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Abstract

In this paper, we investigate stability-based meth-
ods for cluster model selection, in particular to se-
lect the number K of clusters. The scenario un-
der consideration is that clustering is performed
by minimizing a certain clustering quality func-
tion, and that a unique global minimizer exists. On
the one hand we show that stability can be upper
bounded by certain properties of the optimal clus-
tering, namely by the mass in a small tube around
the cluster boundaries. On the other hand, we pro-
vide counterexamples which show that a reverse
statement is not true in general. Finally, we give
some examples and arguments why, from a theo-
retic point of view, using clustering stability in a
high sample setting can be problematic. It can be
seen that distribution-free guarantees bounding the
difference between the finite sample stability and
the “true stability” cannot exist, unless one makes
strong assumptions on the underlying distribution.

1 Introduction
In the domain of data clustering, the problem of model se-
lection is one of the most difficult challenges. In particular
the question of selecting the number of clusters has drawn a
lot of attention in the literature. A very popular method to
solve this problem is to use a stability-based approach. The
overall idea is that a clustering algorithm with a certain set-
ting of parameters is meaningful for a given input data if it
produces “stable” results, that is, inputs similar to that data
lead to similar clustering results. The other way round, an al-
gorithm which is unstable cannot be trusted. This argument
is then turned into a model selection criterion: to determine
a “good” number K of clusters on a particular data set, one
runs a clustering algorithm with different choices of K on
many perturbed versions of that data set and selects the pa-
rameter K where the algorithm gives the most stable result.

This stability approach has been implemented in various
different ways (e.g., Levine and Domany, 2001, Ben-Hur
et al., 2002, Lange et al., 2004, Smolkin and Ghosh, 2003)
and gains more and more influence in applications, for
example in the domain of bioinformatics (Bittner et al.,

2000, Fridlyand and Dudoit, 2001, Kerr and Churchill,
2001, Bertoni and Valentini, 2007). However, its theoretical
foundations are not yet well understood. While it is a rea-
sonable requirement that an algorithm should demonstrate
stability in general, it is not obvious that, among several
stable algorithms, the one which is most stable leads to the
best performance.

One important situation has been analyzed in Ben-David
et al. (2006) and Ben-David et al. (2007). There it has
been proved that in a setting where clustering is performed
by globally minimizing an objective function, clustering
stability can be characterized by simple properties of the
underlying objective function. Namely, given a data set from
some particular input distribution, a clustering algorithm
is stable for this distribution for large sample sizes if and
only if its objective function has a unique global minimizer
for that input. As several counter-examples have shown,
the latter property is not necessarily related to the fact that
the algorithm constructs the correct number of clusters.
Some examples for this behavior have also been given in
Krieger and Green (1999) (but without rigorous analysis).
The dilemma worked out by Ben-David et al. (2006) and
Ben-David et al. (2007) is not so much that algorithms get
unstable in case of multiple global optima, but the fact that
all algorithms with unique global optima are stable. That
is, for large sample size (in)stability converges to the same
value 0, no matter what parameter K we choose. This result
suggests that for large sample size, stability criteria are
unsuitable for model selection.

While this looks like a very negative result on the first glance,
recent follow-up work by Shamir and Tishby (2008b) and
Shamir and Tishby (2008a) indicates a possible way out of
this trap. In a simple situation where the data is distributed
according to well separated, univariate Gaussians, the au-
thors show that even though the K-means algorithm is stable
for many values of K, the rate of convergence of a rescaled
measure of stability behaves differently for different num-
bers of clusters. In this example, the authors show that a
model selection criterion based on stability can be used to
select the correct number of clusters. The difference to the
approach considered in Ben-David et al. (2006) and Ben-
David et al. (2007) is that the scaling constant in the defi-
nition of stability is chosen as 1/

√
n rather than 1/n. Hence,

the authors consider a central limit theorem setting rather



than a law of large numbers. In the central limit theorem
setting, they show that stability does not necessarily con-
verge to 0, but to some normal distribution with particular
parameters. Intuitively this means that stability behaves like
c(K)/

√
n where the constant c(K) depends (in some com-

plicated way) on the number K of clusters. In the simple uni-
variate mixture of Gaussian settings studied in Shamir and
Tishby (2008b) and Shamir and Tishby (2008a), this con-
stant is higher for the ”incorrect” parameter choice. This
work indicates that even for large sample size, stability cri-
teria might be useful for model selection after all. It remains
to be seen whether this approach can successfully extended
to more complex data scenarios reflecting real world data.

The work of Shamir and Tishby (2008b) shows how stability
might be used to select the number of clusters in the setting
of large sample size and unique global optimizer. However,
one crucial question still remains unanswered: what is it re-
ally that stability reflects, how will stable clusterings look
like in general, and what properties will they have? This is
the direction we want to take in our current paper. The gen-
eral setup is similar to the one discussed above, that is we
study clustering algorithms which minimize a certain clus-
tering quality function. As the other case has already been
treated completely in Ben-David et al. (2006) and Ben-David
et al. (2007), we are now solely concerned with the setting
where the clustering quality function has one unique global
optimizer. Our goal is to relate the stability of clustering al-
gorithms (on finite sample sizes) to properties of the optimal
data clustering itself.

One candidate for such a relation is the conjecture that in
the large sample regime, differences in stability of clustering
algorithms can be explained by whether the cluster bound-
aries of the optimal clustering of the underlying space lie in
a low or a high density areas of the underlying space. The
conjecture is that if the boundaries are in low density areas
of the space, an algorithm which constructs clusterings suf-
ficiently close to the optimal clustering will be stable. The
other way round, we expect it to be more unstable if the de-
cision boundaries of the optimal clustering are in a high den-
sity area. The intuition behind this conjecture is simple: if
the decision boundary is in a low density area of the space,
small perturbations of the samples might move the bound-
ary a bit, but this movement of the boundary will only af-
fect the cluster labels of very few points (as there are not
many points close to the boundary). On the other hand, if the
boundary is in a high density area, even small perturbations
in the samples will change the cluster assignments of many
data points. If this conjecture were true, it would have a very
large impact on understanding the mechanism of stability-
based model selection.

In this paper, we first prove one direction of this conjecture:
the quantitative value of stability can be upper bounded by
the mass in a small tube around the optimal clustering bound-
ary. Such a statement has already been implicitly used in
Shamir and Tishby (2008b), but only in a very simple one-
dimensional setting where the cluster boundary just consists
of one single point. The challenge is to prove this statement

in a more general, multidimensional setting.

Unfortunately, it turns out that the opposite direction of the
conjecture does not hold. In general, there can be clusterings
whose decision boundary lies in a high density area, but we
have high stability. We demonstrate this fact with counterex-
amples which also shed light on the reasons for the failure of
this direction of the conjecture.

Finally, we end our paper with a few cautionary thoughts
about using stability in large sample scenarios. Essentially,
we argue that even if one found satisfactory reasons which
explain why a certain clustering tends to be more stable than
an other one, such statements are not very useful for draw-
ing conclusions about stability measures of any given finite
sample size. The reason is that as opposed to the standard
statistical learning theory settings, there cannot exist uniform
convergence bounds for stability. Thus there is no way one
can state any theoretical guarantees on the decisions based
on stability for any fixed sample size, unless one makes very
strong assumptions on the underlying data distributions.

