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Abstract
We consider the problem of vector quantization of i.i.d. samples drawn from a density p on Rd. It is
desirable that the representatives selected by the quantization algorithm have the same distribution
p as the original sample points. However, quantization algorithms based on Euclidean distance,
such as k-means, do not have this property. We provide a solution to this problem that takes the
unweighted k-nearest neighbor graph on the sample as input. In particular, it does not need to
have access to the data points themselves. Our solution generates quantization centers that are
“evenly spaced”. We exploit this property to downsample geometric graphs and show that our
method produces sparse downsampled graphs. Our algorithm is easy to implement, and we provide
theoretical guarantees on the performance of the proposed algorithm.
Keywords: Vector quantization, kNN graph, sampling

1. Introduction

Vector quantization is the task of compressing a large set of data points into a set of representatives
called centroids or centers. Its applications are abundant, just consider the examples of visual word
models in computer vision (Leung and Malik, 2001; Csurka et al., 2004), color quantization in image
processing (Heckbert, 1982), or selecting landmark points (de Silva and Tenenbaum, 2004). For data
points in Rd, the standard approach is to minimize a quantization error measured in terms of the
Euclidean distance. The best-known algorithm is k-means (where k is relatively large, as opposed
to clustering problems, where k is usually chosen much smaller). Because the selected centers are
supposed to be a “faithful representation” of the original data points, it is a highly desirable property
that the centroids have the same distribution as the original data points. However, it is known that
this is not the case if we minimize the quantization error with respect to the Euclidean distance (Graf
and Luschgy, 2000). The optimal centers that minimize the quantization error with respect to the
Euclidean distance are distributed as a power of the original density instead of the density itself.
How can we find a set of centroids that matches the underlying density of our data, without even
observing the location of the points? This is the key problem we study in this paper. Previous work
assumes that the coordinates of the input points are observed. Delp and Mitchell (1991) looked for
a weaker property, which is to match the moments of the underlying density. Hegde et al. (2004)
explicitly minimize the KL-divergence between a kernel density estimate of the original data and
the estimated density of the centroids by gradient descent. Hulle (1999) and Meinicke and Ritter
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(2001) use a similar approach to build a compact density estimator. Instead of relying on all samples
to estimate the density, they select few points that best describe the density. Recently, Li et al.
(2011) considered using the Rosenblatt transformation which transforms an arbitrary distribution to
a uniform distribution. After quantizing the transformed data, one can use the inverse transformation
to get back to the original density.
In our paper, we introduce a completely new approach to the problem. The algorithm we suggest
is conceptually simple: we construct an unweighted k-nearest neighbor (kNN) graph with respect
to the Euclidean distance on the sample points and use the k-medoids algorithm with respect to the
shortest path distance on this graph for selecting the representatives. The k-medoids algorithm is
similar to k-means, but the centroids of the clusters have to be chosen from the datapoints. Quite
surprisingly, we do not even need to have access to the data points themselves or to their Euclidean
distances. Our algorithm works as soon as we know which are the k-nearest neighbors of each data
point. It also works when the distribution of the data is concentrated on a manifold, and we do not
even need to know the intrinsic dimension of the data.
Computing the k-medoids with respect to the graph shortest path distance is an extension of k-means
for graphs, and have been used by Kim et al. (2007) and Feil and Janos (2007) for data clustering.
However, the particular choice of the unweighted kNN graph and the intriguing properties of the
resulting centroids have not been studied in the literature.
Our optimal quantization centers enjoy another interesting property: They are “evenly spaced” on
the domain. They distribute well in the domain and do not bunch together. This can be formally
stated using the dispersion of the centers. The dispersion of a set of samples is the radius of the
largest uncovered ball in the domain. We show that the set of optimal quantization centers has
a dispersion lower than the dispersion of a random subsample of the datapoints. We exploit this
property and apply our algorithm to downsample random geometric graphs. A large geometric
graph G is given, where its vertices are n i.i.d. samples from an unknown density p. We do not even
need to have access to coordinates of the vertices. Our task is to downsample G to n′ vertices: to
build a graph G′ which “looks like” a geometric graph built on n′ samples from p. Our algorithm
provides a sparse solution to this problem. It builds a geometric graph whose number of edges
depends linearly on n′. Compare this to the naive approach of taking a random subsample of the
vertices. The selected vertices clearly have the desired distribution, but a connected neighborhood
graph built from these vertices is less sparse (number of edges of the order O(n log n)).
A major part of this paper is devoted to a thorough statistical analysis of our algorithm. We first
introduce a new distance function DPD on Rd which depends on the data density p. We then show
that this distance function plays the role of a “uniformizing transformation” of the space: optimally
quantizing p-distributed data with respect to the distance function DPD behaves as quantizing uni-
form data with respect to the Euclidean norm. As a second step, we exploit that the DPD-distance
on Rd can be approximated by the shortest path distance in unweighted kNN graphs.

2. Definitions and formal setup

Consider a connected and compact subset X ⊂ Rd endowed with a probability measure P that
has a Lipschitz continuous density p with Lipschitz constant L. Assume that for all x ∈ X we
have 0 < pmin ≤ p(x) ≤ pmax < ∞. The set Vn = {X1, ..., Xn} ⊂ X has been drawn i.i.d.
according to p. Denote by Pn the empirical measure of the sample. The unweighted and undirected
k-nearest neighbor graph Gn is the graph with vertex set Vn where we connect Xj to Xi by an
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unweighted undirected edge if Xj is among the k nearest neighbors of Xi or vice versa (according
to the Euclidean metric). In the following, we use the letter k to denote the parameter of the kNN
graph and the letter K to denote the number of representatives for K-means and K-medoids.
For two vertices x, y ∈ Vn, the shortest path distance DGn

sp (x, y) is the length of the shortest path
connecting x to y in Gn. When the underlying graph is clear from the context, we drop the index
Gn and simply use the notation Dsp(x, y).

