|
∑
T⊂L

gT (x)

=
∑
L⊂S

∑
T⊂L

gT (x)(−1)|S|−|L|

=
∑
T⊂S

gT (x)
∑

L⊂S\T

(−1)|S|−|L|−|T |

= gS(x)

(45)

Where we have re-arranged the sum to count the number of occurrences of the set T , and then used the fact that inner sum
averages to zero except for T = S.

H Proof of Theorem 8

We show a slightly more general result than what is stated in the main paper. In fact, we show that recovery holds for all
interaction indices that can be written as

InS (x) = fS(x) +
∑

K⊂[d]\S
n+1≤|S|+|K|

Cn,|S|,|K| fS∪K(x) ∀S ⊆ [d], |S| ≤ n (46)

where fS(x) are the component functions of the Shapley-GAM and Cn,|S|,|K| ∈ R are coefficients that depend on the
interaction index. n-Shapley Values can be written like this according to Theorem 6. For the Faith-Shap interaction index,
this representation is given in Theorem 19 in Tsai et al. (2022)

Faith-Shapn
S(x) = fS(x) +

∑
K⊂[d]\S

n+1≤|S|+|K|

(−1)n−|S| |S|
n+ |S|

(
n
|S|

)(|S|+|K|−1
n

)(|S|+|K|+n−1
n+|S|

) fS∪K(x) ∀|S| ≤ n. (47)

Also the Shapley Taylor interaction index (Sundararajan et al., 2020) can, due to its symmetry, be written as

Shapley-TaylornS(x) =


fS(x) if |S| < n

fS(x) +
∑

K⊂[d]\S
n+1≤|S|+|K|

1

(|S|+|K|
|K| )

fS∪K(x) if |S| = n.
(48)

Proof of Theorem 8. We assume that the function f can be written as a GAM of order n, that is

f(x) =
∑

S⊂[d], |S|≤n

gS(xS). (49)

Notice that this GAM is not necessarily the Shapley-GAM, but just some way to write the function f as a GAM. Let fS be
the component functions of the Shapley-GAM. Now, n-Shapley Values, the Faith-Shap interaction index, as well as the
Shapley Taylor interaction index, can be written as a linear combination of the component functions of the Shapley-GAM

InS (x) = fS(xS) +
∑

K⊂[d]\S, |S|+|K|>n

Cn−|S|,|K| fS∪K(xS∪K) (50)

where the specific linear coefficients Cn,m depend on the interaction index (Theorem 6, equation (47), equation (48)).
According to equation (50), the interaction index equals fS(xS) plus some weighted components of the Shapley-GAM of
order greater than n. As a consequence, it remains to show is that the Shapley-GAM is a GAM of order n (then the second
sum vanishes and we arrive at InS (x) = fS(xS) which is what we want to show).
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It remains to show that the Shapley-GAM is a GAM of order n. According to Theorem 4, the component functions of the
Shapley-GAM are given by

fS(x) =
∑
L⊂S

(−1)|S|−|L|v(xL, L). (51)

We want to show that the component functions of degree greater than n vanish. Let us first consider observational SHAP.
Here we have ∑

L⊂S

(−1)|S|−|L|v(xL, L) =
∑
L⊂S

(−1)|S|−|L|E[f(x)|xL]

=
∑
L⊂S

(−1)|S|−|L|E

 ∑
T⊂[d], |T |≤n

gT (xT )
∣∣∣xL


=

∑
L⊂S

(−1)|S|−|L|
∑

T⊂[d], |T |≤n

E [gT (xT )|xL]

=
∑

T⊂[d], |T |≤n

∑
L⊂S

(−1)|S|−|L|E [gT (xT )|xL]

(52)

Consider the inner sum. If |S| > n, we can always pick an element i ∈ S \ T and write∑
L⊂S\{i}

(−1)|S|−|L|
(
E [gT (xT )|xL]− E

[
gT (xT )|xL∪{i}

] )
(53)

If the input features are independent, then gT (xT ) and xi are independent, from which we get by the properties of the
conditional expectation that

E
[
gT (xT )|xL∪{i}

]
= E [gT (xT )|xL] (54)

It follows that the inner sum is zero for all sets T , and that the component functions of the Shapley-GAM of degree greater
than n are equal to zero, too.