2 Notation and ingredients
2.1 General setup
Let (X , d) denote an arbitrary metric space. For convenience,
in the following we will always assume that X is compact.
By diamX := maxx,y∈X d(x, y) we denote the diameter of
the space. The space of all probability measures on X (with
respect to the Borel σ-algebra) is denoted by M1(X ). Let
P be a fixed probability measure on X , and X1, ..., Xn a
sample of points drawn i.i.d. from X according to P . The
empirical measure of this sample will be denoted by Pn.

Let F be a set of admissible clustering functions of the form
f : X → {1, ...,K}, where K ∈ N denotes the number of
clusters. In the following, we will consider clusterings with
respect to the equivalence relation of renaming the cluster
labels. Namely, define the equivalence relation ∼ on F by

f ∼ g : ⇐⇒ ∃π : f(x) = π(g(x))
where π is a permutation of the set {1, ...,K}. Denote by
F := F/∼ the space of equivalence classes of this relation.
This will be the space of clusterings we will work with. To
perform clustering, we will rely on a clustering quality func-
tion Q : F ×M1(X ) → R. The optimal “true” clustering of
X with respect to P is defined as

f∗ := argmin
f∈F

Q(f, P ).

Throughout this paper we will assume that f∗ is the unique
global optimizer of Q. If this is not the case, it has already
been proved that the corresponding clustering algorithm is
not stable anyway (Ben-David et al., 2006, 2007).

When working on a finite sample, we will use an empirical
quality function Qn : F × M1(X ) → R. We consider the
clustering algorithm which, on any given sample, selects the
clustering fn by

fn := argmin
f∈F

Qn(f, Pn).



Note that implicit in this formulation, one makes the
assumption that the clustering algorithm is able to detect
the global minimum of Qn. Of course, this is not the
case for many commonly used clustering algorithms. For
example, the standard K-means algorithm is not guaranteed
to do so. Even though in applications, experience shows
that the K-means algorithm is reasonably successful on
“well-clustered” data sets, to get provable guarantees
one has to revert to other algorithms, such as the nearest
neighbor clustering introduced in von Luxburg et al. (2008)
or approximation schemes such as the one introduced in
Ostrovsky et al. (2006).

In the following, we will only deal with clustering algo-
rithms which are statistically consistent, that is Q(fn, P ) →
Q(f∗, P ) in probability. It has been proved that minimizing
well-known objective functions such as the one used by K-
means or the normalized cut used in spectral clustering can
be performed consistently (von Luxburg et al., 2008).

For two independent samples {X1, ..., Xn} and {X ′
1, ..., X

′
n}

denote the clustering solutions based on minimizing a quality
function Qn by fn and f ′n, respectively. For a given distance
function D : F × F → R which measures some kind of
distance between clusterings, the instability of the clustering
algorithm minimizing the quality function Q based on sam-
ple size n is defined as

InStabD(Q,n, P ) := E (D(fn, f ′n))

where the expectation is over the random drawing of the two
samples. So, the stability (or instability) is a function of sev-
eral quantities: the input data distribution P , the clustering
algorithm (defined by the quality function Q that the algo-
rithm optimizes), the sample size n, and the clustering dis-
tance measure used. Unless otherwise mentioned, we shall
be using the minimal matching distance (see below) for the
definition of instability and drop the subscript D in the insta-
bility notation. Also, if it is clear which objective function Q
we refer to, we drop the dependence on Q, too, and simply
write InStab(n, P ) for instability.

2.2 Distance functions between clusterings
Various measures of clustering distances have been used and
analyzed in the literature (see for example Meila, 2005). We
define below two measures that our most relevant to our dis-
cussion.

Minimal matching distance. This is perhaps the most widely
used distance between clusterings. For two clusterings de-
fined on a finite point set X1, ..., Xn, this distance is defined
as

DMinMatch(fn, f ′n) := min
π

1
n

n∑
i=1

1f(Xi) 6=π(g(Xi))

where the minimum is taken over all permutations π of the
set {1, ...,K}. This distance is close in spirit to the 0-1-
loss used in classification. It is well known that DMinMatch
is a metric, and that it can be computed efficiently using a
minimal bipartite matching algorithm.

A distance based on cluster boundaries. For our current
work, we need to introduce a completely new distance be-
tween clusterings. Intuitively, this distance measures how far
the class boundaries of two clusterings are away from each
other. Let X be a compact subset of Rs, d a metric on Rs

such as the Euclidean one, and F the space of all clustering
functions f : X → {1, ...,K}, up to the equivalence relation
∼. For a given f ∈ F , we define the boundary B(f) of f
as the set

B(f) := {x ∈ X | f discontinuous at x}.
The distance of a point x to the boundary B(f) is defined as
usual by

d(x,B(f)) := inf{d(x, y) | y ∈ B(f)}.
For γ > 0, we then we define the tube Tγ(f) as the set

Tγ(f) := {x ∈ X | d(x, B(f)) ≤ γ}.
For γ = 0 we set T0(f) = B(f).

We say that a clustering function g is in the γ-tube of f ,
written g / Tγ(f), if

∀x, y 6∈ Tγ(f) : f(x) = f(y) ⇐⇒ g(x) = g(y).

Finally, we define the distance function Dboundary on F as

Dboundary(f, g) := inf
γ>0

{f / Tγ(g) and g / Tγ(f)}.

The distance Dboundary satisfies several nice properties:

Proposition 1 (Properties of Dboundary) Assume that the met-
ric space X ⊂ Rs is compact. Let F be the set of equiva-
lence classes of clustering functions f : X → {1, ...,K} as
defined above. Then the following technical properties hold:

1. Dboundary is well-defined on the equivalence classes.
2. Let f, g ∈ F . Then: g / Tγ(f) implies that B(g) ⊂

Tγ(f).
3. Let f, g two clusterings with Dboundary(f, g) ≤ γ. Then

there exists a permutation π such that for all x ∈ X ,

f(x) 6= π(g(x)) =⇒ x ∈ Tγ(g).

Furthermore, the following fundamental properties hold:

5. The distance function Dboundary is a metric on F .
6. F is relatively compact under the topology induced by

Dboundary.

Proof.

1. The definitions of all quantities above do not depend on
the particular labeling of the clusters, but only on the
positions of the cluster boundaries.

2. Let g / Tγ(f), but assume that B(g) 6⊆ Tγ(f). That
is, there exists a point x ∈ B(g) with x 6∈ Tγ(f). By
definition of B(g), x is a point of discontinuity of g,
thus the clustering g changes its label at x. On the other
hand, by the definition of Tγ(f), f does not change its
label at x (otherwise, x would be in B(f) ⊂ Tγ(f)).
But the latter contradicts the definition of g / Tγ(f)
which requires that f and g only change their labels at
the same points outside of Tγ(f). Contradiction.



3. Similar to Part 2.

4. Dboundary(f, g) ≤ diamX < ∞: As X is compact,
it has a finite diameter diamX . Then for all f, g ∈
F we have TdiamX (f) = X and TdiamX (g) = X .
Thus, trivially f / TdiamX (g) and vice versa, that
is Dboundary(f, g) ≤ diamX .