Definition 1 (Following / resembling a density) Let (An)n∈N be a sequence of sets withAn ⊂ X ,
|An| = n. We say that An follows (or resembles) the density function p if for any measurable
set S ⊂ X , the fraction of points of An that lie inside S converges to the probability mass of S:
1
n |S ∩An| →

∫
S p(x)dx as n→∞.

Let f be a positive, continuous, real-valued function defined on X . We define the f -weighted length
or f -length of a differentiable curve γ : [0, 1]→ X as

Df (γ) =

∫ 1

0
f(γ(t))|γ′(t)|dt.

The f -distance between x and y is defined as Df (x, y) := infγ Df (γ) where the infimum is over
all rectifiable paths γ with finite length that connect x to y. We introduce a shorthand notation for
the f -distance with f(x) = p(x)1/d and call it PD-distance. This distance is a metric (Alamgir
and von Luxburg, 2012) and belongs to the family of density-based distances (Sajama and Orlitsky,
2005). In Lemma 3 we show that the PD-distance induces a uniform structure on non-uniform
densities.

3. Vector quantization

Let K be a positive integer. A level vector quantizer maps vectors in Rd to a setA = {a1, · · · , aK} ⊂
Rd. Each element ai is called a centroid, a center or a representative. The set Vi ⊂ Rd of vectors
that are mapped to the centroid ai is called a cell. A common assignment is based on Euclidean
distance: every point x is assigned to its nearest centroid with respect to the Euclidean distance.
A widely used example of Euclidean distance quantizers is least squares quantization, also known
as K-means (Lloyd, 1982). As we will work with several metrics, we use an explicit notation for
the centroid assignment function CA : Rd → A. This is the function that determines the cells
Vi = {x ∈ Rd| CA(x) = ai}. In particular, we consider the functions CA,‖·‖, CA,PD and CA,sp that
assign points to the closest center according to the Euclidean distance, the PD-distance and the graph
shortest path distance, respectively.
The representation error g(x, y) quantifies the error of representing y by x. In K-means we have
g(x, y) = ‖x− y‖2. The quality Φ of a set of centroids is measured by the expected representation
error of the centroid mapping function

Φ(g, CA, P ) :=

∫
g(CA(x), x)P (dx).

The set of optimal centroids of size K with respect to the error function Φ(g, CA, P ) is defined as
the set A that minimizes the expected error

A∗ = argmin
A,|A|=K

Φ(g, CA, P ).
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The set of empirical optimal centroids An is defined analogously with respect to Φ(g, CA, Pn).
Finding the set of empirical optimal centroidsAn is an NP-hard problem in general. However, there
exist EM-type algorithms and several heuristics to find a good local optimum of Φ(g, CA, Pn). In
this work, we ignore the issue of algorithmic complexity and assume that an empirically optimal
quantizer can be computed.
The topology of optimal centroids and the shape of their corresponding cells have been studied in
several papers, see Graf and Luschgy (2000) and Gruber (2004) for references. As a brief summary
of their results, the optimal centroids in the case g(x, y) = ‖x− y‖α are distributed asymptotically
with density pd/(d+α) when the number of centroids K goes to infinity.

4. Quantization with the PD-distance

In this section, we introduce a new technique to transform a space with a non-uniform density to
a space with uniform density. The PD-distance plays a key role in this construction. The trans-
formation is defined for all smooth compact Riemannian manifolds, but later we only use it for
full-dimensional subsets of Rd. We use this transformation to construct a density-preserving quan-
tization procedure. In Section 4.3 we then show how to approximate the quantization procedure and
why this approximation works.

4.1. Uniformizing metric

Let us start with some intuition. Consider a uniform elastic rubber band with printed lines graduated
in centimeters. Stretch the band in different places to get a non-uniform band. The printed lines
will also displace and their Euclidean distances will change. However, these displaced lines show
a uniformity property: The mass of the elastic band between successive lines is the same all over
the stretched band. We show that the PD-distance corresponds to such a stretched distance when the
density function p corresponds to the density of the rubber at each point on the band.

Definition 2 (Uniformizing metric) Let (M,h) be a differentiable compact Riemannian manifold
with intrinsic dimension d, where h is the standard Riemannian metric. Let p(x) be a continuous
and bounded density defined on M . Consider the differentiable Riemannian manifold (M,hp)
where hpx(u, v) := hx(p(x)1/du, p(x)1/dv) for tangent vectors u and v at x. We call the metric hp

a metric uniformizing the density p.

By assumption, the density p is strictly positive and the uniformizing metric is a conformal change
of metric with hpx = p(x)2/dhx. Let % (resp. %p) and w (resp. wp) denote the geodesic distance
and the volume element on (M,h) (resp. on (M,hp)). We denote the volume of a set A ⊂ X in
(M,hp) as Volp(A).

Lemma 3 (Density becomes uniform and PD-distance becomes Euclidean) Consider a compact
differentiable Riemannian manifold (M,h) and its uniformizing transformation (M,hp).

1. The length of a continuously differentiable curve γ : [0, 1] → M in (M,hp) is the PD-length
of γ in (M,h).

2. The geodesic distance between two points in (M,hp) corresponds to their PD-distance in
(M,h).
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3. The uniformizing transformation induces a uniform density on M : all setsA1,A2 ⊂M with
P (A1) = P (A2) also have the same volume in (M,hp), that is Volp(A1) = Volp(A2).