Let us now consider interventional SHAP. Just as for observational SHAP, we arrive at equation (53) using the linearity of
the expectation operator. Hence, we require that

E
[
gT (xT )|do(xL∪{i})

]
= E [gT (xT )|do(xL)] (55)

which follows from the properties of the causal do-operator. Intuitively, since gT does not depend on the value of feature i,
intervening on that feature has no effect.

I Proof of Lemma 10

Proof. Let us first consider the case n = 0. For n = 0 and m = 0, we have(
0

0

)(
0

0

)
(0− 0)!(0− 0)!

(0 + 0− 0− 0 + 1)!
(−1)0B0 = 1. (56)

For n = 0 and m ≥ 1, we have
m∑
l=0

(
m

l

)
1

(m− l + 1)
(−1)lBl =

1

m+ 1

m∑
l=0

(
m+ 1

l

)
(−1)lBl

=
−2

m+ 1

(
m+ 1

1

)
B1 +

m∑
l=0

(
m+ 1

l

)
= −2B1 + 0 = 1.

(57)

where we used (15) and the fact that the odd Bernoulli numbers vanish except for n = 1. For m = 0 and n ≥ 1, we also
have from (15)

n∑
k=0

(
n

k

)
1

(n− k + 1)
(−1)0Bk =

1

n+ 1

n∑
k=0

(
n+ 1

k

)
Bk = 0. (58)
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It remains to show the general case n,m ≥ 1. According to a derivation by Gy (2022), the problem in this case is equivalent
to

(−1)n
m∑
l=0

Bn+l+1

n+ l + 1

(
m

l

)
+ (−1)m

n∑
k=0

Bm+k+1

m+ k + 1

(
n

k

)
= − 1

(n+m+ 1)
(
n+m
m

) (59)

Now, Theorem 2 in Gould and Quaintance (2014) with s = 1 states that for any sequence of numbers (an)n≥0, it holds that

m∑
k=0

(
m

k

)
an+k+1

n+ k + 1
=

n∑
k=0

(−1)n−k

(
n

k

)
bm+k+1

m+ k + 1
+

(−1)n+1a0

(m+ n+ 1)
(
m+n
n

) (60)

where the sequence (bn)n≥0 is the binomial transform of the sequence (an)n≥0, given by

bn =

n∑
k=0

(
n

k

)
ak. (61)

Setting an = Bn, we have from (15) that the binomial transform of the Bernoulli numbers is simply

bn =

n∑
k=0

(
n

k

)
Bk = (−1)nBn (62)

where the factor (−1)n takes care of the special case n = 1. Using (60) with an = Bn and bn = (−1)nBn, we get

(−1)n
m∑

k=0

(
m

k

)
Bn+k+1

n+ k + 1
= −

n∑
k=0

(−1)m
(
n

k

)
Bm+k+1

m+ k + 1
− 1

(m+ n+ 1)
(
m+n
n

) (63)

where we multiplied both sides with (−1)n. This is the same as (59) which concludes the proof.
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J Datasets and Models

In our experiments, we use the following data sets and models.

J.1 Datasets

Folktables Income. Folktables is a Python package that provides access to data sets derived from recent US Censuses
https://github.com/zykls/folktables. We used this package to obtain the data from the 2016 Census in
California. The machine learning problem is the ACSIncome prediction task, that is to predict whether an individual’s
income is above $50,000, based on 10 personal characteristics (Ding et al., 2021). The data set contains of 152 149
observations.

Folktables Travel Time. Folktables is a Python package that provides access to data sets derived from recent US Censuses
https://github.com/zykls/folktables. We used this package to obtain the data from the 2016 Census in
California. The machine learning problem is the ACSTravelTime prediction task, that is to predict whether an individual has
to commute to work longer than 20 minutes, based on 10 personal characteristics (Ding et al., 2021). The data set contains
133 549 observations.

German Credit. The German Credit Data set is a data set with 20 different features on individual’s credit history and
personal characteristic. The machine learning problem is to predict credit risk in binary form. We obtained the data set from
the UCI machine learning repository and reduced the number of features to 10 without any observed drop in accuracy. The
data set contains 1000 observations.

