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Abstract

Recent work shows that in complex model classes, interpolators can achieve statis-
tical generalization and even be optimal for statistical learning. However, despite
increasing interest in learning models with good causal properties, there is no
understanding of whether such interpolators can also achieve causal generalization.
To address this gap, we study causal learning from observational data through the
lens of interpolation and its counterpart—regularization. Under a simple linear
causal model, we derive precise asymptotics for the causal risk of the min-norm
interpolator and ridge regressors in the high-dimensional regime. We find a large
range of behavior that can be precisely characterized by a new measure of con-
founding strength. When confounding strength is positive, which holds under
independent causal mechanisms—a standard assumption in causal learning—we
find that interpolators cannot be optimal. Indeed, causal learning requires stronger
regularization than statistical learning. Beyond this assumption, when confounding
is negative, we observe a phenomenon of self-induced regularization due to positive
alignment between statistical and causal signals. Here, causal learning requires
weaker regularization than statistical learning, interpolators can be optimal, and
optimal regularization can even be negative.

1 Introduction

We consider the problem of learning the causal influence of multivariate covariates x ∈ Rd on a scalar
target variable y ∈ R purely from observational data and under the presence of hidden confounders.
Formally, given finite samples {(xi, yi)}ni=1 drawn independently and identically (i.i.d) from the
joint observational distribution p(x, y) = p(x)p(y|x), the goal of causal learning is to predict the
effects on the target variable y under interventions on the covariates x. In other words, the goal is to
learn a predictive model that minimizes the expected loss on a random draw from the interventional
distribution pdo(x, y) = p(x)p(y|do(x)), which can be different from the observational distribution.

Recently, Janzing (2019) established a close analogy between statistical and causal learning (albeit
under a highly constructed confounded model). As a consequence, Janzing (2019) suggested that
standard statistical learning-theoretic techniques (such as norm-based regularization) may also help
learn good causal models. However, the classical statistical principles of bias-variance trade-off have
been challenged in recent years by highly complex classes of models that are trained to interpolate the
data and yet achieve remarkable generalization properties across a broad range of problem domains
(Zhang et al., 2021). A large volume of recent work suggests that interpolation can be compatible
with and may even be necessary to achieve optimal statistical generalization in the high-dimensional
regime (Belkin et al., 2018; Belkin et al., 2019a; Liang et al., 2020; Feldman, 2020). Despite the
surge in interest, causal properties of such interpolators have not yet been explored. In this work, we
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consider a simple linear causal model in the high-dimensional regime (n, d→∞, d/n ∈ O(1)) and
ask: can interpolators achieve good causal generalization?

1.1 Motivation and Related Work

Resemblance between statistical and causal generalization Causal learning can be regarded
as an instance of the general problem of learning under distribution shifts, where the training
(observational) distribution is shifted from the test (interventional) distribution. In the framework
of out-of-distribution generalization, an interesting proposition for causal learning arises from the
following high-level idea. Observing small sample sizes may induce a similar bias as distribution
shifts. Therefore, techniques for learning models with good out-of-sample generalization (such
as regularization) may also help to learn models with good out-of-distribution generalization and
vice-versa. The literature provides plentiful evidence to support this general principle for different
classes of distribution shifts. For instance, under a broad class of distribution shifts, distributionally
robust optimization is equivalent to norm-based regularization (Xu et al., 2009; Shafieezadeh Abadeh
et al., 2015; Gao et al., 2017; Shafieezadeh-Abadeh et al., 2019; Blanchet et al., 2019; Kuhn et al.,
2019). Analogously, distributionally robust optimization techniques are also employed for statistical
learning under limited samples (Zhu et al., 2020). Particularly relevant to our work is Janzing (2019),
which formally establishes a close analogy between “generalizing from empirical to observational
distributions” and “generalizing from observational to interventional distributions” under a highly
constructed confounding model. This analogy suggests that standard norm-based regularization such
as lasso or ridge, typically used for statistical learning, may also help learn better causal models.

Interpolation can be compatible with statistical learning Explicit norm-based regularization
techniques were initially motivated by the classical learning theory principle of bias-variance trade-
off, which is characterized by a U-shaped generalization curve. This principle recommends to avoid
interpolation and instead suggests to balance data fitting with the complexity of the hypothesis class.
Recently, however, these classical principles have been challenged by deep learning models. Despite
being highly complex with the ability to fit even random labels and often trained to interpolate the
training data, they achieve state-of-the-art out-of-sample generalization across many domains (Zhang
et al., 2021). A partial explanation is provided by the double-descent phenomenon (Belkin et al.,
2019b; Belkin, 2021). Extending the generalization curve beyond the interpolation threshold reveals
two regimes: the classical U-curve in the underparameterized regime and a decreasing curve in the
overparameterized regime. This behaviour is not limited to deep neural networks, but extends to
other settings such as random feature models and random forests (Belkin et al., 2019b; Hastie et al.,
2022; Mei et al., 2021). Follow-up work suggests that in the overparameterized regime, interpolators
can indeed achieve low statistical risk (Belkin et al., 2019a; Liang et al., 2020; Bartlett et al., 2020;
Tsigler et al., 2020; Muthukumar et al., 2020).

Is interpolation compatible with causal learning? On account of the parallels between statistical
(out-of-sample) and causal (out-of-distribution) learning, it is therefore natural to ask: can interpo-
lators also learn good causal models? One line of empirical work suggests that naively applying
distributionally robust learning techniques such as importance reweighting or distributionally robust
optimization approaches (which are equivalent to certain forms of regularization) offers vanishing
benefits over empirical risk minimization in overparameterized model classes (Byrd et al., 2019;
Sagawa et al., 2020; Gulrajani et al., 2021). However, there is also empirical evidence that suggests
that augmenting such techniques with additional explicit norm-based regularization may help to learn
distributionally robust models in the overparameterized regime (Sagawa et al., 2020; Donhauser et al.,
2021). In the context of causal learning, it has been suggested that explicit regularization can be
beneficial and might even need to be stronger than for statistical learning (Janzing, 2019; Vankadara
et al., 2021). Existing work, therefore, remains unclear about the role of explicit regularization in
causal learning, or correspondingly, whether interpolation is compatible with causal learning. In this
work, we take a theoretical approach to systematically address these questions.

1.2 Our Contributions

We provide a first analysis of causal generalization from observational data in the modern, overparam-
eterized and interpolating regime under a simple linear causal model. Specifically, we consider the
interpolating minimum l2 norm least-squares estimator and the family of regularized ridge regression
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estimators in the proportional asymptotic regime. We seek answers to the following questions: is there
a regime where the optimal causal regularization parameter is 0, that is, can we observe benign causal
overfitting? Furthermore, if the optimal causal regularization parameter is positive, how strongly do
we need to regularize? How does the optimal causal regularization compare to the optimal statistical
regularization? While our analysis is exhaustive, we emphasize the results under the assumption of
independent causal mechanisms (Janzing et al., 2010), a standard assumption in causal learning.