Proof
Part 1. The length of a continuously differentiable curve γ in (M,hp) is defined as

∫ 1
0 ‖γ

′(t)‖hpdt,
where ‖ · ‖hp is the norm induced by the inner product on the tangent space T pM(γ(t)) at point
γ(t). The result follows from ‖x‖hp = p(x)1/d‖x‖h and the definition of the PD-length.
Part 2. The geodesic distance is the infimum over the lengths of paths connecting the two points.
Exploiting Part 1 gives %p(c, x) = DPD(c, x).
Part 3. From properties of the conformal change of a metric (see Theorem 1.159 in Besse, 1987)
we get dwp(x) = p(x)dw(x). Then

Volp(A1)

Volp(A2)
=

∫
A1
dwp(x)∫

A2
dwp(x)

=

∫
A1
p(x)dw(x)∫

A2
p(x)dw(x)

=
P (A1)

P (A2)
= 1.

4.2. Quantization with the exact PD-distance achieves the correct distribution

From here on we restrict ourselves to Euclidean spaces for the sake of simplicity. However, all
theorems can be generalized to smooth manifolds. We now study the behavior of optimal centroids
with respect to the PD-distance, and later the behavior of the empirical centroids with respect to the
shortest path distance. In the following we always assume that the set of optimal centers is unique.
Our results can also be extended in a straightforward manner to the non-unique case by studying the
set of unique centers, but this introduces heavier notation. Although all results in this paper hold for
gf (x, y) = Df (x, y)t with arbitrary t ≥ 1, we restrict ourselves to the more common case t = 2.
Specifically, we mainly deal with the representation error functions

gPD(x, y) = DPD(x, y)2 and gsp(x, y) = Dsp(x, y)2.

The next theorem specifies the distribution of the centroids with respect to the PD-distance. The
intuition behind the theorem is that the density of K-means centroids matches the density of the data
points when the latter is uniform. So we use a distance measure that induces a uniform density on
the underlying space.

Theorem 4 (Quantization with the exact PD-distance leads to correct distribution of centers)
Let X be a connected and compact subset of Rd endowed with a Lipschitz continuous density p.
Assume that for all x ∈ X we have 0 < pmin ≤ p(x) ≤ pmax < ∞. Let A∗K be the optimal
K-means centroid set with respect to the PD-distance that attains the minimum

A∗K = argmin
A,|A|=K

{∫
X

min
c∈A

DPD(c, x)2p(x)dx

}
. (1)

Then A∗K follows the density p as K→∞.

Proof Using Lemma 3,∫
min
c∈A

%p(c, x)2dwp(x) =

∫
min
c∈A

DPD(c, x)2p(x)dw(x),
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where w(x) is the Lebesgue measure on X . Now Part 2 from Theorem 1 in Gruber (2004) shows
that the centers minimizing ∫

min
c∈A

%p(c, x)2dwp(x)

follow a uniform density with respect to the area measure wp as K → ∞. This means that they
follow density p with respect to the Lebesgue measure.

Theorem 4 shows that the optimal K-means centers with respect to the PD-distance follow the under-
lying density of our data. However, it is neither easy to compute the PD-distance from p, nor from a
set of i.i.d. sample points from p. In the next section we present a simple algorithm to approximate
the K-means centers with respect to the PD-distance.

4.3. Quantization with approximate PD-distance using unweighted kNN graphs

We now provide a simple and effective way to approximate K-means centers with respect to the
PD-distance. The procedure is the following: First build an unweighted kNN graph Gn based on
samples X1, ..., Xn ∈ X from the density p with a properly chosen k (see Theorem 5 for the exact
condition on k). Then we quantize with respect to the graph shortest path distance in Gn. For
this quantization step we can either use the K-means or the K-medoids algorithms. The latter can
be used when we do not have access to the location of the vertices. This is the case on which we
focus.We show that the centers constructed by this procedure converge to optimal K-means centers
with respect to the PD-distance. This is proved in Section 4.3.1 for a fixed K and k, n → ∞. In
Section 4.3.2, we show that if K also goes to infinity “slowly” enough, the K-medoids centers will
resemble the original density.

4.3.1. CONVERGENCE FOR A FIXED K

Set β = ηdp
d+1
min/(4L)d where ηd is the volume of a Euclidean unit ball in Rd and L is the Lipschitz

constant of the density p.

Theorem 5 (Convergence of K-medoids centers to K-means centers) Consider the unweighted
kNN graph Gn based on the i.i.d. sample X1, ..., Xn ∈ X from the density p. We choose k such that
for a fixed α > 0,

24 log(n)1+α < k < β
n

(log n)α
.

Fix K. Let An denote the set of optimal empirical K-medoids in graph Gn with respect to the
shortest path distance. We assume that the set of optimal K-means centers for X with respect to
the PD-distance is unique and denote this set by A∗ . As n tends to infinity, the set of empirical
K-medoids centers An converges almost surely to A∗ with respect to the Hausdorff distance.

To prove this theorem, we need to know the behavior of the shortest path distance in unweighted
kNN graphs. Alamgir and von Luxburg (2012) study this problem and show convergence of the
shortest path distance to PD-distance in probability. In Lemma 6 we present a simplified version of
their theorem. Then in Lemma 7 we use the Borel-Cantelli lemma to show almost sure convergence
of |Φ(gsp, CA, Pn)−Φ(gPD, CA, Pn)| to zero. This means that the empirical quantization error with
respect to the PD-distance approximates the normalized empirical quantization error with respect to
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the shortest path distance. The price we pay to reach almost sure convergence instead of convergence
in probability is to have a slightly stronger condition on k, the connectivity parameter of the kNN
graph. To keep our proofs readable, we ignore boundary effects. One can show that the boundary
effects are asymptotically negligible.