California Housing. The California Housing data set was derived from the 1990 U.S. census. The regression problem is to
predict the median house value, based on 8 characteristics. We obtained the data set form the scikit-learn library. The
data set contains 20 640 observations.

Iris. The Iris data set is a simple flower data set. The machine learning problem is to classify whether the flower is of a
particular kind or not, based on 4 different features. We obtained the data set form the scikit-learn library. The data
set contains 150 observations.

J.2 Models

Glassbox-GAM. We train the Glassbox-GAMs with the interpretML library (Nori et al., 2019) and default parameters
(no interactions).

Gradient Boosted Tree. We use the xgboost library (Chen and Guestrin, 2016) and train with 100 trees per model. This
setting allows to achieve competitive accuracy for gradient boosted trees.

Random Forest. We use the scikit-learn library (Pedregosa et al., 2011) and train with 100 trees per forest. This
setting allows to achieve competitive accuracy for random forests.

k-Nearest Neighbor. We use the scikit-learn library (Pedregosa et al., 2011). The hyperparameter k was chosen with
cross-validation to be 30, 80, 25, 10, 1 for the data sets as listed above.

https://github.com/zykls/folktables
https://github.com/zykls/folktables
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K Additional Plots and Figures

K.1 Folktables Income

K.1.1 Glassbox-GAM
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Figure K.4: n-Shapley Values for a Glassbox-GAM and the first observation in our test set of the Folktables Income data set.

K.1.2 Gradient Boosted Tree
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Figure K.5: n-Shapley Values for a Gradient Boosted Tree and the first observation in our test set of the Folktables Income
data set.
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K.1.3 Random Forest
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Figure K.6: n-Shapley Values for a Random Forest and the first observation in our test set of the Folktables Income data set.

K.1.4 k-Nearest Neighbor
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Figure K.7: n-Shapley Values for a kNN classifier and the first observation in our test set of the Folktables Income data set.
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Figure K.8: Partial dependence plots for the kNN classifier on the Folktables Income data set (compare Figure 2 in the main
paper). Depicted are the partial dependence plots of Φn

i for n = {1, 2, 4, 10} and 7 different features.
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K.2 Folktables Travel

K.2.1 Glassbox-GAM
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Figure K.9: n-Shapley Values for a Glassbox-GAM and the first observation in our test set of the Folktables Travel data set.

K.2.2 Gradient Boosted Tree

−0.2

−0.1

0.0

0.1

0.2

0.3

Fe
at

ur
e 

At
tri

bu
tio

n

Shapley Values Shapley Interaction Values 3-Shapley Values 4-Shapley Values 5-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

−0.2

−0.1

0.0

0.1

0.2

0.3

Fe
at

ur
e 

At
tri

bu
tio

n

6-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

7-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

8-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

9-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

Shapley-GAM

Main 2nd order 3rd order 4th 5th 6th 7th 8th 9th 10th order

Figure K.10: n-Shapley Values for a Gradient Boosted Tree and the first observation in our test set of the Folktables Travel
data set.
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K.2.3 Random Forest

−0.2

0.0

0.2

0.4

Fe
at

ur
e 

At
tri

bu
tio

n

Shapley Values Shapley Interaction Values 3-Shapley Values 4-Shapley Values 5-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

−0.2

0.0

0.2

0.4

Fe
at

ur
e 

At
tri

bu
tio

n

6-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

7-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

8-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

9-Shapley Values

JW
TR

PO
W

P
PU

M
A

AG
EP

OC
CP

PO
VP

IP
SC

HL SE
X

RE
LP CI
T

Shapley-GAM

Main 2nd order 3rd order 4th 5th 6th 7th 8th 9th 10th order

Figure K.11: n-Shapley Values for a Random Forest and the first observation in our test set of the Folktables Travel data set.
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Figure K.12: n-Shapley Values for a kNN classifier and the first observation in our test set of the Folktables Travel data set.
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Figure K.13: Partial dependence plots for the random forest on the Folktables Travel data set. Depicted are the partial
dependence plots of Φn