Dboundary(f, g) ≥ 0: clear.

Dboundary(f, f) = 0: clear.

Dboundary(f, g) = 0 =⇒ f = g: Dboundary(f, g) = 0
implies that B(f) ⊂ T0(g) = B(g) and vice versa,
thus we have B(f) = B(g). So the class boundaries
of both clusterings coincide. Moreover, we have that
for all x, y 6∈ B(g), f(x) = f(y) ⇐⇒ g(x) = g(y).
Thus there exists a permutation of the labeling of g such
that f(x) = π(g(x)) for all x 6∈ B(g). Thus f and g
are in the same equivalence class with respect to∼, that
is f = g in the space F .

Triangle inequality: assume that Dboundary(f, g) = γ1

and Dboundary(g, h) = γ2, that is

∀x, y 6∈ Tγ1(f) : [f(x) = f(y) ⇐⇒ g(x) = g(y)]
∀x, y 6∈ Tγ1(g) : [f(x) = f(y) ⇐⇒ g(x) = g(y)]
∀x, y 6∈ Tγ2(g) : [h(x) = h(y) ⇐⇒ g(x) = g(y)]
∀x, y 6∈ Tγ2(h) : [h(x) = h(y) ⇐⇒ g(x) = g(y)].

(1)

Now define γ := γ1+γ2. We first need to prove a small
sub-statement, namely that

x 6∈ Tγ(f) =⇒ x 6∈ Tγ2(g). (2)

To this end, let x ∈ Tγ2(g), that is there exists some
point y ∈ B(g) with d(x, y) ≤ γ2. As we know that
g / Tγ1(f), we also have B(g) ⊂ Tγ1(f), that is for
all y ∈ B(g) exists z ∈ B(f) such that d(y, z) ≤ ε1.
Combining those two statements and using the triangle
inequality for the metric d on the original space X , we
can conclude that d(x, z) ≤ d(x, y) + d(y, z) = γ1 +
γ2 = γ, that is x ∈ Tγ(f). This shows statement (2) by
its contra-position. Now we can go ahead and prove the
triangle inequality for Dboundary. Using the property (2)
and the equations (1) we get that

x, y 6∈ Tγ(f) =⇒ x, y 6∈ Tγ2(g)
=⇒ [g(x) = g(y) ⇐⇒ h(x) = h(y)].

Moreover, by the definition of Tγ(f) and the fact that
γ ≥ γ1 we trivially have that x, y 6∈ Tγ(f) implies
x, y 6∈ Tγ1(f). Together with equations (1) this leads to

x, y 6∈ Tγ(f) =⇒ x, y 6∈ Tγ1(f)
=⇒ [g(x) = g(y) ⇐⇒ f(x) = f(y)].

Combining those two statements we get

x, y 6∈ Tγ(f) =⇒ [f(x) = f(y) ⇐⇒ h(x) = h(y)],

that is h / Tγ(f). Similarly we can prove that f /
Tγ(h), that is we get Dboundary(f, h) ≤ γ. This proves
the triangle inequality.

All statements together prove that Dboundary is a metric.

5. By the theorem of Heine-Borel, a metric space is rel-
atively compact if it is totally bounded, that is for any
γ > 0 it can be covered with finitely many γ-balls. By
assumption, we know that X is compact. Thus we can
construct a finite covering of balls of size γ of X (in
the metric d). Denote the centers of the covering balls
as x1, ..., xs. We want to use this covering to construct
a finite covering of F . To this end, let f ∈ F be an
arbitrary function (for now let us fix a labeling, we will
go over to the equivalence class in the end). Given f ,
we reorder the centers of the covering balls such that
all centers xi with xi 6∈ T2γ(f) come in the ordering
before the points xj with xj ∈ T2γ(f), that is:

xi 6∈ T2γ(f) and xj ∈ T2γ(f) =⇒ i < j.

Now we construct a clustering f̃ as follows: one after
the other, in the ordering determined before, we color
the balls of the covering according to the color f(xi) of
its center, that is we set:

• x ∈ B(x1) =⇒ f̃(x) := f(x1)

• x ∈ B(x2) \B(x1) =⇒ f̃(x) := f(x2)
...

• x ∈ B(xi) \ ∪t=1,...,i−1B(xt) : f̃(x) := f(xi)

By construction, for all points x 6∈ Tγ(f) we have f̃(x) =
f(x). Consequently, f̃ / Tγ(f). Similarly, the other
way round we have f / Tγ(f̃). Thus, Dboundary(f, f̃) ≤
γ. Note that given two representatives f, g of the same
clustering in F (that is, two functions such that f =
π(g) for some permutation π), the corresponding func-
tions f̃ and g̃ are also representatives of the same clus-
tering, that is f̃ = π(g̃). Thus the whole construction is
well-defined on F .

Finally, it is clear that the set F̃ := {f̃ | f ∈ F} has
finitely many elements: there only exist finitely many
orderings of the s center points x1, ..., xs and finitely
many labelings of those center points using K labels.
Hence, the set F̃ forms a finite γ-covering of F .

,

In the current paper, we will only use the distance Dboundary
for clusterings of Rs, but its construction is very general.
The distance Dboundary can also be defined on more general
metric spaces, and even discrete spaces. One just has to give
up defining B(f) and directly define the set Tγ(f) as the set
{x ∈ X | ∃y ∈ X : f(x) 6= f(y) and d(x, y) ≤ ε}. How-
ever, in that case, some care has to be taken when dealing
with “empty regions” of the space.



3 Upper bounding stability by the mass in
γ-tubes

In this section we want to establish a simple, but potentially
powerful insight: given any input data distribution, P , for
large enough n, the stability of a quality-optimizing consis-
tent clustering algorithm can be described in terms of the P -
mass of along the decision boundaries of the optimal clus-
tering. The intuition is as follows. The distance DMinMatch
counts the number of points for which two clusterings do
not coincide, that is it counts the number of points which
lie “between” the decision boundaries of the two clusterings.
Stability is the expectation over DMinMatch, computed on dif-
ferent random samples.

3.1 Relation between stability and tubes
Let us first assume that we know that with high proba-
bility over the random drawing of samples, we have that
Dboundary(fn, f) ≤ γ for some constant γ. Then the follow-
ing proposition holds:

Proposition 2 (Relating stability and mass in tubes) Let
f be any fixed clustering, and fn the clustering computed
from a random sample of size n. Assume that with proba-
bility at least 1 − δ over the random samples, we have that
Dboundary(fn, f) ≤ γ. Then the instability (based on distance
DMinMatch) satisfies

InStab(n, P ) ≤ 2δ + 2P (Tγ(f)).