• Precise asymptotics of the causal risk (Section 3). We provide precise asymptotics of the
causal risk of the ridge regression estimator as well as the minimum l2 norm interpolator in
the high-dimensional setting: n, d→∞, d/n→ γ ∈ (0,∞). Our results confirm that, similar
to the statistical setting, the causal generalization curve of the min-norm estimator exhibits the
double-descent phenomenon. This is because the variance term diverges at the interpolation
threshold and is decreasing in the overparameterized regime (γ > 1).

• A measure of confounding strength ζ (Section 2.1). We introduce a new measure of confound-
ing strength ζ that quantifies the relative contribution of the “confounding signal” to the “causal
signal”. It can be interpreted as the strength of the distribution shift between the observational
and interventional distributions. While ζ can take any real value in general, it is restricted
to [0, 1] under the assumption of independent causal mechanisms. There, it induces a strict,
model-independent ordering of all causal models that entail the same observational distribution.

• Benign causal overfitting (Section 4). When the causal signal dominates the statistical signal
(ζ < 0), we observe a phenomenon of self-induced regularization due to the confounding
signal. As a consequence, the optimal causal regularization can be 0 or negative even if the
optimal statistical regularization is strictly positive. Under the assumption of independent causal
mechanisms, however, we show that there is no benign causal overfitting. This is in contrast to
benign statistical overfitting, which can occur in the highly underparameterized regime (γ → 0).

• Optimal causal vs. statistical regularization (Section 5). We show that causal learning requires
weaker regularization than statistical learning when the confounding strength ζ is negative.
However, when ζ > 0 and in particular under the principle of independent causal mechanisms,
we show that causal learning requires stronger regularization than statistical learning. More
specifically, the optimal causal regularization is strictly increasing in confounding strength.

2 Problem Setup
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Figure 1: (a) Graphical model of
the causal model defined in (1).
(b) The usual statistical model.
In both figures, observed random
variables are shaded and unob-
served variables are white.

We consider a linear causal model with parameters M ∈ Rd×l, α ∈ Rl, β ∈ Rd with l ≥ d and
σ2 > 0 described via the structural equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , x = Mz , y = xTβ + zTα+ ε . (1)

The covariates x ∈ Rd and the target y ∈ R are confounded through z ∈ Rl, which follows
a standard normal distribution. This structure implies that Ex = 0 and the covariance of x is
Σ := Cov x = MMT . A graphical representation of this causal model is given in Figure 1a.
The observational joint distribution of this causal model is given by p(x, y) = p(x)p(y|x), where
x ∼ N (0,Σ) and y|x ∼ N (xT β̃, σ̃2). Here, the statistical parameter β̃ := β + Γ consists of
the causal parameter β and a confounding parameter Γ := M+Tα, where M+T is shorthand
for (M+)T and M+ denotes the Moore-Penrose inverse of M . The statistical noise is given by
σ̃2 := σ2 + ‖α‖2 − ‖Γ‖2Σ, where ‖x‖2Σ := xTΣx denotes the generalized norm. 1 Note that the
observational distribution alone cannot distinguish the causal model from the one in Figure 1b. The

1Note that ‖α‖2 − ‖Γ‖2Σ = ‖α‖2I−M+M ≥ 0, where I −M+M is the orthogonal projection onto kerM .
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goal of statistical learning is to predict y after observing x, which is captured by the conditional
distribution p(y|x). In contrast, the goal of causal learning is to predict y after manipulating or
intervening on x. This is formally captured by Pearl’s do-calculus (Pearl, 2009), which describes
interventions on random variables as a shift in the joint distribution. Intervening on x with the value
x0, denoted as do(x = x0), removes all arrows to x and sets x = x0. In our causal model (1), the
intervention do(x = x0) removes the arrow z → x and yields the updated structural causal equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , x = x0 , y = xT0 β + zTα+ ε .

The corresponding distribution of y after intervening on x is therefore given by y|do(x = x0) ∼
N (xT0 β, σ̃

2 + ‖Γ‖2Σ). Since arbitrary interventions can introduce arbitrary distribution shifts, we
consider the natural class of interventions drawn from the observational marginal distribution on x.
This yields the interventional joint distribution pdo(x, y) = p(x)p(y|do(x)) with the slight abuse of
notation do(x) in which the random variable x and its value coincide.

Causal learning from observational data Assume we are given i.i.d. samples {(xi, yi)}ni=1 from
the observational joint distribution p(x, y), which we collect in X ∈ Rn×d and Y ∈ Rn. The
usual statistical learning aims for the observational conditional p(y|x), which means that train and
test distributions coincide. Causal learning aims for the interventional conditional p(y|do(x)), a
distribution shift problem for which train and test distributions differ. We define the corresponding
causal risk RC and statistical risk RS of any linear regressor β̂ ∈ Rd under the squared loss as

RC(β̂) := ExEy|do(x)(x
T β̂ − y)2 and RS(β̂) := ExEy|x(xT β̂ − y)2 . (2)

The following proposition (proven in Appendix A) characterizes the risks under the model (1).

Proposition 2.1 (Causal and Statistical Risk). For any β̂ ∈ Rd, the risks defined in Eq. (2) satisfy

RC(β̂) = ‖β̂ − β‖2Σ + σ̃2 + ‖Γ‖2Σ and RS(β̂) = ‖β̂ − β̃‖2Σ + σ̃2 .

Therefore, β is the optimal causal parameter and β̃ is the optimal statistical parameter. In the
following, we simply refer to them as causal and statistical parameters.

2.1 A New Measure of Confounding Strength

Since the interventional distribution generally differs from the observational distribution, we require
a measure that quantifies how this shift influences causal learning from observational data.

Signal-to-noise ratios (SNRs) Before we define our measure of confounding strength, we first
define the statistical and causal signal-to-noise ratios, which help to intuitively understand our
confounding strength measure. Recall that every causal model entails a statistical model since
the causal parameter β and the confounding parameter Γ jointly specify the statistical parameter
β̃ = β + Γ. The statistical SNR is defined as usual by SNRS := ‖β̃‖2/σ̃2. For the causal SNR, a
natural notion would be ‖β‖2/(σ̃2 + ‖Γ‖2Σ) if the learning algorithm had access to data from the
interventional distribution y|do(x) ∼ N (xTβ, σ̃2 +‖Γ‖2Σ); but since we are constrained to data from
the observational conditional y|x ∼ N (xT β̃, σ̃2), the corresponding causal SNR, which quantifies
the hardness of the learning problem, needs to take this into consideration. Accordingly, we consider
the causal SNR as the ratio of the alignment between the statistical and causal parameters and the
variance of the observational conditional. Formally, we define it as SNRC := 〈β, β̃〉/σ̃2. In what
follows, we therefore often refer to 〈β, β̃〉 as the causal signal and ‖β̃‖2 as the statistical signal.
Correspondingly, we refer to 〈β̃ − β, β̃〉 = 〈Γ, β̃〉 as the confounding signal, which is the alignment
between the confounding parameter Γ and the statistical parameter β̃.