i for n = {1, 2, 4, 10} and 7 different features.
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Figure K.14: n-Shapley Values for a Glassbox-GAM and the first observation in our test set of the German Credit data set.
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Figure K.15: n-Shapley Values for a Gradient Boosted Tree and the first observation in our test set of the German Credit
data set.
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Figure K.16: n-Shapley Values for a Random Forest and the first observation in our test set of the German Credit data set.
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Figure K.17: n-Shapley Values for a kNN classifier and the first observation in our test set of the German Credit data set.
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Figure K.18: Partial dependence plots for the Glassbox-GAM without interaction terms on the German Credit data set.
Depicted are the partial dependence plots of Φn

i for n = {1, 2, 4, 10} and 7 different features.
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Figure K.19: n-Shapley Values for a Glassbox-GAM and the first observation in our test set of the California Housing data
set.
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Figure K.20: n-Shapley Values for a Gradient Boosted Tree and the first observation in our test set of the California Housing
data set.
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Figure K.21: n-Shapley Values for a Random Forest and the first observation in our test set of the California Housing data
set.
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Figure K.22: n-Shapley Values for a kNN classifier and the first observation in our test set of the California Housing data set.
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Figure K.23: Partial dependence plots for the gradient boosted tree on the California Housing data set. Depicted are the
partial dependence plots of Φn

i for n = {1, 2, 4, 10} and 7 different features.
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Subset S N=500 N=5000 N=133 549
(0,) 0.1128 0.1144 0.1165
(1,) 0.0005 -0.0006 0.0022
(2,) -0.1248 -0.1117 -0.1098
(3,) 0.0227 0.0283 0.0281
(4,) -0.0041 -0.0020 -0.0018
(5,) -0.0123 -0.0189 -0.0200
(6,) 0.0845 0.1003 0.0982
(7,) 0.2357 0.2478 0.2505
(8,) 0.0280 0.0329 0.0347
(9,) 0.0197 0.0238 0.0241
(0, 1) -0.0023 -0.0020 -0.0032
(0, 2) 0.0059 0.0005 -0.0025
(0, 3) -0.0146 -0.0128 -0.0126
(0, 4) 0.0089 0.0102 0.0102
(0, 5) 0.0038 0.0140 0.0141
(0, 6) -0.0244 -0.0242 -0.0213
(0, 7) -0.0452 -0.0416 -0.0426
(0, 8) -0.0032 -0.0028 -0.0038
(0, 9) -0.0043 -0.0055 -0.0071
(1, 2) -0.0012 -0.0009 -0.0022
(1, 3) -0.0004 0.0003 0.0007
(1, 4) -0.0006 0.0011 -0.0011
(1, 5) -0.0060 -0.0000 0.0004
(1, 6) 0.0027 0.0024 0.0014
(1, 7) 0.0093 0.0102 0.0079
(1, 8) -0.0017 0.0020 0.0007
(1, 9) 0.0048 0.0032 0.0027
(2, 3) 0.0029 -0.0006 -0.0016
(2, 4) -0.0419 -0.0534 -0.0547
(2, 5) -0.0128 -0.0095 -0.0115
(2, 6) 0.0389 0.0286 0.0290
(2, 7) 0.0752 0.0695 0.0677
(2, 8) -0.0031 -0.0044 -0.0070
(2, 9) 0.0151 0.0039 0.0031
(3, 4) -0.0112 -0.0093 -0.0091
(3, 5) 0.0006 0.0058 0.0055
(3, 6) -0.0068 -0.0116 -0.0099
(3, 7) -0.0286 -0.0298 -0.0304
(3, 8) -0.0135 -0.0165 -0.0181
(3, 9) 0.0038 -0.0036 -0.0041
(4, 5) -0.0016 0.0069 0.0071
(4, 6) -0.0279 -0.0295 -0.0298
(4, 7) -0.0100 -0.0070 -0.0079
(4, 8) -0.0019 -0.0037 -0.0043
(4, 9) -0.0091 -0.0116 -0.0122
(5, 6) 0.0026 0.0083 0.0079
(5, 7) 0.0084 0.0152 0.0157
(5, 8) -0.0000 0.0055 0.0045
(5, 9) 0.0015 0.0044 0.0041
(6, 7) -0.0551 -0.0603 -0.0581
(6, 8) -0.0132 -0.0174 -0.0182
(6, 9) -0.0053 -0.0140 -0.0126
(7, 8) -0.0125 -0.0102 -0.0127
(7, 9) -0.0102 -0.0151 -0.0161
(8, 9) 0.0052 0.0014 -0.0004
(0, 1, 2) -0.0058 -0.0026 -0.0014
(0, 1, 3) 0.0018 0.0028 0.0020
(0, 1, 4) -0.0000 -0.0030 -0.0021
(0, 1, 5) 0.0070 -0.0005 -0.0013
(0, 1, 6) 0.0060 0.0024 0.0030
(0, 1, 7) -0.0039 -0.0024 -0.0015
(0, 1, 8) 0.0073 0.0007 0.0014
(0, 1, 9) -0.0003 -0.0006 -0.0009
(0, 2, 3) 0.0038 0.0031 0.0030
(0, 2, 4) -0.0274 -0.0141 -0.0079
(0, 2, 5) 0.0088 0.0062 0.0081
(0, 2, 6) -0.0042 0.0006 -0.0006
(0, 2, 7) 0.0233 0.0242 0.0275
(0, 2, 8) 0.0043 0.0023 0.0055
(0, 2, 9) -0.0298 -0.0249 -0.0216
(0, 3, 4) 0.0149 0.0078 0.0091
(0, 3, 5) 0.0019 -0.0023 -0.0014
... ... ... ...