Lemma 6 (Convergence of Dsp to DPD)
Consider a sequence of i.i.d. samples Vn = {X1, ..., Xn} ⊂ X drawn from the density p. Build
an unweighted kNN graph Gn based on X1, ..., Xn and denote the shortest path distance on this
graph by Dn

sp. Set cn = ( k
nηd

)1/d. Assume that for a fixed α, 24 log(n)1+α < k < β n
(logn)α . Set

λ = (log n)−
α
4d and let n ≥ exp(4(d+1)/α2

). Then, with probability at least 1 − 1
n2 , for all pairs

x, y ∈ Vn
1

(1− λ)1/d
DPD(x, y) ≤ cnDn

sp(x, y) ≤ 1

1
(1+λ)1/d

− 2 (1+λ)1/d

kα2

DPD(x, y) + cn.

Proof In Theorem 1 of Alamgir and von Luxburg (2012), set a = 1 − α2. For the selected n, we
have

a < 1− logk

(
4d(1 + λ)2

)
,

which is the condition needed for a. The probability that the statement in the theorem holds is
1− Perr where Perr = 2d

(1−λ)2 3ne−k
a/6. Set k and λ as mentioned in the theorem to get

Perr ≤
2d

(1− λ)2
ne−k

a/6 ≤ 3.2d+1ne−4 log(n) ≤ 1

n2
.

Therefore, with probability at least 1− 1
n2 , for all pairs x, y ∈ Vn:

1

(1− λ)1/d
DPD(x, y) ≤ cnDn

sp(x, y) ≤ 1

1
(1+λ)1/d

− 2 (1+λ)1/d

kα2

DPD(x, y) + cn.

The condition n ≥ exp(4(d+1)/α2
) can be relaxed by choosing k larger than the threshold log(n).

For example if we choose k ∼ log(n)d, we get the more realistic condition n ≥ e4.
The next lemma shows convergence of the normalized quantization error with respect to the shortest
path distance c2nΦ(gsp, CA, Pn) to the quantization error with respect to the PD-distance Φ(gPD, CA, Pn).

Lemma 7 (Convergence of quantization errors, fixed K) Consider the setting in Lemma 6. Let
n→∞ and fix K. Then

sup
A⊂X ,|A|=K,∀CA

|c2nΦ(gsp, CA, Pn)− Φ(gPD, CA, Pn)| → 0 a.s.

Proof By the definition of Φ(gsp, CA, Pn) and Lemma 6, the following inequalities hold with prob-
ability at least 1− n−2 for all A ⊂ X and |A| = K:

c2nΦ(gsp, CA, Pn) =
c2n
n

∑
v∈Vn

Dsp(CA(v), v)2 ≥ 1

n(1− λ)2/d

∑
v∈Vn

DPD(CA(v), v)2

=
1

(1− λ)2/d
Φ(gPD, CA, Pn). (2)
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For the upper bound, set q = 1/( 1
(1+λ)1/d

− 2 (1+λ)1/d

kα2
). Then we have

c2nΦ(gsp, CA, Pn) ≤ q2Φ(gPD, CA, Pn) + c2n + 2cnqΦ(DPD, CA, Pn). (3)

Note that in Lemma 6, the property holds for all pairs of vertices simultaneously. It is easy to
show that for a fixed K, Φ(gPD, CA, P ) and consequently Φ(gPD, CA, Pn) and Φ(DPD, CA, Pn) are
bounded. Using Inequalities 2 and 3, the boundedness of Φ(gPD, CA, Pn) and Φ(DPD, CA, Pn), the
Borel-Cantelli lemma and the convergence of hyperharmonic series

∑
i−2 leads to almost sure

convergence of sup|A|=K |c2nΦ(gsp, CA, Pn)− Φ(gPD, CA, Pn)| to zero.

Proof [Theorem 5]. Overview: The standard technique is to bound the difference between represen-
tation errors with An and A∗ and show that it converges almost surely to 0. This is done by using
the triangle inequality to bring the empirical representation errors into the play. Then the uniform
strong law of large numbers for the representation error shows the convergence of the empirical
quantization centers to the optimal quantization centers (see, e.g., Pollard, 1981). In the proof of
this theorem, we deal with extra intermediate terms that need to be bounded using properties of the
shortest path distance (see below).
Define EK = {A ⊂ X | |A| = K}, the set of all possible sets of K-centers. The set EK is compact
under the topology induced by the Hausdorff metric. When we work with the Euclidean distance,
the map A→ Φ(g‖.‖, CA,‖.‖, P ) is continuous on EK (Pollard, 1981). This result can be extended to
the continuity of A → Φ(gPD, CA,PD, P ) when we use the PD-distance as our metric. We assumed
that A∗ is unique. Hence the almost sure convergence of Φ(gPD, CAn,PD, P ) to Φ(gPD, CA∗,PD, P )
implies the almost sure convergence of An to the optimal K-means centers A∗ with respect to the
Hausdorff distance.
Thus, we only need to show that Φ(gPD, CAn,PD, P ) converges to Φ(gPD, CA∗,PD, P ) almost surely.
We prove this by using several intermediate steps. In these steps we alternate between P and Pn,
between gPD and gsp, and between CA,PD and CA,sp. Also we need to reach A∗ from An. This is
done using an intermediate step that goes from vertices An to a set of vertices near to A∗. To this
end we define Ã∗ as the nearest subset of samples to A∗:

Ã∗ = {ṽj |ṽj = argmin
v∈Vn

‖ v −A∗(j) ‖; j = 1, ...,K}.