Confounding strength Regression on observational data implicitly assumes that the interventional
distribution coincides with the observational distribution, while it can be shifted in general. To
quantify the impact of this distribution shift on the corresponding causal risk, we introduce a new
confounding strength measure ζ. It measures the relative contribution of the confounding signal to
the statistical signal and is defined by

ζ :=
〈Γ, β̃〉

〈Γ, β̃〉+ 〈β, β̃〉
=
〈Γ, β̃〉
‖β̃‖2

. (3)
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Other notions of confounding strength are possible, but we will see later that this definition is
well-suited to capture the shift strength for causal learning from observational data. Without further
restrictions, ζ can take any value in R. This measure divides the causal models into the following
three regimes, depending on the relationship between causal and statistical signal:

• ζ ≥ 1: the causal signal 〈β, β̃〉 is non-positive, which implies that causal and statistical parameters
are orthogonal or negatively aligned. Statistical learning is adversarial to causal learning.

• 0 < ζ < 1: causal and statistical parameters are positively aligned but the causal signal is weaker
than the statistical signal ‖β̃‖2, for example β = β̃/2.

• ζ ≤ 0: the causal signal dominates the statistical signal, for example β = 2β̃.

The SNRs are related to the confounding strength measure via SNRC = (1− ζ) SNRS. In particular,
the causal signal decreases as the confounding strength increases.

The regime 0 ≤ ζ ≤ 1 is practically most relevant Causal learning often requires strong as-
sumptions because causal models cannot be uniquely identified by their observational distribution.
A standard assumption is the principle of independent causal mechanisms (ICM) (Janzing et al.,
2010; Lemeire et al., 2013; Peters et al., 2017), which informally asserts that causal mechanisms
share no information. In our causal model (1), a corresponding assumption could be that the causal
mechanisms α and β are drawn from rotationally invariant distributions. This implies that 〈β,Γ〉 → 0
as d → ∞, which in turn falls in the regime 0 ≤ ζ ≤ 1. While our following analysis covers all
possible causal models, we pay special attention to this regime because it might be of highest practical
relevance. Note that for 〈β,Γ〉 = 0, our measure of confounding strength coincides with the measure
ζ ′ = ‖Γ‖2/(‖Γ‖2 + ‖β‖2) introduced by Janzing et al. (2017). It measures the relative contribution
of causal and confounding signal in terms of lengths rather than inner products.

3 Causal and Statistical Risk of High-Dimensional Regression Models

Causal learning is extremely challenging, because it requires scarcely available interventional data
or has to rely on other information such as exogenous (Rothenhäusler et al., 2021) or instrumental
variables (Angrist et al., 1991). In our setting where only observational data are available, causal
learning requires additional model assumptions. One such approach has been followed by the
Concorr method (Janzing, 2019) which leverages the ICM assumption to make an improved choice
of regularization parameter under a linear regression model. To fully characterize the effect of
regularization on causal generalization, we consider two estimators for learning causal models from
observational data (X,Y ) ∈ Rn×d × Rn: the min-norm interpolator and ridge regressors. The
min-norm interpolator is the minimum l2 norm solution to the least squares regression problem

β̂0(X,Y ) := arg min{‖β̂‖2 : β̂ ∈ arg min
β̂∈Rd

‖Y −Xβ̂‖2}. (4)

A closed form is given by β̂0(X,Y ) = (XTX)+XTY . For λ > 0, the ridge regressor solves

β̂λ(X,Y ) := arg min
β̂∈Rd

1

n
‖Y −Xβ̂‖2 + λ‖β̂‖2 , (5)

which has the explicit solution β̂λ(X,Y ) = (XTX+nλId)
−1XTY . The min-norm interpolator can

be obtained as a limiting case from the ridge regression solution via β̂0(X,Y ) = limλ→0+ β̂λ(X,Y ).
Whenever it is clear from the context, we drop the dependence of the predictors on X and Y .

Before proceeding with the analysis, we motivate the idea that appropriate regularization can help to
learn causal models from purely observational data. To this end, we compare regularization chosen
by statistical cross validation to regularization based on an interventional validation set in Figure 2.
Since cross validation implicitly assumes that there is no confounding, it is close to Bayes optimal for
ζ = 0 when n� d. However, as confounding increases, it falls behind regularization based on the
interventional validation set. The latter even yields Bayes optimal risk again in the purely confounded
setting ζ = 1, where the lack of causal signal (β = 0) is encoded by infinite regularization. While
we might not have access to an interventional validation set in practice, our theory will show that
knowledge of confounding strength is sufficient for choosing appropriate regularization. Finally, we
want to caution that even though regularization can help, it does not remove the hardness of causal
learning. Reliable causal inference still requires stronger assumptions or additional data.
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Figure 2: Causal excess risk of ridge predictors
based on n = 30, 000 samples from the obser-
vational distribution. Regularization is chosen
either by cross validation or based on a valida-
tion set from the interventional distribution of
same size. Each model has fixed dimensions
d = 300, l = 350 and SNRS = 5, but differ-
ent underlying confounding strengths under the
constraint 〈β,Γ〉 = 0. The benefits of optimal
regularization over cross validation increase with
confounding strength.

3.1 Precise Asymptotics of the Causal and Statistical Risks

In this section, we provide precise asymptotics for the causal and statistical risks of the min-norm in-
terpolator and ridge regression solutions in the high-dimensional regime. This regime is characterized
by both n, d→∞ such that d/n→ γ ∈ (0,∞), where γ is called the overparameterization ratio.
We distinguish between the underparameterized regime (γ < 1) and the overparameterized regime
(γ > 1). All proofs for this section are deferred to Appendix B. Since the predictors β̂ = β̂(X,Y )
are random variables in the training data X and Y , so is their corresponding causal risk. We consider
the expectation of this risk under Y conditioned on X . According to Proposition 2.1, it is given by
RCX(β̂) := EY |XRC(β̂) = EY |X‖β̂ − β‖2Σ + σ̃2 + ‖Γ‖2Σ . Due to its simple form, similar to the
usual statistical risk, the causal excess risk can be decomposed into bias and variance:

EY |X‖β̂ − β‖2Σ = ‖EY |X β̂λ − β‖2Σ︸ ︷︷ ︸
=:BCX(β̂λ)

+EY |X‖β̂λ − EY |X β̂λ‖2Σ︸ ︷︷ ︸
=:V CX (β̂λ)

. (6)