Subset S N=500 N=5000 N=133 549
... ... ... ...
(2, 7, 8, 9) 0.0043 0.0009 0.0005
(3, 4, 5, 6) -0.0101 -0.0143 -0.0135
(3, 4, 5, 7) 0.0045 -0.0030 -0.0049
(3, 4, 5, 8) -0.0020 -0.0053 -0.0047
(3, 4, 5, 9) -0.0064 -0.0049 -0.0054
(3, 4, 6, 7) 0.0097 0.0076 0.0079
(3, 4, 6, 8) -0.0058 -0.0058 -0.0047
(3, 4, 6, 9) 0.0032 0.0018 0.0017
(3, 4, 7, 8) 0.0007 -0.0011 -0.0011
(3, 4, 7, 9) 0.0041 0.0003 0.0004
(3, 4, 8, 9) 0.0006 0.0013 0.0021
(3, 5, 6, 7) 0.0052 0.0059 0.0071
(3, 5, 6, 8) -0.0024 -0.0011 -0.0000
(3, 5, 6, 9) -0.0044 -0.0023 -0.0019
(3, 5, 7, 8) -0.0023 -0.0014 -0.0011
(3, 5, 7, 9) -0.0007 -0.0031 -0.0024
(3, 5, 8, 9) -0.0010 -0.0007 -0.0005
(3, 6, 7, 8) 0.0035 0.0027 0.0034
(3, 6, 7, 9) -0.0034 -0.0052 -0.0045
(3, 6, 8, 9) -0.0019 -0.0011 -0.0004
(3, 7, 8, 9) 0.0018 0.0014 0.0003
(4, 5, 6, 7) -0.0052 -0.0020 -0.0037
(4, 5, 6, 8) -0.0025 -0.0001 0.0007
(4, 5, 6, 9) -0.0019 0.0005 0.0004
(4, 5, 7, 8) -0.0027 0.0009 0.0016
(4, 5, 7, 9) -0.0017 0.0005 0.0010
(4, 5, 8, 9) -0.0004 -0.0004 0.0000
(4, 6, 7, 8) -0.0000 -0.0003 0.0011
(4, 6, 7, 9) 0.0017 0.0005 0.0006
(4, 6, 8, 9) -0.0005 -0.0005 0.0005
(4, 7, 8, 9) 0.0007 -0.0000 -0.0001
(5, 6, 7, 8) -0.0041 -0.0024 -0.0012
(5, 6, 7, 9) -0.0038 -0.0046 -0.0039
(5, 6, 8, 9) 0.0013 -0.0009 -0.0007
(5, 7, 8, 9) -0.0003 0.0003 0.0004
(6, 7, 8, 9) 0.0022 0.0005 0.0003
(0, 1, 2, 3, 4) 0.0042 0.0010 0.0003
(0, 1, 2, 3, 5) 0.0004 0.0010 0.0012
(0, 1, 2, 3, 6) 0.0018 0.0004 0.0002
(0, 1, 2, 3, 7) 0.0014 0.0006 0.0012
(0, 1, 2, 3, 8) 0.0007 -0.0004 -0.0001
(0, 1, 2, 3, 9) 0.0006 0.0012 0.0015
(0, 1, 2, 4, 5) 0.0051 0.0013 0.0013
(0, 1, 2, 4, 6) 0.0016 0.0011 0.0010
(0, 1, 2, 4, 7) 0.0005 -0.0011 -0.0009
(0, 1, 2, 4, 8) 0.0022 0.0005 0.0008
(0, 1, 2, 4, 9) 0.0026 -0.0002 -0.0000
(0, 1, 2, 5, 6) 0.0025 0.0023 0.0038
(0, 1, 2, 5, 7) 0.0013 -0.0001 0.0003
(0, 1, 2, 5, 8) 0.0012 0.0011 0.0017
(0, 1, 2, 5, 9) 0.0017 -0.0008 -0.0006
(0, 1, 2, 6, 7) 0.0005 -0.0010 -0.0008
(0, 1, 2, 6, 8) -0.0003 -0.0008 -0.0001
(0, 1, 2, 6, 9) 0.0008 -0.0001 -0.0003
(0, 1, 2, 7, 8) 0.0003 -0.0010 -0.0005
(0, 1, 2, 7, 9) 0.0004 -0.0008 -0.0006
(0, 1, 2, 8, 9) -0.0004 -0.0006 -0.0003
(0, 1, 3, 4, 5) 0.0013 0.0002 -0.0007
(0, 1, 3, 4, 6) 0.0017 0.0009 -0.0001
(0, 1, 3, 4, 7) 0.0028 0.0010 0.0010
(0, 1, 3, 4, 8) 0.0032 -0.0004 -0.0000
(0, 1, 3, 4, 9) -0.0005 -0.0006 -0.0001
(0, 1, 3, 5, 6) -0.0012 0.0000 0.0003
(0, 1, 3, 5, 7) 0.0018 -0.0006 -0.0003
(0, 1, 3, 5, 8) 0.0003 -0.0001 0.0000
(0, 1, 3, 5, 9) -0.0012 -0.0000 0.0002
(0, 1, 3, 6, 7) 0.0011 0.0002 0.0009
(0, 1, 3, 6, 8) 0.0020 -0.0004 -0.0002
(0, 1, 3, 6, 9) -0.0000 0.0007 0.0004
(0, 1, 3, 7, 8) 0.0015 -0.0003 0.0001
(0, 1, 3, 7, 9) -0.0003 -0.0010 -0.0004
... ... ... ...