For vj ∈ A∗, we also use the notation ṽj = Ã∗(vj) to denote the corresponding vertex from Vn. Set
cn = (k/ηdn)1/d as before. We bound Φ(gPD, CAn,PD, P )− Φ(gPD, CA∗,PD, P ) as follows:

Φ(gPD, CAn,PD, P )− Φ(gPD, CA∗,PD, P ) ≤ |Φ(gPD, CAn,PD, P )− Φ(gPD, CAn,PD, Pn)| (4a)

+ Φ(gPD, CAn,PD, Pn)− Φ(gPD, CAn,sp, Pn) (4b)

+ |Φ(gPD, CAn,sp, Pn)− c2nΦ(gsp, CAn,sp, Pn)| (4c)

+ c2n
(
Φ(gsp, CAn,sp, Pn)− Φ(gsp, CÃ∗,sp, Pn)

)
(4d)

+ c2n
(
Φ(gsp, CÃ∗,sp, Pn)− Φ(gsp, CÃ∗,PD, Pn)

)
(4e)

+ |c2nΦ(gsp, CÃ∗,PD, Pn)− Φ(gPD, CÃ∗,PD, Pn)| (4f)

+ |Φ(gPD, CÃ∗,PD, Pn)− Φ(gPD, CA∗,PD, Pn)| (4g)

+ |Φ(gPD, CA∗,PD, Pn)− Φ(gPD, CA∗,PD, P )|. (4h)
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Now we show that every term on the right hand side is either non-positive or almost surely converges
to zero.
(4a) The proof of the uniform strong law of large numbers (SLLN) for Φ(g‖.‖, C·,‖.‖, P ) (see e.g.
Section 4 in Pollard 1981) holds for all metric spaces with compact closed balls. This results in the
uniform SLLN for Φ(gPD, C·,PD, P ) (uniform over all set of K-centers) and almost sure convergence
of Φ(gPD, CAn,PD, Pn) to Φ(gPD, CAn,PD, P ). So

|Φ(gPD, CAn,PD, P )− Φ(gPD, CAn,PD, Pn)| a.s.−→ 0.

We present another proof of this statement in Appendix A.
(4b) By definition, CA,PD(x) is the centroid closest to xwith respect to the PD-distance, and therefore

Φ(gPD, CAn,PD, Pn) ≤ Φ(gPD, CAn,sp, Pn).

(4c) By Lemma 7,

sup
An

|Φ(gPD, CAn,sp, Pn)− c2nΦ(gsp, CAn,sp, Pn)| a.s.−→ 0.

(4d) The centers An are the optimal K-medoids centers with respect to the shortest path distance, so

Φ(gsp, CAn,sp, Pn)− Φ(gsp, CÃ∗,sp, Pn) ≤ 0.

(4e) CA,sp(x) is defined as the centroid closest to x with respect to the PD-distance, so

Φ(gsp, CÃ∗,sp, Pn) ≤ Φ(gsp, CÃ∗,PD, Pn).

(4f) From Lemma 7,

sup
Ã∗
|c2nΦ(gsp, CÃ∗,PD, Pn)− Φ(gPD, CÃ∗,PD, Pn)| a.s.−→ 0.

(4g) By the construction of Ã∗, the distance between Ã∗ and A∗ decreases as the sample size n
increases. Define δ = maxv∈A∗ DPD(Ã∗(v), v). It is easy to check that δ almost surely converges
to zero as n→∞. By the squared triangle inequality,

Φ(gPD, CÃ∗,PD, Pn) =
1

n

∑
DPD(CÃ∗,PD(Xi), Xi)

2 ≤ 1

n

∑
DPD(Ã∗(CA∗,PD(Xi)), Xi)

2

≤ 1

n

∑
DPD(CA∗,PD(Xi), Xi)

2 +
1

n

∑
DPD(CA∗,PD(Xi), Ã∗(CA∗,PD(Xi)))

2

+
2

n

∑
DPD(CA∗,PD(Xi), Xi)DPD(CA∗,PD(Xi), Ã∗(CA∗,PD(Xi)))

≤ Φ(gPD, CA∗,PD, Pn) + δ2 + 2δΦ(DPD, CA∗,PD, Pn).

Similarly, we get

Φ(gPD, CA∗,PD, Pn) ≤ Φ(gPD, CÃ∗,PD, Pn) + δ2 + 2δΦ(DPD, CÃ∗,PD, Pn).

Note that Φ(DPD, CA∗,PD, Pn) and Φ(DPD, CÃ∗,PD, Pn) almost surely converge to Φ(DPD, CA∗,PD, P )
and Φ(DPD, CÃ∗,PD, P ), which are bounded. Therefore,

|Φ(gf , CÃ∗,f , Pn)− Φ(gf , CA∗,f , Pn)| a.s.−→ 0.

9
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(4h) By the strong law of large numbers for Φ(gPD, C·,PD, P ), we have

|Φ(gPD, CA∗,PD, Pn)− Φ(gPD, CA∗,PD, P )| a.s.−→ 0.

So all in all we get |Φ(gPD, CAn,PD, P )− Φ(gPD, CA∗,PD, P )| a.s.−→ 0, which finishes the proof.

4.3.2. CONVERGENCE FOR K→∞

So far we only proved the convergence results for fixed K. However, Theorem 4 holds for K→∞.
As we work with empirical centers, it is necessary that K, k and n go to infinity together. The
next theorem specifies the interplay between these parameters. It shows that if all parameters go to
infinity at an appropriate speed, the empirical K-medoids centers converge to the optimal K-means
centers and will resemble the original density.