The next theorem is one of our main results. It gives a closed-form expression for the limiting
causal bias and variance of the min-norm interpolator and ridge regression estimators. We make the
simplifying assumption of isotropic covariance Σ = Id. The proof relies on recent techniques from
random matrix theory. It employs arguments similar to Dicker (2016), Dobriban et al. (2018), and
Hastie et al. (2022) and can correspondingly be extended to arbitrary covariances under boundedness
assumptions on the spectrum. We leave such extensions for future work and focus on thoroughly
understanding the isotropic causal model, because it already exhibits rather rich behavior.
Theorem 3.1 (Limiting Causal Bias-Variance Decomposition for the Ridge Estimator). Let
‖β‖2 = r2, ‖Γ‖2 = ω2, 〈Γ, β〉 = η, and fix σ̃2. Then as n, d→∞ such that d/n→ γ ∈ (0,∞), it
holds almost surely in X for every λ > 0 that

BCX(β̂λ)→ BCλ = ω2 + r̃2λ2m′(−λ)− 2(ω2 + η)λm(−λ) and (7)

V CX (β̂λ)→ VCλ = σ̃2γ(m(−λ)− λm′(−λ)) , (8)

where m(λ) = ((1− γ − λ)−
√

(1− γ − λ)2 − 4γλ)/(2γλ) and r̃2 = r2 + ω2 + 2η. Therefore
RCX(β̂λ)→ RCλ = BCλ + VCλ + σ̃2 + ω2. The corresponding limiting quantities for the min-norm
interpolator can be obtained by taking the limit λ→ 0+ in (7) and (8).

From these limiting expressions we can see that the causal risk curve of the min-norm interpolator
exhibits the double descent phenomenon: it diverges at the interpolation threshold γ = 1 due to the
variance term and decreases again for γ > 1. A corresponding visualization is given in Figure 4.
Explicit regularization dampens the divergence of the variance term. While we are primarily interested
in the causal risk, the corresponding statistical risk serves as a natural baseline. An analogue set
of results for the statistical risk is given in Appendix C. These results have already been derived
by Hastie et al. (2022) and can also be recovered as a special case of our causal results: for fixed
statistical parameters β̃ and σ̃2, the statistical risk coincides with the causal risk of an unconfounded
causal model defined with β = β̃, σ2 = σ̃2, and α = 0. In particular, the corresponding statistical
limiting expressions are the same as in Theorem 3.1 after setting η = ω2 = 0.

Optimal statistical and causal regularization By directly optimizing the closed form expressions
for limiting causal and statistical risks we can find the optimal causal and statistical regularization.
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Figure 4: Limiting bias-variance decomposition
and causal excess risk of the min-norm interpola-
tor (black) and optimally regularized ridge regres-
sion (red). Crosses indicate finite-sample risks of
n = d/γ samples with d = 300. The finite risks
are well-predicted by their theoretical limit.

For any γ ∈ (0,∞), the optimal statistical regularization λ∗S(γ) := arg infλ∈(0,∞)RSλ can be
expressed in closed-form as λ∗S(γ) = SNRS

−1 γ. The closed-form expression for the optimal causal
regularization parameter λ∗C(γ) := arg infλ∈(0,∞)RCλ is a root of a 4th order polynomial and as
such considerably intricate. For readability, we do not include it here. We investigate the behavior of
the optimal causal and statistical regularization in Section 4 and 5.

3.2 Basic Behavior of the Limiting Risk

We start to analyze the results by assessing the basic behavior of the limiting causal risk. The causal
risk of the null estimator β̂ = 0 serves as a natural baseline to evaluate the performance of the the
min-norm interpolator and the ridge regression estimators.

Regimes of the min-norm interpolator Theorem 3.1 characterizes the limiting causal risk of the
min-norm interpolator. Its behavior is controlled by the causal signal-to-noise ratio, which we defined
as SNRC = (1−ζ) SNRS. However, as we will later see, the causal risk of the min-norm interpolator
can be lower than null risk when ζ < 0.5. To distinguish the regimes of the min-norm interpolator, it
is therefore convenient to consider the closely related quantity S = (1− 2ζ) SNRS. It distinguishes
between three different regimes (visualized in Figure 3).

• For S > 1, the causal signal dominates the noise and the min-norm interpolator can perform
better than null risk in both under- and overparameterized regime.

• For 0 ≤ S ≤ 1, the causal signal is weaker than the noise. Only the underparameterized regime
can beat the null risk, whereas the overparameterized regime is always worse.

• The previous two cases resemble the behavior of the statistical risk in the corresponding regimes
of the statistical SNR. Contrary to the statistical risk, however, the causal risk admits a third
regime S < 0. In this case, the min-norm interpolator always performs worse than null risk.
Here, the causal signal 〈β, β̃〉 is dominated by the confounding signal 〈Γ, β̃〉, and interpolating
the observational data overfits to the confounding.

Bias and variance The bias-variance decomposition of the causal risk given in Theorem 3.1 is
visualized in Figure 4 for the min-norm interpolator and the optimally ridge-regularized regressor.
The figure also shows the causal risk based on finite samples from the model, which is in high
agreement with our asymptotic results. We compare the causal risk to the corresponding statistical
risk. First note that the causal and statistical variance terms coincide exactly for both the min-norm
interpolator and ridge regressors. This is because the variance term of the squared loss depends only
on the variance in the training data, but not on the target parameter β or β̃. Since the training data are
the same for both causal and statistical learning, the variance terms trivially coincide.
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For the min-norm interpolator, as in the statistical case, the variance term is responsible for the
double-descent behavior of the causal risk curve because it explodes at the interpolation threshold
γ = 1 and decreases in the overparameterized regime γ > 1. In the statistical setting, the bias strictly
increases in the overparameterized regime and, as a consequence, the best risk is always achieved
in the underparameterized setting. In contrast, the causal bias of the min-norm interpolator can be
decreasing in the overparameterized regime and therefore the optimal causal risk can be achieved
in the highly overparameterized regime γ →∞. However, this only happens in the regime S < 0
where the risk of the min-norm interpolator is always worse than null risk.

Figure 4 shows the causal risk of the optimally regularized ridge regression estimator which trivially
is always below that of the min-norm risk. Similar to the statistical setting, the corresponding
generalization curve does not exhibit the double descent phenomenon. There are qualitatively
different reasons for why regularization helps in statistical and causal learning. For both statistical
and causal learning, regularization decreases the shared variance, which corresponds to the finite-
sample error. However, while the statistical bias always increases with regularization, the causal bias
can actually decrease. This implies that regularization not only helps with the finite-sample error, but
can also reduce the error due to confounding.

Higher confounding implies higher causal risk for all λ So far, we have investigated the causal
risk under a single causal model. Now we can compare different causal models using the confounding
strength measure ζ introduced in Section 2.1. The next proposition shows that ζ governs the hardness
of causal learning from observational data. Specifically, the causal risk of the ridge regression for any
λ ∈ (0,∞) increases as the causal model becomes more confounded. A proof is given in Appendix D.

Proposition 3.2 (Causal Risk Increases with Confounding Strength). Consider the family of
causal models parameterized as in (1) that entail the same observational distribution. Let C1 and C2

be two such causal models with confounding strengths ζ1 and ζ2 and alignments η1 and η2 (defined
in Theorem 3.1), respectively. Then for all λ, γ ∈ (0,∞),

ζ1 > ζ2, η1 ≤ η2 =⇒ RC1

λ > RC2

λ .