Proof. Denote the set of samples on which the event
Dboundary(fn, f) ≤ γ is true by M . W.l.o.g. assume that
for all n, the labels of the clustering fn are chosen such that
they already coincide with the ones of f , that is the permu-
tation for which the minimum in DMinMatch(fn, f) is attained
is the identity. Then we have:

InStab(n, P ) = E(DMinMatch(fn, f ′n))

≤ E(DMinMatch(fn, f) + DMinMatch(f ′n, f))
= 2EDMinMatch(fn, f)

= 2
∫

M

1fn(X) 6=f(X) dP (X) + 2
∫

Mc

1fn(X) 6=f(X) dP (X)

( on M, fn(x) 6= f(x) =⇒ x ∈ Tγ(f), see Prop. 1)

≤ 2
∫

M

1X∈Tγ(f) dP (X) + 2P (M c)

= 2P (Tγ(f) + 2δ

,

Proposition 2 gives several very plausible reasons for why a
clustering can be unstable:
• The decision boundaries themselves vary a lot (i.e., γ is

large). This case is pretty obvious.
• The decision boundaries do not vary so much (i.e., γ is

small), but lie in an area of high density. This is a more
subtle reason, but a very valuable one. It suggests that if
we compare two clusterings, one of them has its cluster
boundary in a high density area and the other one in a low
density area, then the first one tends to be more unstable

than the second one. However, to formally analyze such
a comparison between stability values of different algo-
rithms, one also has to prove a lower bound on stability,
see later.

• The decision boundaries do not vary so much (i.e., γ
is small), are in a region of moderate density, but they
are very long, so significant mass accumulates along the
boundary.

3.2 Determining the width γ in terms of the limit
clustering

Now we want to apply the insight from the last subsection
to relate properties of the optimal clustering to stability. In
this section, we still want to work in an abstract setting, with-
out fixing a particular clustering objective function. In order
to prove our results, we will have to make a few crucial as-
sumptions:
• The objective function Q has a unique global minimum.

Otherwise we know by Ben-David et al. (2006) and Ben-
David et al. (2007) that the algorithm will not be stable
anyway.

• The clustering algorithm is consistent, that is
Q(fn, P ) → Q(f∗, P ) in probability. If this as-
sumption is not true, any statement about the stability on
a finite sample is pretty meaningless, as the algorithm
can change its mind with the sample size. For example,
consider the trivial algorithm which returns a fixed func-
tion f1 if the sample size n is even, and another fixed
function f2 if the sample size is odd. This algorithm is
perfectly stable for every n, but since the results do not
converge, it is completely meaningless.

• The sample size n is sufficiently large so that
Q(fn) − Q(f∗) is sufficiently small: fn is inside
the region of attraction of the global minimum. With
this assumption we want to exclude trivial cases where
instability is induced due to too high sample fluctuations.
See also Section 5 for discussion.

To state the following proposition, we recall the definition of
a quasi-inverse of a function. The quasi-inverse of a function
is a generalization of the inverse of a function to cases where
the function is not injective. Let f : X → Y be a function
with range rg(f) ⊂ Y . A function g : rg(f) → X which
satisfies f ◦ g ◦ f = f is called a quasi-inverse of f . Note
that quasi-inverses are not unique, unless the function f is
injective.

Proposition 3 (Consequences of unique global optimum)
Let (X , d) a compact metric space with probability distribu-
tion P , andF the space of P -measurable clusterings with K
clusters on X . As a topology on F , consider the one induced
by the distance Dboundary. Let Q := Q(·, P ) : F → R be
continuous and assume that it has a unique global minimizer
f∗. Then, every quasi-inverse Q−1 : rg(Q) ⊂ R → F is
continuous at Q(f∗). In particular, for all γ > 0 there exists
some ε(γ, f∗, P ) > 0 such that for all f ∈ F ,

|Q(f, P )−Q(f∗, P )| ≤ ε =⇒ Dboundary(f, f∗) ≤ γ.
(3)



Proof. Assume Q−1 is not continuous at Q(f∗), that is
there exists a sequence of functions (gn)n ⊂ F such that
Q(gn) → Q(f∗) but gn 6→ f∗. By the compactness as-
sumption, the sequence (gn)n has a convergent subsequence
(fnk

)k with fnk
→ f̃ for some f̃ ∈ F . Also by assumption,

we can find such a subsequence such that f̃ 6= f∗. By the
continuity of Q we know that Q(fnk

) → Q(f̃), and by the
definition of (gn)n we know also that Q(fnk

) → Q(f∗). So
we know that Q(f∗) = Q(f̃), and by the uniqueness of the
optimum f∗ this leads to f∗ = f̃ . Contradiction. ,

Note that the “geometry of Q” plays an important role in this
proposition. In particular, the size of the constant ε heavily
depends on the “steepness” of Q in a neighborhood of the
global optimum and on “how unique” the global optimum is.
We formalize this by introducing the following quantity:

UQ
P (γ) := sup

{
ε > 0 :

|Q(f, P )−Q(f∗, P )| ≤ ε =⇒ Dboundary(f, f∗) ≤ γ
}

.

One can think of UQ
P as indicating how unique is the optimal

clustering f∗ of P is.

The following theorem bounds the stability of a clustering
algorithm on a given input data distribution by the mass it
has in the tube around the decision boundary. It replaces the
assumption of uniform convergence of the empirical cluster-
ings under the Dboundary metric of Proposition 2 by the more
intuitive assumption that the underlying clustering algorithm
is uniformly consistent. That is, Q(fn, P ) → Q(f∗, P ) in
probability, uniformly over all probability distributions P :

∀ε > 0 ∀δ > 0 ∃n ∈ N ∀P :
P (|Q(fn, P )−Q(f∗, P )| > ε) ≤ δ.

In particular, for any positive ε and δ, the required sample
size n does not depend on P . Such an assumption holds, for
example, for the algorithm constructing the global minimum
of the K-means objective function, as shown by Ben-David
(2007). For background reading on consistency of clustering
algorithms and bounds for many types of objective function
see von Luxburg et al. (2008). When such uniform consis-
tency holds for Q, let us quantify the sample size by defining

CQ(ε, δ) := min
{

m ∈ N :

∀P ∀n ≥ m P (|Q(fn, P )−Q(f∗, P )| > ε) ≤ δ
}

.

We can now provide a bound on stability which refers to
the following quantities: the uniqueness UQ

P of the optimal
clustering, the consistency CQ of the quality measure, and
the P -weight of the tubes around the optimal clustering of
the input data distribution.

Theorem 4 (High instability implies cut in high density
region) Let X be a compact subset of Rs, Assume that the
cluster quality function Q(·, P ) : F → R is continuous
with respect to the topology on F induced by Dboundary. Let

Q(·, P ) have a unique global minimizer f∗, and assume that
Q(·, P ) can be minimized uniformly consistently, Then, for
all γ > 0 and for all δ > 0,
if

n ≥ CQ(UQ
P (γ), δ)

then

InStab(n, P ) ≤ 2δ + 2P (Tγ(f∗)).

Proof. By definition of CQ we know that if n ≥
CQ(UQ

P (γ), δ) then we have that

P (|Q(fn, P )−Q(f∗, P )| ≤ UQ
P (γ)) > 1− δ.

By definition of UQ
P (γ) we know that if

|Q(fn, P ) − Q(f∗, P )| ≤ UQ
P (γ), then we have that

Dboundary(fn, f∗) ≤ γ. Together this means that whenever
n ≥ CQ(UQ

P (γ), δ) then with probability at least 1 − δ we
have that Dboundary(fn, f∗) ≤ γ. Now the statement of the
theorem follows by Proposition 2. ,

3.3 Application to particular objective functions
In this subsection we briefly want to show that the condi-
tions in Theorem 4 are satisfied for many of the commonly
used clustering quality functions. The major conditions to
investigate are the consistency condition and the condition
that Q is continuous with respect to Dboundary on F .