Theorem 8 (K-medoids centers resemble the original density)
Consider the unweighted kNN graph Gn based on the i.i.d. sample X1, ..., Xn ∈ X drawn from the
density p. Assume that for all x ∈ X we have 0 < pmin ≤ p(x) ≤ pmax < ∞, and let α > 0 be
a constant. We choose K, k and n such that k ≥ log(n)1+α, k log(n)/n → 0 and Kk/n → 0. Let
An denote the optimal empirical K-medoids in graph Gn with respect to the shortest path distance.
Assume that the set of optimal K-means centers with respect to the PD-distance is unique. Then as
K, k and n tend to infinity, the empirical K-medoids centers An follow the density p.

The conditions on k and K have intuitive interpretations. The condition on k is a bit stronger than the
usual condition k ≥ C log(n) that guarantees connectivity in random kNN graphs. The condition
on K also has an intuitive meaning. If we choose a large K, say K ≈ n/ log(n), each center would
only have around log(n) points in its own cell. Thus each center is connected to almost all points
inside the cell with a path of length 1. Therefore, the shortest paths inside the cells are not good
approximations for PD-distances. The condition Kk/n → 0 ensures that for each center, many of
the points inside the cell has shortest path distance ω(1). As a rule of thumb, we can set k ≈ log(n)
and choose K smaller than n/ log(n)2.
The proof of this theorem needs a more careful investigation of Equation (4). We have to show that
each term on the right-hand side converges to zero if K, k and n go to infinity at the specified speed.
For terms (4a) and (4h), this can be done using standard results from the literature (Pollard, 1982;
Bartlett et al., 1998). However, the terms (4c) and (4f) only appear in our algorithm and need a
separate analysis. Details can be found in Appendix A.

5. Dispersion of optimal centroids

In this section, we show that the optimal centroids spread well in the domain and do not leave a
large part of the domain uncovered. Formally, we bound the dispersion of the optimal centroids: the
radius of the largest ball in the domain that does not contain any centroid.
We motivate our result by an example. Let u denote the uniform density on the unit square. We
want to represent u by a subset of m2 points from [0, 1]2. Consider two solutions for this problem:
select m2 random samples from the density u or select m2 points on a grid of width Θ(1/m). One
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can show that the grid solution is a better representation of the density u in the following sense:
For the first solution, there exist a circle inside [0, 1]2 with radius Θ(

√
log(m)/m) that does not

contain any sample point, with high probability (see, e.g., Theorem 1.1 in Penrose, 1999). For the
grid solution, the largest radius of such a circle is Θ(1/m). This shows that points on a grid have a
smaller dispersion than a set of random samples.
The next theorem shows that the optimal centers of K-means with respect to the PD-distance behave
similar to grid points: they also have dispersion Θ(K−d), where d is the dimensionality of the
underlying space. The proof is discussed in Appendix B.

Theorem 9 (Dispersion of optimal centers) Let X be a connected and compact subset of Rd en-
dowed with a Lipschitz continuous density p. Assume that for all x ∈ X we have 0 < pmin ≤
p(x) ≤ pmax < ∞. Let A∗K be the set of optimal K-means centroids with respect to the PD-
distance. Then there exists a constant c such that the dispersion of A∗K in X is cK−d. The constant
c is related to the doubling constant of the underlying space X , which depends on d but not on K.

5.1. Application to downsampling geometric graphs

In this section, we use the density preserving quantization algorithm to downsample random geo-
metric graphs. The algorithm is applicable on a general random geometric graph, but we discuss it
only for unweighted kNN graphs. Assume that we are given a massive unweighted kNN graph G
with n vertices. The vertices of the graph are sampled from a probability density p, but we neither
have access to the point locations of vertices, nor to the underlying density. Our task is to “down-
sample” G to a much smaller graph G′ with n′ � n vertices, i.e. to build a graph G′ that “looks
like” a kNN graph built on n′ samples from the density p. A general downsampling procedure con-
sists of two steps: choosing vertices, and assigning edges. Our main focus in this section is on the
first step: How to choose the vertices?
A simple idea is to randomly select n′ vertices and connect each vertex to its k′ nearest neighbors,
where distances are measured by the shortest path distances in the original graph G. If we choose
k′ in the right range (k′ ≥ c log(n′) for a sufficiently large c), we will end up with a connected kNN
graph 1. Can we find a sparser solution, that is, with fewer edges?
In Theorem 9, we proved that our density-preserving downsampling algorithm results in samples
that are more evenly spaced than a random sample. Here, we show that if we connect each center
to a constant number of its nearest neighbors, the graph will be connected. The constant depends
on the geometry and the dimension of our underlying space, but not on the number of centers. The
next theorem states this for optimal K-means centers in the continuous case.

Theorem 10 (Sparse neighborhood graphs on optimal centers) Let X be a connected and com-
pact subset of Rd endowed with a Lipschitz continuous density p. Assume that for all x ∈ X we
have 0 < pmin ≤ p(x) ≤ pmax <∞. Let A∗K be the set of optimal K-means centroids with respect
to the PD-distance. Then there exists a constant c such that the c-nearest neighbor graph (both with
respect to the Euclidean distance and the PD-distance) built on centroids is connected. The constant
c is related to the doubling constant of the underlying space X , which depends on d but not on K.

1. One can prove that connecting the sampled points based on their shortest path distance in G produces a graph
“similar” to a neighborhood graph built on the points using their actual Euclidean distances. Here, “similar” means
that the number of common edges between two graphs dominates the number of edges that do not appear in one of
the graphs. The proof is beyond the scope of this paper.
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This theorem is in sharp contrast with the fact that for connectivity of a kNN graph, it is necessary
that k ≥ C log(n) (see, e.g., Penrose, 1999). The proof of the theorem uses a geometric argument
based on the Delone property of Voronoi cells corresponding to optimal K-means centers. It also
shows how we can find the constant c: Look at the Voronoi diagram of the optimal centers and
set c as the maximum number of facets of a Voronoi cell in that diagram. Details of the proof are
discussed in Appendix C.
Now we can put Theorems 8 and 10 together to get our desired result. Namely, if we apply the
density-preserving downsampling on unweighted kNN-graphs, the centers will follow the underly-
ing density of the original graph. Moreover, we can build a sparse neighbourhood graph on these K
downsampled vertices. The total number of edges in this graph will depend linearly on K.