In particular, for any fixed η, the measure of confounding strength ζ establishes a strict ordering of
causal models. This includes the ICM under which η = 0.

4 Benign Causal Overfitting

A large number of recent works suggest that minimum-norm interpolators can be optimal for statistical
generalization (Belkin et al., 2018; Belkin et al., 2019a; Muthukumar et al., 2020). This phenomenon
is often referred to as benign overfitting. Moreover, the optimal statistical generalization may even be
achieved for negative regularization λ < 0 (Kobak et al., 2020; Bartlett et al., 2020; Tsigler et al.,
2020). It is unclear, however, if such interpolators, which have implicit small-norm biases, can also be
optimal when there is a shift between the training and test distributions. In particular, we ask: can the
optimal causal regularization be 0 or even negative, that is, do we observe benign causal overfitting?
To show that the optimal regularization can be negative, we simply show that the derivative of the
causal risk at 0 is positive. We summarize our key findings in Theorem 4.1.
Theorem 4.1 (Optimal Regularization can be Negative). For any causal model parameterized as
in (1), the following cases distinguish between whether the min-norm interpolator is optimal or not.

1. For negative confounding strength ζ < 0 the optimal causal regularization λ∗C can be 0 or even
negative. A necessary and sufficient condition for λ∗C ≤ 0 depends on the difference in causal
and statistical signal-to-noise ratios and is given by

SNRC−SNRS ≥
γmax {1, γ}

(1− γ)2
.

2. For positive confounding strength ζ > 0 the optimal causal regularization is positive λ∗C > 0
andRC0 > RCλ∗C , hence regularization is beneficial. This includes the ICM.

In the highly overparameterized regime (γ →∞), the benefit of explicit regularization vanishes and
both the causal and statistical risks of the ridge regression estimator converge to their corresponding
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null risks, independently of the regularization. We do not refer to this as benign overfitting. However,
we can observe benign causal overfitting when the causal SNR is larger than the statistical SNR
(ζ < 0), which happens when causal and statistical parameter are strongly aligned. This implies that
the norm of the statistical parameter is smaller than the norm of the causal parameter. Consequentially,
statistical regressors are implicitly biased towards solutions of smaller norm and causal learning
exhibits self-induced regularization. Compare this to benign statistical overfitting, which happens
for certain alignments between the regression parameter β̃ and the covariance matrix Σ. In our
isotropic setting Σ = Id, we can therefore never observe benign statistical overfitting, but we can
observe benign causal overfitting. This phenomenon occurs in both the underparameterized as
well as the overparameterized regime. The range of γ for which the optimal causal regularization
is negative increases with the dominance of the causal signal over the statistical signal. As γ
approaches the interpolation threshold, it becomes harder for the optimal causal regularization to
be negative. When the causal SNR is smaller than the statistical SNR (ζ > 0) and in particular
under the ICM (0 < ζ ≤ 1), the optimal causal regularization is strictly positive and the benefit
of explicit regularization does not vanish. This can be the case even when the optimal statistical
regularization vanishes. To see this consider the statistical risk in the highly underparameterized
regime γ → 0. In this regime, the benefit of explicit regularization vanishes and the min-norm
interpolator indeed achieves the optimal statistical risk. The optimal causal regularization is given
explicitly by λ∗C = ζ/(1 − ζ) for 0 ≤ ζ ≤ 1 and λ∗C = ∞ for ζ > 1. This is strictly positive and
increasing in the confounding strength ζ, and in fact diverges as ζ approaches 1 (see Theorem 5.2).

5 On Optimal Regularization

In this section, we investigate two key questions which are natural in the context of our work. How
does the optimal causal regularization λ∗C compare to the optimal statistical regularization λ∗S? What
is the dependence of the optimal causal regularization λ∗C on the confounding strength ζ?

Optimal statistical vs. causal regularization When the training and test distributions coincide,
approaches such as cross-validation or information criteria (for example AIC or BIC) can be used to
estimate the regularization parameter for optimal out-of-sample generalization. However, choosing
the correct regularization parameter for causal learning can be challenging without interventional data.
To understand the optimal causal regularization, it is natural to compare it to the optimal statistical
regularization, which can usually be estimated from data. Interestingly, our analysis reveals that when
confounding strength is positive ζ > 0 and in particular under the ICM one needs to regularize more
strongly for causal generalization than for statistical generalization. However, when the confounding
strength is negative, that is, when the causal signal dominates the statistical signal, the optimal causal
regularization λ∗C can actually be smaller than the optimal statistical regularization λ∗S . We formally
present this result in Theorem 5.1.
Theorem 5.1 (Optimal Statistical vs. Causal Regularization). For any causal model parameter-
ized as in (1), the condition ζ = 0 defines a phase transition for the optimal regularization via

ζ < 0 ⇐⇒ λ∗C < λ∗S , ζ = 0 ⇐⇒ λ∗C = λ∗S , and ζ > 0 ⇐⇒ λ∗C > λ∗S .

In particular under the ICM, the optimal causal regularization λ∗C is always strictly larger than the
optimal statistical regularization λ∗S , unless ζ = 0, in which case they coincide.

Dependence on confounding strength ζ The problem of causal learning from observational data
is a distribution shift problem where the distribution of the training data is shifted from that of the test
distribution. As discussed earlier in Proposition 3.2, the confounding strength measure ζ quantifies
the strength of this distribution shift. Therefore, we expect the optimal causal regularization to
increase with confounding strength. Theorem 5.2 indeed confirms this intuition.
Theorem 5.2 (Increasing Confounding Strength Requires Stronger Regularization). Consider
the family of causal models parameterized as in (1) that entail the same observational distribution.
The optimal causal regularization λ∗C only depends on the confounding strength ζ and λ∗C is an
increasing function in ζ. More specifically, using % = −SNRS

−1 γmax {1, γ}/(1− γ)2:

% < ζ < 1 =⇒ λ∗C ∈ (0,∞) with ∂ζλ∗C > 0 ,

λ∗C = 0 if ζ ≤ % and λ∗C =∞ for ζ ≥ 1.
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6 Summary and Extensions

We characterize the role of explicit regularization for causal learning from observational data by
computing the asymptotic risk of ridge-regularized regressors and the min-norm interpolator (Theorem
3.1). Under the principle of independent causal mechanisms (ICM), we find that causal learning
requires stronger regularization than statistical learning (Theorem 5.1). A practical implication is that
the regularization parameter for causal learning should be chosen larger than what is suggested by
cross-validation. We can precisely state how much larger based on an estimate of confounding strength
(Janzing et al., 2017; Janzing et al., 2018). Beyond ICM, we show that strong alignments between
causal and statistical parameters can cause self-induced regularization and lead to benign causal
overfitting (Theorem 4.1). One could consider generalizing our assumptions: arbitrary covariances,
shifts in the marginal distributions of covariates, soft interventions, more complex hypothesis classes,
or non-linear causal relationships. Since the linear model already exhibits rich behavior, we focus in
this paper on understanding the simple setting. Below, we briefly discuss extensions of our analysis
to causal learning under soft interventions, non-linearity, and non-Gaussianity.