Subset S N=500 N=5000 N=133 549
... ... ... ...
(1, 2, 5, 6, 7, 8, 9) 0.0029 -0.0003 -0.0009
(1, 3, 4, 5, 6, 7, 8) 0.0005 -0.0032 -0.0035
(1, 3, 4, 5, 6, 7, 9) 0.0061 0.0051 0.0049
(1, 3, 4, 5, 6, 8, 9) 0.0062 0.0014 -0.0009
(1, 3, 4, 5, 7, 8, 9) 0.0002 0.0002 0.0009
(1, 3, 4, 6, 7, 8, 9) 0.0015 0.0015 0.0008
(1, 3, 5, 6, 7, 8, 9) 0.0002 -0.0026 -0.0004
(1, 4, 5, 6, 7, 8, 9) 0.0025 0.0026 0.0016
(2, 3, 4, 5, 6, 7, 8) -0.0038 0.0007 -0.0002
(2, 3, 4, 5, 6, 7, 9) 0.0039 0.0042 0.0036
(2, 3, 4, 5, 6, 8, 9) 0.0059 0.0022 0.0013
(2, 3, 4, 5, 7, 8, 9) -0.0042 -0.0016 -0.0010
(2, 3, 4, 6, 7, 8, 9) -0.0007 0.0013 0.0008
(2, 3, 5, 6, 7, 8, 9) -0.0046 -0.0029 -0.0015
(2, 4, 5, 6, 7, 8, 9) 0.0012 0.0018 0.0008
(3, 4, 5, 6, 7, 8, 9) 0.0014 0.0009 0.0011
(0, 1, 2, 3, 4, 5, 6, 7) -0.0021 -0.0027 -0.0019
(0, 1, 2, 3, 4, 5, 6, 8) 0.0037 0.0021 0.0014
(0, 1, 2, 3, 4, 5, 6, 9) 0.0018 -0.0006 -0.0015
(0, 1, 2, 3, 4, 5, 7, 8) 0.0002 0.0002 -0.0001
(0, 1, 2, 3, 4, 5, 7, 9) -0.0002 -0.0006 -0.0012
(0, 1, 2, 3, 4, 5, 8, 9) 0.0015 0.0018 -0.0001
(0, 1, 2, 3, 4, 6, 7, 8) 0.0005 0.0010 -0.0003
(0, 1, 2, 3, 4, 6, 7, 9) -0.0004 0.0013 0.0003
(0, 1, 2, 3, 4, 6, 8, 9) 0.0025 0.0014 0.0005
(0, 1, 2, 3, 4, 7, 8, 9) -0.0013 0.0001 -0.0003
(0, 1, 2, 3, 5, 6, 7, 8) 0.0037 0.0016 -0.0005
(0, 1, 2, 3, 5, 6, 7, 9) 0.0009 0.0008 -0.0009
(0, 1, 2, 3, 5, 6, 8, 9) 0.0018 0.0009 -0.0002
(0, 1, 2, 3, 5, 7, 8, 9) 0.0014 0.0010 -0.0002
(0, 1, 2, 3, 6, 7, 8, 9) 0.0000 0.0006 0.0001
(0, 1, 2, 4, 5, 6, 7, 8) 0.0030 0.0017 0.0002
(0, 1, 2, 4, 5, 6, 7, 9) -0.0009 -0.0002 0.0000
(0, 1, 2, 4, 5, 6, 8, 9) 0.0052 0.0014 0.0004
(0, 1, 2, 4, 5, 7, 8, 9) -0.0010 0.0006 -0.0001
(0, 1, 2, 4, 6, 7, 8, 9) -0.0013 0.0003 -0.0000
(0, 1, 2, 5, 6, 7, 8, 9) 0.0007 0.0003 -0.0004