K-means objective function. The empirical K-means ob-
jective function Qn on a finite sample of n points is defined
as

Qn(f) =
1
n

n∑
i=1

K∑
k=1

1f(Xi)=k‖Xi − ck‖2

where ci denote the cluster centers. Its continuous counter-
part is the quality function

Q(f) =
∫ K∑

k=1

1f(X)=k‖X − ck‖2 dP (X).

Assume that on any finite sample, the clustering algorithm
returns the global optimizer of the empirical K-means func-
tion. Then it is known that this empirical optimizer con-
verges to the true optimum uniformly over all probability
distributions (e.g., Corollary 8 in Ben-David, 2007). (How-
ever, note that this guarantee does not apply to the standard
K-means algorithm, which only constructs local optima of
the empirical quality function.)
Moreover, the K-means objective function is continuous
with respect to Dboundary, as can be seen by the following
proposition:

Proposition 5 (Continuity of K-means wrt. Dboundary)
Let X ⊂ Rs compact, and P a probability distribution on X
with a density with respect to the Lebesgue measure. Then
the K-means quality function Q is continuous with respect
to Dboundary.



Proof. Assume f and g are two K-means clusterings with
distance Dboundary(f, g) ≤ γ. W.l.o.g. assume that the la-
beling of g is permuted such that outside of the γ-tubes, the
labels of f and g coincide. Denote the complement of a set
T by T c. Then we can compute:

Q(g) =
∫ K∑

k=1

1g(X)=k‖X − ck(g)‖2 dP (X)

≤
∫ K∑

k=1

1g(X)=k‖X − ck(f)‖2 dP (X)

=
∫

Tγ(f)c

K∑
k=1

1g(X)=k‖X − ck(f)‖2 dP (X)

+
∫

Tγ(f)

K∑
k=1

1g(X)=k‖X − ck(f)‖2 dP (X)

(now on Tγ(f)c : f(X) = k ⇐⇒ g(X) = k)

=
∫

Tγ(f)c

K∑
k=1

1f(X)=k‖X − ck(f)‖2 dP (X)

+
∫

Tγ(f)

K∑
k=1

1g(X)=k‖X − ck(f)‖2 dP (X)

≤ Q(f) + diam(X )2 · P (Tγ(f)).
By the symmetry in f and g this leads to

|Q(g)−Q(f)| ≤ diam(X )2 ·max{P (Tγ(f)), P (Tγ(g))}.
Finally, the assumption g / Tγ(f) implies that Tγ(g) ⊂
T2γ(f). Thus we finally get that

|Q(f)−Q(g)| ≤ diam(X )2 · P (T2γ(f)),
which shows the continuity of Q at function f , that is

∀f ∀γ ∃δ ∀g : Dboundary(f, g) ≤ δ =⇒ |Q(f)−Q(g)| ≤ γ.

,

Case of graph cut objective functions. As an example,
consider the normalized cut objective function, which is de-
fined as follows. Let s : Rd × Rd → R+ be a similar-
ity function which is upper bounded by a constant C. For
a given cluster described by the cluster indicator function
fk : Rd → {0, 1}, we set
cut(fk) := cut(fk, P ) := Efk(X1)(1− fk(X2))s(X1, X2)
vol(fk) := vol(fk, P ) := Efk(X1)s(X1, X2)
For a clustering function f ∈ F we can then define the nor-
malized cut by

Ncut(f) := Ncut(f, P ) :=
K∑

k=1

cut(fk)
vol(fk)

.

In Bubeck and von Luxburg (2007) it has been proved that
there exists an algorithm such that Ncut can be minimized
uniformly consistently. So it remains to be shown that Ncut
is continuous with respect to Dboundary.

Proposition 6 (Continuity of Ncut wrt. Dboundary) Let
X ⊂ Rs compact, and P a probability distribution on X
with a density with respect to the Lebesgue measure. For a
fixed constant C > 0, let FC be the space of all clusterings
f : X → {1, ...,K} such that all clusters have a minimal
P -mass C. Then the Ncut objective function is continuous
with respect to Dboundary on FC .

Proof. The proof is very similar to the one for the K-means
case, thus we just provide a sketch. We consider the
enumerator and denominator of Ncut separately. As for
the K-means case, one splits the integrals over X in a sum
of the integrals over Tγ(f) and Tγ(f)c. Both parts are
dominated by the contributions from points in T c

γ , and the
contributions from inside the tubes can be bounded by some
constant times the mass in the tubes. This leads to a similar
argument as in the K-means case. ,

Explicit form of the constant γ. We have seen that Theorem
4 can be applied to several of the standard clustering objec-
tive functions, such as the K-means one and the normalized
cut. What remains a bit vague is the exact functional form
of the constant γ in this theorem. Essentially, this constant
is the result of an existence statement in Proposition 3. For
the case of K-means, it is possible to upper bound this con-
stant by using the tools and methods from Meila (2006) and
Meila (2007). There it has been proved in a finite sample set-
ting that under certain conditions, if |Q(f)−Q(g)| is small,
then also the DMinMatch(f, g) is small. For K-means, one can
show that small DMinMatch(f, g) implies small Dboundary. Fur-
thermore, all quantities used in the finite sample results of
Meila (2006) need to be carried over to the limit setting. For
example, the eigenvalues of the similarity matrices have to be
replaced by eigenvalues of the corresponding limit operators,
for example by using results from Blanchard et al. (2007).
Combining all those arguments leads to an explicit upper
bound for the constant γ in Theorem 4 for the K-means ob-
jective function. However, this upper bound became so tech-
nical that we refrain from deriving it in this paper. A similar
argument might be possible for the normalized cut, as the
results of Meila (2007) also cover this case. However, we
have not worked out this case in detail, so we do not know
whether it really goes through. If it does, the result is likely
to look even more complicated than in the K-means case.

3.4 High-density boundaries do not imply instability
In the following example we demonstrate that, in some
sense, the converse of Theorem 4 fails. We construct a data
distribution over the two-dimensional plane for which the 2-
means clustering has high probability mass in a narrow tube
around the optimal clustering boundary, and yet the instabil-
ity levels converge to zero fast (as a function of the sample
sizes).

Example 1 Let P ν
η be a mixture distribution consisting

of the following components (see Figure 1 for illustra-
tion). Define the sets A = {−1} × [−1, 1], B =
{1} × [−1, 1], C = {(−η, 0)}, and D = {(η, 0)}. Let
UA and UB be the uniform distributions on A and B,
and δC and δD the probability distributions giving weight



1 to the point C and D, respectively. Define P ν
η =

1
2 ((1− ν)(UA + UB) + ν(δC + δD)). Namely, the distri-
bution that allocates weight ν/2 to each of the singleton
points C and D, and the rest of its weight is uniformly spread
over the two vertical intervals at x = −1 and at x = 1.

X

1 1

η η

A BC D

1

1

0
X

Figure 1: Illustration of Example 1

Clearly, the optimal 2-means clustering, f∗, divides the
plane along the y axis. It is straight forward to see that if
the parameters η and ν are, say, η = 0.01 and ν = 0.2, then
the following statements hold:

1. For γ comparable to the variance of Dboundary(fn, f∗),
the γ-tube around this optimal boundary includes the
points C and D and therefore has significant weight,
namely P (Tγ(f∗)) = ν.