Soft interventions It is not always appropriate to consider causal learning under hard interventions.
Instead, it is often of interest to consider soft interventions. In these settings, the qualitative statements
derived from our analysis still hold. To illustrate this, we consider the class of shift interventions
where the structural dependence of the covariates x is not destroyed as in the case of hard interventions
but the observed covariates are merely perturbed (i.e., interventions of the form do(x := x + ν)).
Then it turns out that Causal risksoft = Causal riskhard + Statistical risk. From our results, it then
follows that under ICM, λstatistical ≤ λcausal

soft ≤ λcausal
hard This also supports our intuition since under soft

interventions, we typically aim to achieve a tradeoff between statistical and causal predictability. We
include a complete analysis under shift interventions in Appendix F.

Extensions to non-linear models It is feasible to extend the analysis to structural causal models
that arise in a reproducing kernel Hilbert space corresponding to a positive definite kernel (i.e, where
the best statistical model f̃ and the best causal model f are functions in some RKHS). There are two
major technical challenges to deriving the theoretical analysis in such non-linear settings. Both are
beyond what can be done in this paper and are left for future work, but we briefly outline them below.

1. Extend the definition of confounding strength ζ beyond the linear setting. Since such a
definition is non-trivial already in the linear setting, it is challenging to meaningfully generalize
this to the non-linear setting. However, under non-linear causal models in the RKHS, we can
naturally extend this definition by replacing the Euclidean norms with functional norms in the
RKHS. Generalizing the analysis beyond this setting would require further careful consideration.

2. Derive limiting expressions for causal risk of regularized regressors in a non-linear hypoth-
esis class. In the case of kernel regression, this would still be feasible via recent random matrix
theory results [27]. By optimizing the limiting expressions with respect to the regularization
parameter, one can obtain the parameter that achieves the optimal causal risk and subsequently
identify the relationship between optimal causal regularization and confounding strength.

Beyond Gaussianity The analysis can be extended beyond the Gaussian setting by considering
random variables generated by finite mixtures of Gaussians. Due to the universality phenomenon in
the high-dimensional limit, we believe that our limiting expressions (and the qualitative messages
derived henceforth) would be rather robust to shifts in the marginal distribution as long as moments
of order (4 + δ) for some δ > 0 are bounded. We conducted experiments to verify this claim and the
corresponding results can be found in Appendix G. They show that for distributions with finite 4th
moments, the finite-sample risks of the min-norm interpolator and causally optimally regularized
ridge regressor closely match the theoretically derived asymptotic risks.
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Supplementary Materials

A Proof of Proposition 2.1

For the statistical risk, we first need one standard result about the distribution of a multivariate normal
random variable conditioned on an affine function:
Lemma A.1. Consider a multivariate normal random variable X ∼ N (µ,Σ) with mean µ ∈ Rd
and covariance Σ ∈ Rd×d. Then for any A ∈ Rk×d, b ∈ Rk, and y ∈ Rk it holds

X|(AX + b) = y ∼ N (µ+ ΣAT (AΣAT )+(y −Aµ− b),Σ− ΣAT (AΣAT )+AΣ) .

In particular, if X is a standard normal random variable (Σ = Id, µ = 0) and b = 0, it is

X|AX = y ∼ N (AT (AAT )+y, Id −AT (AAT )+A)

Proof. Let Y = AX + b. The joint distribution of X and Y is again a multivariate normal, because
it can be written as an affine transformation of X:(

X
Y

)
=

(
Id
A

)
︸ ︷︷ ︸

=:A′∈R(d+k)×d

X +

(
0d
b

)
︸ ︷︷ ︸

=:b′∈Rd+k

= A′X + b′ ,

which implies that(
X
Y

)
= A′X + b′ ∼ N (A′µ+ b′, A′Σ(A′)T ) = N (

(
µ

Aµ+ b

)
,

(
Σ ΣAT

AΣ AΣAT

)
) .

The claim then follows from the standard formula for conditionals of multivariate normal distributions,

which states that if
(
Z1

Z2

)
∼ N (

(
µ1

µ2

)
,

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
), then

Z1|Z2 = z ∼ N (µ1 + Σ1,2Σ+
2,2(z − µ2),Σ1,1 − Σ1,2Σ+

2,2Σ2,1) .

Proposition 2.1 (Causal and Statistical Risk). For any β̂ ∈ Rd, the risks defined in Eq. (2) satisfy

RC(β̂) = ‖β̂ − β‖2Σ + σ̃2 + ‖Γ‖2Σ and RS(β̂) = ‖β̂ − β̃‖2Σ + σ̃2 .

Proof. The key step for this proof is to characterize the distribution of y under the do-intervention
y|do(x) and the usual observational conditional y|x. We start with the proof for the causal risk
under the do-intervention. Intervening on x under the causal model given by Eq. (1) corresponds to
removing all arrows to x, which corresponds to the structural equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , y = xTβ + zTα+ ε .

In this model, z acts as additional independent noise on y through zTα ∼ N (0, ‖α‖2), which implies
that y|do(x) ∼ N (xTβ, ‖α‖2 + σ2). Equivalently, y|do(x) has the same distribution as xTβ + ε′

with ε′ ∼ N (0, σ̃2 + ω2) because ‖α‖2 + σ2 = σ̃2 + ω2. This lets us compute the causal risk of a
linear predictor β̂ ∈ Rd as

RC(β̂) = ExEy0|do(x)

(
xT β̂ − y

)2

= ExEε′
(
xT
(
β̂ − β

)
− ε′

)2

= Ex
(
xT
(
β̂ − β

))2

− 2Ex
[
xT
(
β̂ − β

)
Eε′ε′︸ ︷︷ ︸

=0

]
+ ExEε′ (ε′)

2

=
∥∥∥β̂ − β∥∥∥2

Σ
+ σ̃2 + ω2 , (ExxxT = Σ)
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which proves the claim for the causal risk. The proof for the statistical risk is analogous once we
have characterized the conditional distribution y|x under the causal model. Recall that Σ = MMT ,
Γ = M+Tα, and ω2 = ‖Γ‖2Σ. We first observe that x = Mz is a linear map of the Gaussian
distribution z ∼ N (0, Il), for which Lemma A.1 yields

z|x ∼ N (MT (MMT )+x, I −MT (MMT )+M)

and therefore zTα|x ∼ N (αTMT (MMT )+x, ‖α‖2 − αTMT (MMT )+Mα)

= N (xTΓ, ‖α‖2 − ‖Γ‖2Σ) ,

where the last equality used the identity

αTMT (MMT )+Mα = αTM+MMTM+Tα = ΓTΣΓ = ‖Γ‖2Σ = ω2 .