(0, 1, 3, 4, 5, 6, 7, 8) -0.0013 0.0008 -0.0006
(0, 1, 3, 4, 5, 6, 7, 9) 0.0003 0.0017 0.0006
(0, 1, 3, 4, 5, 6, 8, 9) 0.0010 0.0005 -0.0001
(0, 1, 3, 4, 5, 7, 8, 9) -0.0006 0.0007 -0.0000
(0, 1, 3, 4, 6, 7, 8, 9) -0.0007 0.0005 0.0002
(0, 1, 3, 5, 6, 7, 8, 9) -0.0001 0.0008 0.0002
(0, 1, 4, 5, 6, 7, 8, 9) -0.0002 0.0010 0.0001
(0, 2, 3, 4, 5, 6, 7, 8) 0.0006 0.0001 -0.0007
(0, 2, 3, 4, 5, 6, 7, 9) -0.0005 0.0015 0.0003
(0, 2, 3, 4, 5, 6, 8, 9) 0.0012 0.0004 0.0001
(0, 2, 3, 4, 5, 7, 8, 9) -0.0005 0.0002 -0.0001
(0, 2, 3, 4, 6, 7, 8, 9) -0.0010 0.0002 0.0002
(0, 2, 3, 5, 6, 7, 8, 9) 0.0009 0.0004 -0.0000
(0, 2, 4, 5, 6, 7, 8, 9) -0.0007 0.0007 0.0001
(0, 3, 4, 5, 6, 7, 8, 9) -0.0010 0.0008 0.0006
(1, 2, 3, 4, 5, 6, 7, 8) -0.0131 -0.0081 -0.0069
(1, 2, 3, 4, 5, 6, 7, 9) -0.0018 0.0002 0.0013
(1, 2, 3, 4, 5, 6, 8, 9) -0.0073 -0.0006 0.0015
(1, 2, 3, 4, 5, 7, 8, 9) 0.0039 0.0040 0.0042
(1, 2, 3, 4, 6, 7, 8, 9) 0.0011 0.0000 0.0014
(1, 2, 3, 5, 6, 7, 8, 9) 0.0018 0.0036 0.0014
(1, 2, 4, 5, 6, 7, 8, 9) -0.0021 -0.0014 0.0005
(1, 3, 4, 5, 6, 7, 8, 9) -0.0036 -0.0048 -0.0048
(2, 3, 4, 5, 6, 7, 8, 9) -0.0021 -0.0039 -0.0038
(0, 1, 2, 3, 4, 5, 6, 7, 8) -0.0023 -0.0018 -0.0002
(0, 1, 2, 3, 4, 5, 6, 7, 9) -0.0008 -0.0013 0.0003
(0, 1, 2, 3, 4, 5, 6, 8, 9) -0.0063 -0.0024 -0.0003
(0, 1, 2, 3, 4, 5, 7, 8, 9) 0.0012 0.0000 0.0010
(0, 1, 2, 3, 4, 6, 7, 8, 9) 0.0012 -0.0003 0.0002
(0, 1, 2, 3, 5, 6, 7, 8, 9) -0.0017 -0.0008 0.0005
(0, 1, 2, 4, 5, 6, 7, 8, 9) 0.0003 -0.0004 0.0004
(0, 1, 3, 4, 5, 6, 7, 8, 9) -0.0000 -0.0019 -0.0009
(0, 2, 3, 4, 5, 6, 7, 8, 9) -0.0003 -0.0017 -0.0010
(1, 2, 3, 4, 5, 6, 7, 8, 9) -0.0041 -0.0008 -0.0022
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 0.0005 0.0012 -0.0002