2. InStab(n, P ν
η ) goes to zero exponentially fast (as a

function of n).
To see this, note that as long as both of the cluster cen-
ters are outside the interval, [−1+η, 1−η], the cluster-
ing will be fixed (cutting along the y axis). This condi-
tion, in turn, holds whenever the sample S satisfies

|S ∩A| > 20|S ∩ C|

and
|S ∩B| > 20|S ∩D|

(’20’here just stands for ’many times’). Note that
these conditions are implied by having, for every T ∈
{A,B,C, D},∣∣∣∣ |S ∩ T |

|S|
− P (T )

∣∣∣∣ < 0.01

Finally, note that, by the Chernoff Bound, the probabil-
ity (over samples S of size n) that this condition fails
is bounded by c′e−cn for some constants c, c′. Conse-
quently, for every sample size, n,

InStab(n, P ν
η ) ≤ c′e−cn

3. For any ε > 0, P (|Q(fn) − Q(f∗)| > ε) goes to zero
exponentially fast with n.

Thus, while the preconditions of Theorem 4 hold, in spite of
having γ-tubes with significant P -weight, the instability val-
ues are going to zero at an extremely fast rate. The reason
is that the sample fluctuations will move the cluster centers
up and down in a rather narrow tube around the two vertical
intervals. The resulting fluctuations of the empirical clus-
tering boundary will (with overwhelming probability) keep
the boundary between the points C and D. Therefore the
instability will practically be zero (no points change cluster
membership). On the other hand, those up and down sample-
based fluctuations of cluster centers cause the boundary be-
tween the two empirical clusters to rotate around the origin
point (for example, if the cluster center corresponding to A
sits above the x-axis, and the center corresponding to B sits
below the x-axis). Such rotations result in relatively high
expected value for the Dboundary distance between the sam-
ple based empirical clusterings and the optimal clustering.
These fluctuations could even be be made larger by concen-
trating the probability weight of the two vertical intervals at
the end points of these intervals.
Furthermore, the phenomena of having significant weight in
Tγ(f∗), for small γ (i.e., comparable to the variance of the
cluster centers) and yet retaining negligible instability can be
shown for arbitrarily large sample sizes. Given any sample
size n, one can choose η small enough so that, in spite of
the decrease in the expected Dboundary empirical-to-optimal
distances (due to having large samples), the points C and D
will remain inside the Tγ(f∗), for γ equal the variance of
that Dboundary distance. Such a choice of parameters can be
done while retaining the property that empirical clusterings
are unlikely to move these points between clusters, and
hence the stability.

High boundary density version: Example 1 has large
weight on the γ-tube around the boundary of its optimal
clustering partition. Yet, the value of the probability den-
sity function on the boundary is zero. One can construct a
similar example, in which the probability density along the
boundary itself is high, and yet the data has close-to-zero
instability.

Example 2 Similar to the example above, we consider a
mixture distribution made up of three parts: S and T are
the vertical intervals S = {−1} × [−1/2, 1/2] and T =
{1} × [−1/2, 1/2]. However, now the third component is a
the rectangle R = [−η, η]× [−1, 1]. Our data space is then
defined as X := R ∪ S ∪ T , and as probability distribution
we choose Dν

η = (1 − ν)/2 · (US + UT ) + ν · UR. Finally,
we define a distance dX on this space by letting dX (a, b) be
the usual Euclidean distance whenever a and b belong to the
same component of X , and dX (a, b) is defined as the dis-
tance between the projections of a and b on the x-axis when-
ever a and b belong to different components. Note that this
metric is not Euclidean and that S∪R∪T is our full domain
space, not the real plane.

Once again the optimal 2-means clustering splits the space
along the y-axis. However, now this boundary has signifi-
cantly high density. Yet, we claim that Dν

η instability goes
to zero exponentially fast with the sample size. Intuitively,
this is because the up and down fluctuations of the centers
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Figure 2: Illustration of Example 2

of the two clusters do not perturb the boundary between the
two clusters.
More concretely, say we pick η < 0.01 and ν = 0.1. we
wish to show that, with high probability over the choice of
samples, the 2-means optimal sample clustering has its clus-
ter centers in the sets S and T . Note that by our choice of
distance function, if one center is in S and the other is in T
then the clustering cuts our domain set along the y axis (re-
gardless of the y coordinates of the centers).
Since our domain set equals S ∪ R ∪ T (there are no other
points in our domain space), it suffices to show that it is un-
likely that a sample based clustering will have a cluster cen-
ter in the set R. To see that, note that if for some sample W ,
the 2-means cost clustering based on W has a cluster center,
say of the left-hand cluster, is in R then the 2-means cost of
that clustering is at least |S ∩W |0.99. On the other hand, if
the center of that cluster is in S then the 2-means cost of that
cluster is at most |S ∩W |0.25 + |W ∩R|(1.01)2. It follows
that, as long as |W ∩ R| < 0.11|W | the optimal 2-means
clustering of the sample W will have one cluster center in S
and the other cluster center in T . We can now apply a sim-
ilar argument to the one used for example 1. Namely, note
that as long as the empirical weight of each of the three data
components is within 0.01 of its true weight it will indeed be
the case that |W ∩R| < 0.11|W |. It therefore follows, by the
Chernoff Bound, that the probability of having a sample W
violate this condition is bounded by c′e−c|W | for some con-
stants c, c′. Consequently, except for such minuscule proba-
bility, the clustering always splits our domain set along the y
axis. Consequently the 2-means instability of our data distri-
bution is exponentially small (in the sample size).

4 Some inherent limitations of the stability
approach in the large sample regime

We consider a setting in which one tries to gain insight
into the structure of some unknown data set (or probability
distribution over such a set) by sampling i.i.d. from that set.
A major question is when can such samples be considered a
reliable reflection of structure of that unknown domain. This
is the typical setting in which notions of stability are applied.
The most common use of stability is as a model selection
tool. In that context stability is viewed as an indication that a
clustering algorithm does the ”right thing” and, in particular,
that its choice of number of clusters is ”correct”. The work

of Shamir and Tishby (2008b) as well as the analysis in this
paper claim that stability can be viewed as an indication that
the clusters output by an algorithm are ”correct” in the sense
of having their boundaries pass through low-density data
regions.

However, all such results relate the desired clustering proper-
ties to the eventual values of stability when the sample sizes
grow unboundedly. Since in applications a user always ex-
amines finite size samples, the reliability of stability as a
model selection tool requires the bound on the rate by which
stabilities over n-size samples converge to their limit values
to be uniform over the class of potential data distributions.
We show below that no such bounds hold. Arbitrarily large
sample sizes can have arbitrarily misleading stability values.
The implications of stability values discussed in these pa-
pers kick in for sample sizes that depend upon the data dis-
tribution, and are therefore not available to the user in most
practical applications. We are going to analyze this behavior
based on the following example.