Since y = xTβ + zTα+ ε, it follows that

y|x ∼ N (xT (β + Γ), σ2 + ‖α‖2 − ω2) = N (xT β̃, σ̃2) ,

which concludes the proof.

B Proofs for Section 3.1

The bias-variance decomposition of the causal risk is based on the following general lemma:
Lemma B.1 (Bias-Variance Decomposition for General Norm). Consider a random variable Z
on Rd, a constant c ∈ Rd, and the general norm ‖x‖2A = xTAx for some positive-definite A ∈ Rd×d.
Then we have the decomposition

EZ ‖Z − c‖2A = ‖EZ − c‖2A + EZ ‖Z − EZZ‖2A .

An alternative form of the variance term is given by EZ ‖Z − EZZ‖2A = Tr [CovZ ·A].

Proof. Let E := EZ and µ := EZ. It is

E ‖Z − c‖2A = E ‖(Z − µ) + (µ− c)‖2A
= E ‖Z − µ‖2A + E ‖µ− c‖2A + 2E(Z − µ)T︸ ︷︷ ︸

=0

A(µ− c)

= E ‖Z − µ‖2A + E ‖µ− c‖2A ,

which proves the first part of the statement. For the second part, let ΣZ := EZZT and denote the
Hadamard product between matrices A,B ∈ Rd×d by (A�B)i,j = Ai,jBi,j . It is

E ‖Z − µ‖2A = EZTAZ − 2EZTAµ+ µTAµ

=

n∑
i,j=1

(ΣZ �A)i,j − µTAµ

= Tr [ΣZ ·A]− µTAµ (
∑n
i,j=1(A�B)i,j = Tr(A ·B))

= Tr [ΣZ ·A]− Tr
[
AµµT

]
(Tr(baT ) = aT b)

= Tr
[
(ΣZ − µµT ) ·A

]
(Tr(B) = Tr(BT ) and linearity of trace)

= Tr [CovZ ·A] . (CovZ = EZZT − µµT )

Proposition B.2 (Causal Bias-Variance Decomposition for the Ridge Estimator). For any λ > 0,
the expectation over the causal risk of the ridge regression estimator β̂λ conditioned on X admits the
bias-variance decomposition

RCX(β̂λ) = ‖EY |X β̂λ − β‖2Σ︸ ︷︷ ︸
=:BCX(β̂λ)

+EY |X‖β̂λ − EY |X β̂λ‖2Σ︸ ︷︷ ︸
=:V CX (β̂λ)

+σ̃2 + ‖Γ‖2Σ , (9)

whereBCX(β̂λ) = ‖(I−(Σ̂+λId)Σ̂)β̃−Γ‖2Σ and V CX (β̂λ) = σ̃2

n Tr[Σ̂(Σ̂+λId)
−2Σ]. The empirical

covariance matrix of X is denoted by Σ̂ := XTX/n.
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Proof. Recall that RCX(β̂λ) = EY |X
∥∥∥β̂λ − β∥∥∥2

Σ
. The first part of the statement follows directly

from Lemma B.1 with β̂λ as a random variable in Y |X and β. The remainder of the proof consists
of computing expectation and covariance of the ridge regression solution β̂λ = β̂λ(X,Y ) under
the distribution Y |X . The samples (X,Y ) are drawn from the observational distribution of the
causal model defined in Eq. (1). As shown in the proof of Proposition 2.1, the corresponding
conditional distribution is y|x ∼ N (xT β̃, σ̃2). Since (X,Y ) consist of independent draws, this
implies Y |X ∼ N (Xβ̃, σ̃2In). Together with β̂λ = (XTX + nλI)−1XTY this yields

β̂λ|X ∼ N ((XTX + nλI)−1XTXβ̃, (XTX + nλI)−1XT σ̃2InX(XTX + nλI)−1)

= N (
(

Σ̂ + λId

)−1

Σ̂β̃,
σ̃2

n

(
Σ̂ + λId

)−1

Σ̂
(

Σ̂ + λId

)−1

) .

The characterizations of BCX(β̂λ) and V CX (β̂λ) then simply follow from plugging in expectation and
covariance of β̂λ:

BCX(β̂λ) =
∥∥∥EY |X β̂λ − β∥∥∥2

Σ
=

∥∥∥∥(Σ̂ + λId

)−1

Σ̂β̃ − β
∥∥∥∥2

Σ

= ‖(I −Πλ) (β + Γ)− β‖2Σ

= ‖Πλβ − (I −Πλ)Γ‖2Σ
and, using the alternate form of the variance term from Lemma B.1,

V CX (β̂λ) = Tr
[
CovY |X β̂λ · Σ

]
= Tr

[
σ̃2

n

(
Σ̂ + λId

)−1

Σ̂
(

Σ̂ + λId

)−1

· Σ
]

=
σ̃2

n
Tr

[
Σ̂
(

Σ̂ + λId

)−2

Σ

]
,

where the last equality used that
(

Σ̂ + λId

)−1

commutes with Σ̂.

Theorem 2 (Limiting Causal Bias-Variance Decomposition for the Ridge Estimator). Let
‖β‖2 = r2, ‖Γ‖2 = ω2, 〈Γ, β〉 = η, and σ2

ε̃ = σ̃2. Then as n, d→∞ such that d/n→ γ ∈ (0,∞),
it holds almost surely in X for every λ > 0 that

BCX(β̂λ)→ BCλ := ω2 + r̃2λ2m′(−λ)− 2(ω2 + η)λm(−λ) and (7)

V CX (β̂λ)→ VCλ := σ̃2γ(m(−λ)− λm′(−λ)) , (8)

where m(λ) = ((1− γ − λ)−
√

(1− γ − λ)2 − 4γλ)/(2γλ) and r̃2 = r2 + ω2 + 2η. Therefore
RCX(β̂λ)→ RCλ := BCλ + VCλ + σ̃2 + ω2. The corresponding limiting quantities for the min-norm
interpolator can be obtained by taking the limit λ→ 0+ in equations (7) and (8), which yields

BCX(β̂0)→ BC0 =

{
ω2, γ < 1

ω2 + (r2 − ω2)(1− 1
γ ), γ > 1

, V CX (β̂0)→ VC0 =

{
σ̃2 γ

1−γ , γ < 1

σ̃2 1
γ−1 , γ > 1

.

Therefore RCX(β̂0)→ RC0 = BC0 + VC0 + σ̃2 + ω2.

Proof. From Proposition B.2, the causal risk RCX(β̂λ) can be decomposed as a sum of the causal
bias BCX(β̂λ), and causal variance V CX (β̂λ). In what follows, we derive the limiting expressions for
BCX(β̂λ) and V CX (β̂λ) to obtain the limiting causal risk for any γ ∈ (0,∞).