6. Implementation

We first suggest a heuristic to simplify the implementation of the quantization procedure when our
sample points are embedded in an Euclidean space. Then we discuss the case where we do not
have access to the embedding of our sample points. We are just given the adjacency matrix of the
kNN graph. Finally, we illustrate an example of our density preserving quantization on a synthetic
dataset as a proof of concept.
The classical implementation of K-means is an EM-type algorithm by Lloyd (1982). After initializ-
ing the centers, it iterates over two steps:

1. The assignment or the expectation step: In this step, data points are assigned to the centers.

2. The update or the maximization step: Update the centers given the assignments in Step 1.

It is easy to adapt the assignment step for the shortest path distance. The centers are not necessarily
vertices from our graph, so we connect each center to its nearest sample point. Then we assign
every point to a nearest center according to the shortest path distance. For the update step, instead
of finding the exact center of each Voronoi cell with respect to the shortest path distance, we use a
simple heuristic: assume that the density inside each cell is constant. Therefore, the update would
be the same as the standard K-means with respect to Euclidean distance. If there are ci points in the
Voronoi cell i, this reduces the computational complexity of finding the center fromO(c2i ) toO(ci).
This heuristic is useful when ci is relatively large and applicable when the density of points inside
each cell is close to uniform.
As a proof of concept, we apply this algorithm on a synthetic dataset. We draw 12,000 points
from an unbalanced mixture of two Gaussian distributions in R2 and build an unweighted kNN
graph with k = 15. Then we quantize to K = 100 centers using the shortest path distance and the
Euclidean distance. The results are depicted in Figure 1(a). One can see that quantization based
on the Euclidean distance tends to put more centers in the low density regions compared to the
quantization with respect to the shortest path distance. In the former, centers resemble the density
p(x)1/2 (Graf and Luschgy, 2000), hence the low density regions are amplified. To compare the
density of the centers of standard K-means and our algorithm, we plot their estimated marginal
density in the direction of x-axis in Figure 1(b). The density bias of standard K-means centers is
apparent in this figure, whereas the marginal distribution of the centers with respect to the shortest
path distance is close to the marginal distribution of the underlying density.
Alternatively, Asgharbeygi and Maleki (2008) propose a relatively simple algorithm for finding
centers when there is no access to the embedding of the data. They first show that for proper distance
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(b) The marginal distribution of samples and
quantization centroids in the direction of x-
axis, where quantization is with respect to
Dsp or Euclidean distance.

matrices, one can apply multidimensional scaling (MDS) to find a distance preserving embedding
of the points in a higher dimensional Euclidean space and use the Lloyd algorithm in the embedded
space. At the end, they show how to do all the computations in the original space without paying
the cost of the embedding step.
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Appendix A. Proof of Theorem 8

The first step of the proof is similar to the proof of Theorem 5, up to Equation (4). We show that
each term on the right-hand side of that equation converges to zero if k,K and n go to infinity at
specified rates.
(4a) Let F denote the class of functions

FK = {fA(x)|fA(x) = DPD(x, CA(x))2, A ⊂ X , |A| = K},

and N (t,FK) the covering number of FK with respect to the supremum norm. To cover X with
PD-balls of radius t, we need Θ(t−d) such balls (see Lemma 7 in Alamgir and von Luxburg, 2012).
This means that N (t,FK) = Θ(t−Kd). We also have

P (sup
A

∣∣Φ(gPD, CA,PD, P )− Φ(gPD, CA,PD, Pn)
∣∣ > t) ≤ N (t,FK)e−nt

2/B,

where B is a constant depending on the diameter of X . This shows that the difference converges to
zero with high probability (probability converging to 1) if K log(n)/n→ 0.
(4c) We revisit Lemma 7 for K→∞. We rewrite the proof of the lemma for a general CA:

1

(1− λ)2/d
Φ(gPD, CA, Pn) ≤ c2nΦ(gsp, CA, Pn) ≤ e2Φ(gPD, CA, Pn) + c2n + 2cneΦ(DPD, CA, Pn).

Set CA = CA,sp. We need to show that as K, k and n go to infinity,

Φ(gPD, CA,sp, Pn)

c2n
→∞ and

Φ(gPD, CA,sp, Pn)

cneΦ(DPD, CA,sp, Pn)
→∞.

From Theorem 1 in Gruber (2004), we know that

Φ(gPD, CA,sp, Pn) = Θ(
1

K2/d
) and Φ(DPD, CA,sp, Pn) = Θ(

1

K1/d
).

Recalling cn = ( k
nηd

)1/d, we get

Φ(gPD, CA,sp, Pn)

c2n
= Θ

(
(
ηdn

Kk
)2/d

)
and

Φ(gPD, CA,sp, Pn)

cneΦ(DPD, CA,sp, Pn)
= Θ

(
(
ηdn

Kk
)1/d

)
.

This shows that |c2nΦ(gsp, CA, Pn)−Φ(gPD, CA, Pn)| almost surely converges to zero if Kk/n→ 0.
(4f) Similar to Part (4c).
(4g) Consider the proof of the corresponding part in Theorem 5. We need to show that

Φ(gPD, CA∗,PD, Pn)

δ2
→∞ and

Φ(gPD, CA∗,PD, Pn)

δΦ(DPD, CÃ∗,PD, Pn)
→∞.