Example 3 Consider the following probability distribution
over the two dimensional plane (see Figure 3). Let B be
the disk {(x, y) : (x − 1)2 + y2 ≤ 1/2}, let C be the disk
{(x, y) : (x + 1)2 + y2 ≤ 1/2}. Let x0 be the point (0,M)
for some large positive M (say, M = 100). Given ε > 0, let
PM

ε be the probability distribution defined as PM
ε = εδx0 +

(1−ε)/2(UB+UC) (in the notation of the example in Section
3.4), where ε is some small number, say ε = 0.01.

x
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Figure 3: Illustration of Example 3

No distribution-free stability convergence rates possible.
Consider the distribution of Example 3, and let A be an
algorithm that finds an optimal 2-means solution for every
input data set. For n rather small, a sample of n points is
rather unlikely to contain the point x0 as it has a very small
mass on it. In those cases, the algorithm A will cluster
the data by vertically splitting between the disks B and C.
Thus, InStab(n, PM

ε ) computed on such a data set is very
low. However, as the sample size grows, the probability that
a sample will contain the point x0 becomes significant. Now
observe that as we chose M to be very large, then whenever
x0 is a member of a sample S the optimal 2-clustering of
S will have one of its center points at x0. Consequently, as
long as n is such that a significant fraction of the n-samples
pick x0 and a significant fractions of the samples miss it,
InStab(n, PM

ε ) is very high. Finally, when the sample size
are large enough to guarantee that hardly any sample misses



x0, stability is regained.

All in all we have constructed an example of a probability
distribution where the 2-means optimizing algorithm is very
stable for sample size n, is very unstable for some sample
size n′ > n and converges to perfect stability as the sample
sizes go to infinity. By playing with the parameters of PM

ε
one can in particular adjust the sample size n′ for which the
instable regime holds. As a consequence, there cannot be a
distribution-free convergence rate for stability.

It is also worth while to note that throughout the above
family of distributions (for all non-degenerate values of M
and ε), the optimal clustering has a wide tube of zero-density
around it. Just the same, for arbitrarily large values of n′,
n′-size samples display large instability. In particular, this
example shows that the assumption “Dboundary(fn, f) ≤ γ”
in Proposition 2, is indeed necessary.

Stability does not imply close-to-optimal clustering cost.
Proposition 2 states that when sample sizes are such that the
sample based clustering quality is close to its optimal value,
and if that optimum is achieved with low-density tubes, then
the value of instability is low. Example 3 shows that the
converse of this statement does not always hold. For data
distributions of the form PM

ε , due to having a far outlier,
x0, when a sample misses that outlier point, the cost of the
sample-based clusterings is at least M2ε. On the other hand,
the cost of the optimal clustering (that allocates a center
to cover the outlier point) is less than 3(1 − ε). As long
as ε ≤ 1/n2, samples are unlikely to hit x0 and therefore
InStab(n, PM

ε ) is very low. However, if M is picked to
be greater than, say 10/ε we get a large gap between the
cost of the sample based clustering and the cost of the
distribution-optimal clustering.

Stability does not imply proximity between the sample
based clustering and the optimal clustering. Again,
it can be readily seen that the above family of PM

ε data
distributions demonstrates this point as well.

Stability is not monotone as a function of the sam-
ple sizes. Clearly Example 3 demonstrates such non-
monotonicity. The values of InStab(n, PM

ε ) decrease with
n for n < 1/

√
ε, they increase with n for values of n round

1/ε and the they decrease to zero for n ≥ 1/ε2.

We end this section with a few further observations demon-
strating the somewhat “erratic behavior” of stability.

No uniform convergence of cluster centers to a normal
distribution. Although Pollard (1982) has proved that as
the sample sizes grow to infinity, the distribution of the
empirical cluster centers converges to a normal distribution,
there is no uniform bound on the rate of this convergence.
For example, consider a two-mode probability distribution
over the real line that has high peeks of its density function
at the points (0,−ε) and (0, ε), has 0 density for x = 0, and
then tails off smoothly as |x| goes to infinity. Obviously,
for every sample size, n, by choosing small enough ε, the

distribution of each of the cluster centers for 2-means of
random n-samples drawn from this distribution is highly
non-symmetric (it has higher variance in the direction away
from the 0 than its variance towards 0), and therefore far
from being a normal distribution.

Arbitrarily slow convergence of stability for ‘nice’ data.
Even when data is stable and has a rather regular structure
(no outliers like in the example discussed above), and the
optimal boundaries pass through wide low-density data re-
gions, the convergence to this stability, although asymptot-
ically fast, is not uniformly bounded over different (well
structured) data distributions. For every n there exists a
data distribution Dn that enjoys the above properties, and
yet InStab(n, Dn) is large. As an example of this type of
non-uniformity, consider a planar distribution having its sup-
port on four small (say, of radius 0.1) discs centered on the
four corners of the unit square. Assume the distribution is
uniform over each of the discs, is symmetric around the x
axis, but gives slightly more weight to the left hand side two
disks than to the right hand side disks. For such a distrib-
ution, the optimal 2-means clustering is a unique partition
along the x axis, and has wide 0-density margins around its
boundary. Just the same, as long that the sample sizes are
not big enough to detect the asymmetry of the distribution
(around the y axis), a significant fraction of the sample based
2-means clustering will pick a partition along the y axis and
a significant fraction of samples will pick a partition along
the x axis, resulting in high instability. This instability can
be made to occur for arbitrarily large sample sizes, by just
making the asymmetry of the data sufficiently small.

5 Discussion
In this paper, we discuss the mechanism of stability-based
model selection for clustering. The first part of the paper
investigates a promising conjecture: in the large sample
regime, the stability of a clustering algorithm can be
described in terms of properties of the cluster boundary,
particularly whether the boundary lies in a small or high
density area. In the case of K-means, this would explain
the success of stability-based methods by demonstrating
that stability adds the “the missing piece” to the algorithm.
As the K-means clustering criterion is only concerned
by within-cluster similarity, but not with between-cluster
dissimilarity, a model selection criterion based on low
density areas would add a valuable aspect to the algorithm.

In parts, our results are promising: the conjecture holds at
least in one direction. However, it is pretty discouraging
that the conjecture does not hold the other way round, as
we can show by a simple counterexample. This counterex-
ample also indicates that a simple mechanism such as “low
density” vs. “high density” does not exist. So, after all, the
question which are the underlying geometric principles of
stability-based model selection in the large sample regime
remains unanswered.

On the other hand, we also provide some reasons why using
stability-based methods in the large sample setting might be
problematic in general. The reason is that it is impossible to



give global convergence guarantees for stability. Thus, while
one can use stability criteria in practice, it is impossible to
give distribution-free performance guarantees on any of its
results. No matter how large our sample size n is, we can
always find distributions where the stability evaluated on
that particular sample size is misleading, in the sense that it
is far from the “true stability”

Finally, we would like to put our results in a broader context
and point out future research directions for investigating
stability. In general, there are different reasons why cluster
instability can arise:

Instability due to multiple global optima. If the global
optimizer of the clustering objective function is not unique,
this always leads to instability. However, this kind of
instability is usually not related to the correct number of
clusters, as has been proved in Ben-David et al. (2006),
Ben-David et al. (2007). Instead, it might depend on
completely unrelated criteria, for example symmetries in the
data. In this situation, stability criteria are not useful for
selecting the number of clusters.