Table K.2: The individual terms of the Shapley-GAM decomposition of a kNN classifier on the Folktables Travel data set.
The table depicts a number of selected terms of the full decomposition, estimated with 500, 5000 and 133549 samples per
evaluation of the value function. The depicted terms are visualized in Figure C.3. From the table, we see that many relatively
small higher-order coefficients are not very precisely estimated for N = 5000, whereas the overall sums (visualized in
Figure C.3) are.


	INTRODUCTION
	RELATED WORK
	BACKGROUND AND NOTATION
	Value Functions and Shapley Values
	Generalized Additive Models

	FROM SHAPLEY VALUES TO GENERALIZED ADDITIVE MODELS
	n-Shapley Values
	The Shapley-GAM

	FROM GENERALIZED ADDITIVE MODELS TO SHAPLEY VALUES
	Shapley Values from the Shapley-GAM
	From Functional Decompositions to Subset-Compliant Value Functions

	RECOVERY
	IS THERE AN ACCURACY-COMPLEXITY TRADE-OFF?
	COMPUTATION AND ESTIMATION
	DISCUSSION
	n-Shapley Values
	Bernoulli numbers
	Additivity and Efficiency
	Relationship Between n-Shapley Values of Different Order

	Visualizing n-Shapley Values
	Estimating n-Shapley Values
	The Statistical Independence Assumption for Observational SHAP is Necessary
	Proof of Theorem 4
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Lemma 10
	Datasets and Models
	Datasets
	Models

	Additional Plots and Figures
	Folktables Income
	Glassbox-GAM
	Gradient Boosted Tree
	Random Forest
	k-Nearest Neighbor

	Folktables Travel
	Glassbox-GAM
	Gradient Boosted Tree
	Random Forest
	k-Nearest Neighbor

	German Credit
	Glassbox-GAM
	Gradient Boosted Tree
	Random Forest
	k-Nearest Neighbor

	California Housing
	Glassbox-GAM
	Gradient Boosted Tree
	Random Forest
	k-Nearest Neighbor