Instead of bounding δ, it is easier to bound δ′ = supx∈X ,v∈Vn ‖x − v‖. Using a standard sphere
packing lemma, we know that δ′ ≤ (k/n)1/d with probability converging to 1. For large enough n,
we have

δ = max
v∈A∗

DPD(Ã∗(v), v) ≤ 2p1/dmax max
v∈A∗

‖Ã∗(v)− v‖ ≤ 2p1/dmaxδ
′.
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This means that, with high probability, δ ≤ 2p
1/d
max(k/n)1/d. Similar to Part (4c), we have

Φ(gPD, CA∗,PD, Pn)

δ2
= Θ

(
(
n

kK
)2/d

)
and

Φ(gPD, CA∗,PD, Pn)

δΦ(DPD, CÃ∗,PD, Pn)
= Θ

(
(
n

kK
)1/d

)
.

This shows that |Φ(gPD, CÃ∗,PD, Pn)−Φ(gPD, CA∗,PD, Pn)| almost surely converges to zero if Kk/n→
0.
(4h) Similar to Equation (4a), this term converges to zero if K log(n)/n→ 0.

Appendix B. Proof of Theorem 9

We recall a proposition from Gruber (2004) on the shape of optimal Voronoi cells.

Proposition 11 (Optimal Voronoi cells are Delone) Let X be a compact and differentiable Rie-
mannian d-manifold. Let A∗K be the optimal quantization centroids with respect to the Riemannian
metric %. Then there exist constants a, b > 0 such that A∗K is (aK−1/d, bK−1/d)-Delone. This
means that

• Every two distinct centers of A∗K have distance at least aK−1/d.

• For each point of X , there exists a center in A∗K at distance at most bK−1/d.

Constants a and b depend on d and the geometry of X , but not on K.

Note that this proposition is not asymptotic and holds for every K. The proof of Theorem 9 only
needs the second part of this proposition.
Proof Let B∗(x, r) be the largest ball inside X that does not contain a centroid. Here x denotes the
center of the ball and r is its radius. From the second part of Proposition 11, there exists an optimal
centroid in A∗K at distance at most bK−1/d from x. This shows that r ≤ bK−1/d which finishes the
proof.

Appendix C. Proof of Theorem 10

Consider the Voronoi diagram induced by the optimal centers. Connect each center to the centers
of all neighbor cells to attain a connected graph. Let c be the maximum degree in this graph. We
extend this graph to a nearest neighbor graph with neighborhood size c. Consider a vertex vi with
degree di. Extend the neighborhood of vi by connecting it to its next c− di-nearest neighbors. This
extension can be done with respect to the Euclidean distance (when the coordinates of vertices are
available) or with respect to the PD-distance. We show that c is a constant independent of K, which
proves the theorem.
The Voronoi cells corresponding to optimal centers A∗K cannot be very thin or very long (Proposi-
tion 11). This property and a sphere packing lemma are used to bound the number of neighbors of
each Voronoi cell.
Let B%(x, r) = {y|%(x, y) ≤ r} denote the closed %-ball with radius r and center x. Also denote
the Voronoi cell of an optimal center ai ∈ A∗K by Di. The next lemma provides the necessary tools
for our proof.
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Lemma 12 Consider the setting in Proposition 11 and let Di and Dj be two neighboring Voronoi
cells.

• The neighbor centers are not far from each other: %(ai, aj) ≤ 2bK−1/d.

• The cell Dj is inside the %-ball around ai with radius 3bK−1/d: Dj ⊂ B%(aj , 3bK−1/d).

• Voronoi cells are fat: The %-ball with radius 0.5aK−1/d around ai is completely inside Di

B%(ai, 0.5aK
−1/d) ⊂ Di.

Proof Part 1. Consider the shortest path between ai and aj that passes through a boundary point
between Di and Dj . Let m be the intersection of this path with the boundary between Di and Dj .
We show that %(ai,m) ≤ bK−1/d. If not, from Part 2 of Proposition 11, there exist a center ak such
that %(ak,m) ≤ bK−1/d. This means that %(ak,m) < %(ai,m), which contradicts the fact that m is
in Di. Similarly we have %(aj ,m) ≤ bK−1/d. Use the triangle inequality to get

%(ai, aj) ≤ %(ai,m) + %(m, aj) ≤ 2bK−1/d.

Part 2. Consider a point x ∈ Dj . Similar to Part 1, we can show that %(aj , x) ≤ bK−1/d. Using the
triangle inequality, we have

%(ai, x) ≤ %(ai, aj) + %(aj , x) ≤ 3bK−1/d.

Part 3. If not, there exists a point x such that %(ai, x) ≤ 0.5aK−1/d but x /∈ Di. Therefore, the
point x is inside a cell Dl with center al such that %(al, x) < %(ai, x). This means that

%(ai, al) ≤ %(ai, x) + %(x, al) < aK−1/d,

which is in contradiction with Part 1 of Proposition 11.

Consider an optimal center ai and denote the set of centers of all neighboring cells by Ai. The PD-
balls with radius 0.5aK−1/d around centers in Ai are all disjoint. These balls are also completely
inside BPD(ai, 3bK

−1/d), thus

p
(
BPD(ai, 3bK

−1/d)
)
≥
∑
v∈Ai

p
(
BPD(v, 0.5aK−1/d)

)
≥ |Ai|pmine1K,

where e1 is a constant (depending on d). Also

p
(
BPD(ai, 3bK

−1/d)
)
≤ e2pmaxK,

for a constant e2. All in all, we have |Ai| ≤ pmaxe2
pmine1

which is a constant independent of K.
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