Geometric instability in the large sample setting. This is
the kind of instability we considered in this paper. Here one
assumes that no issues with local optima exist, that is the
algorithm always ends up in the global optimum, and that
a unique global optimum exists (for all values of K under
consideration). In this paper, we made an attempt to connect
the mechanism behind stability-based model selection to
geometric properties of the underlying distribution and
clustering, but with moderate success only. On the other
hand, we can demonstrate that using stability in the large
sample setting has problems in general. While it might
be possible that future work shows a tighter connection
between geometric properties of the data space and stability
issues, we are doubtful whether those methods can be
applied successfully in practice, unless one makes strong
assumptions on the underlying distributions.

Instability due to too small sample size. If the sample
size is too small, and the cluster structure is not sufficiently
well pronounced in the data set, we will observe instability.
Here, clustering stability can be a useful criterion to detect
whether the number of clusters is much too high. If this
is the case, the algorithm will construct clusters which are
mainly based on sampling artifacts, and those clusters will
be rather unstable. Here, stability tells us whether we have
enough data to support a given cluster structure. This is
of course a useful thing to know. However, it is still not
obvious whether stability can be used to detect the “best”
number of clusters, as there might be several values of K
which lead to stable results. We believe that it is a very
important direction to investigate what guarantees can be
given on stability-based methods in this scenario.

Algorithmic instability. This kind of instability occurs if
the algorithm itself can converge to very different solutions,
for example it ends up in different local optima, depending
on starting conditions. Note that algorithmic instability

is rather a property of an algorithm than of an underlying
distribution or sample. If we had a perfect algorithm
which always found the global optimum, then this kind of
instability would not occur. In our opinion, in a setting of
algorithmic instability it is not clear that stability selects
the “best” or “correct” number of clusters. Essentially, in
this case stability simply detects whether there is a well-
pronounced local optimum where the objective function has
the shape of a “wide bowl” such that the algorithm gets
trapped in this local optimum all the time. However, we
find it unlikely that the conclusion “local optimum in wide
bowl implies good K” is true. It has been argued that the
conclusion the other way round is true: “distribution with
well-pronounced cluster structure implies global optimum
in wide bowl” (e.g., Meila, 2006 or Srebro et al., 2006).
However, this is not the direction which is needed to show
that clustering stability is a good criterion to select the
number of clusters. We conclude that in the “algorithmic
instability” scenario, stability is not very well understood,
and it would be very interesting to give conditions on
distributions and algorithms in which this kind of stability
can provably be useful for model selection.

In all settings discussed above, stability is useful in one re-
spect: high instability can be used as an alarm sign to distrust
the clustering result, be it for sampling, algorithmic or other
reasons. However, the other way round, namely that the most
stable algorithm leads to the best clustering result, so far has
not been established for any of the settings above in a satis-
factory way.

Acknowledgments
We are grateful to Markus Maier who pointed out an error in
an earlier version of this manuscript, and to Nati Srebro and
David Pal for insightful discussions.

References
S. Ben-David. A framework for statistical clustering with

constant time approximation algorithms for k-median and
k-means clustering. Machine Learning, 66:243 – 257,
2007.

S. Ben-David, U. von Luxburg, and D. Pál. A sober look on
clustering stability. In G. Lugosi and H. Simon, editors,
Proceedings of the 19th Annual Conference on Learning
Theory (COLT), pages 5 – 19. Springer, Berlin, 2006.

S. Ben-David, D. Pál, and H.-U. Simon. Stability of k -means
clustering. In N. Bshouty and C. Gentile, editors, Confer-
ence on Learning Theory (COLT), pages 20–34. Springer,
2007.

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based
method for discovering structure in clustered data. In Pa-
cific Symposium on Biocomputing, pages 6 – 17, 2002.

A. Bertoni and G. Valentini. Model order selection for bio-
molecular data clustering. BMC Bioinformatics, 8(Suppl
2):S7, 2007.



M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hen-
drix, M. Radmacher, R. Simon, Z. Yakhini, A. Ben-
Dor, N. Sampas, E. Dougherty, E. Wang, F. Marin-
cola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock,
J. Carpten, E. Gillanders, D. Leja, K. Dietrich, C. Beaudry,
M. Berens, D. Alberts, V. Sondak, M. Hayward, and
J. Trent. Molecular classification of cutaneous malig-
nant melanoma by gene expression profiling. Nature, 406:
536 – 540, 2000.

G. Blanchard, O. Bousquet, and L. Zwald. Statistical prop-
erties of kernel principal component analysis. Machine
Learning, 66(2-3):259–294, 2007.

S. Bubeck and U. von Luxburg. Overfitting of clustering and
how to avoid it. Preprint, 2007.

J. Fridlyand and S. Dudoit. Applications of resampling meth-
ods to estimate the number of clusters and to improve the
accuracy of a clustering method. Technical Report 600,
Department of Statistics, University of California, Berke-
ley, 2001.

M. K. Kerr and G. A. Churchill. Bootstrapping cluster analy-
sis: Assessing the reliability of conclusions from microar-
ray experiments. PNAS, 98(16):8961 – 8965, 2001.

A. Krieger and P. Green. A cautionary note on using inter-
nal cross validation to select the number of clusters. Psy-
chometrika, 64(3):341 – 353, 1999.

T. Lange, V. Roth, M. Braun, and J. Buhmann. Stability-
based validation of clustering solutions. Neural Computa-
tion, 16(6):1299 – 1323, 2004.

E. Levine and E. Domany. Resampling Method for Unsuper-
vised Estimation of Cluster Validity. Neural Computation,
13(11):2573 – 2593, 2001.

M. Meila. Comparing clusterings: an axiomatic view. In
Proceedings of the International Conference of Machine
Learning (ICML), pages 577–584, 2005.

M. Meila. The uniqueness of a good optimum for K-
means. In W. Cohen and A. Moore, editors, Proceedings
of the Twenty-Third International Conference on Machine
Learning (ICML), pages 625–632. ACM, 2006.

M. Meila. The stability of a good clustering. Manuscript in
preparation, 2007.

R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The
effectiveness of Lloyd-type methods for the k-means prob-
lem. In FOCS, pages 165–176. IEEE Computer Society,
2006.

D. Pollard. A central limit theorem for k-means clustering.
Annals of Probability, 10(4):919 – 926, 1982.

O. Shamir and N. Tishby. Model selection and stability in
k-means clustering. In Conference on Learning Theory
(COLT), to appear, 2008a.

O. Shamir and T. Tishby. Cluster stability for finite samples.
In J.C. Platt, D. Koller, Y. Singer, and S. Rowseis, edi-
tors, Advances in Neural Information Processing Systems
(NIPS) 21. MIT Press, Cambridge, MA, 2008b.

M. Smolkin and D. Ghosh. Cluster stability scores for mi-
croarray data in cancer studies. BMC Bioinformatics, 36
(4), 2003.

N. Srebro, G. Shakhnarovich, and S. Roweis. An investiga-
tion of computational and informational limits in Gaussian
mixture clustering. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML), pages
865 – 872. ACM Press, New York, 2006.

U. von Luxburg, S. Bubeck, S. Jegelka, and M. Kaufmann.
Consistent minimization of clustering objective functions.
In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, edi-
tors, Advances in Neural Information Processing Systems
(NIPS) 21, Cambridge, MA, 2008. MIT Press.