Limiting expressions for causal bias

BCX(β̂λ) = ‖β − E|X β̂λ‖2Σ = ‖Πλβ − (I −Πλ)Γ‖2 (Σ = I)

= ‖Πλ(β + Γ)− Γ‖2

= ‖Πλβ̃‖2 + ‖Γ‖2 − 2〈Γ,Πλ(β̃)〉
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First, let us consider the sequence of functions given by

‖Πλβ̃‖2 = ‖(I − (Σ̂ + λI)−1Σ̂)β̃‖2

=
∥∥∥λ((Σ̂ + λI)−1)β̃

∥∥∥2

(Add and subtract λI)

= λ2β̃T (Σ̂ + λI)−2β̃T

= λ2 Tr
[
β̃β̃T (Σ̂ + λI)−2

]
To derive the limiting expression for this sequence, we utilize the “derivative trick”. This technique
has been employed in a similar context in Dobriban et al. (2018). More generally similar terms
(although not identical) often also arise in the analysis of the statistical of the ridge regression
estimator and therefore one can find similar approaches to deriving the limiting expressions for such
terms in the statistical analysis for ridge regression (for example, Hastie et al. (2022), Dobriban et al.
(2018), and Dicker (2016)). Here, we include a self-contained proof of the result.

The idea relies on an application of Vitali’s convergence theorem (see Bai et al. (2010, Lemma 2.14))
to obtain the limit of derivatives of a sequence of functions analytic on some domain D ⊂ C by the
derivative of the limit of the sequence of functions. Observe that

Tr
[
(β + Γ)(β + Γ)T (Σ̂ + λI)−2

]
=

∂

∂λ
− Tr

[
(β + Γ)(β + Γ)T (Σ̂ + λI)−1

]
By recognizing the quantity (Σ̂ + λI)−1 as the resolvent Q(−λ), we can invoke the Marchenko-
Pastur Theorem due to Marčenko et al. (1967) and Silverstein (1995) which states that the Stieltjes
transform of the empirical distribution ˆm(z) of eigenvalues of Σ̂ converges almost surely to the
Stieltjes transform m(z) of the empirical spectral distribution given by the Marchenko-Pastur Law F
for any z ∈ C/R+. 2 That is, we have for all λ > 0,

1

d
Tr
[
(Σ̂ + λI)−1

]
a.s−−→ mF (−λ)

Rubio et al. (2011, Theorem 1) provide a generalization of this result which includes providing almost
sure convergence of quadratic forms of resolvents of the form uT (Σ̂− zI)v for sequences of vectors
{u} , {v} such that their outer product uvT has a bounded trace norm for any z ∈ C/R+. By this
result, it is easy to verify that for any λ > 0,

Tr
[
β̃β̃T (Σ̂ + λI)−1

]
a.s−−→ mF (−λ)r̃2

It is easy to see that the sequence of functions
{
fd(λ) = Tr

[
β̃β̃T (Σ̂ + λI)−1

]}
is analytic for

λ > 0. Furthermore, for any λ > 0, the absolute value of the sequence of functions {fd(λ)} is
uniformly bounded in d since

|fd(λ)| ≤ Tr[β̃β̃T ]
1

λ
≤ r̃2

λ
Therefore, by Vitali’s convergence theorem, it holds (almost surely) that for every λ > 0, the
derivatives of the sequence of functions f1, f2, · · · converges to the derivative of their limit and we
have

λ2 Tr
[
β̃β̃T (Σ̂ + λI)−2

]
→ λ2r̃2m′F (−λ),

where m′F (−λ) denotes the derivative of the Stieltjes transform of the Marchenko-Pastur Law
evaluated at −λ.

To obtain the limiting function of the sequence 〈Γ,Πλβ̃〉, observe that

〈Γ,Πλβ̃〉 = λ〈Γ, (Σ̂ + λI)−1β̃〉 = λTr[β̃ΓT (Σ̂ + λI)−1]
a.s−−→ λ(ω2 + η)mF (−λ),

2While the convergence result in Silverstein (1995) is stated for z ∈ C+ =
{z = u+ iv ∈ C|Im(z) = v > 0}, it can be extended to z ∈ C/R+ following standard arguments
for convergence of sequences of analytic functions (see Hachem et al. (2007, Proposition 2.2)) via Vitali’s
convergence theorem or Montel’s theorem. See Rubio et al. (2011, Proof of Theorem 1, Page 14) for an example
of this argument.
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where the limit is obtained by invoking Rubio et al. (2011, Theorem 1).

Therefore, we have that as n, d→∞ and d/n→ γ,

BCX(β̂λ)
a.s−−→ ω2 + r̃2λ2m′F (−λ)− 2(ω2 + η)λmF (−λ).

Limiting expressions for causal variance.

By recalling the expression for variance we have

V CX (β̂λ) =
σ̃2

n
Tr
[
Σ̂(Σ̂ + λI)−2

]
=
σ̃2

n
Tr
[
(Σ̂ + λI − λI)(Σ̂ + λI)−2

]
= σ̃2 d

n
Tr

[
1

d
(Σ̂ + λI)−1 − 1

d
λ(Σ̂ + λI)−2

]

By Marchenko-Pastur Theorem (Marčenko et al., 1967; Silverstein, 1995), we already know that for
any λ > 0

Tr

[
1

d
(Σ̂ + λI)−1

]
→ mF (−λ)

Further, recognizing that

−Tr

[
1

d
(Σ̂ + λI)−2

]
=

∂

∂λ
Tr

[
1

d
(Σ̂ + λI)−1

]
and that |Tr[ 1

d (Σ̂ + λI)−1]| ≤ 1
λ , we can again invoke Vitali’s convergence theorem to obtain the

limit of the derivatives by taking the derivative of the limit to obtain

V CX (β̂λ) = σ̃2γ(mF (−λ)− λm′F (−λ)).

Marchenko-Pastur Law admits an explicit form under our model assumptions (see for example, (Bai
et al., 2010, Page 52)) for any z ∈ C+ (which can be extended by analytic continuity arguments for
any z ∈ C/R+) and is given by

mF (z) =
1− γ − z −

√
(1− γ − z)2 − 4γz

2γz
.

Following arguments similar to Dobriban et al. (2018) and Hastie et al. (2022) for exchanging the
limits n, d→∞ and λ→ 0+, we can derive the limiting expressions for the causal bias and variance
of the min-norm estimator.

C Asymptotics for the Statistical Risk

The following theorems describes the limiting expressions for the statistical risk analogue to the
causal results from Theorem 3.1.
Theorem C.1 (Limiting Statistical Bias-Variance Decompositions). Let β̂0 be the min-norm in-
terpolator. Then as n, d→∞ such that d/n→ γ ∈ (0,∞), it holds almost surely in X that

BSX(β̂0)→ BS0 =

{
0, γ < 1

r̃2(1− 1
γ ), γ > 1

, V SX (β̂0)→ VS0 =

{
σ̃2 γ

1−γ , γ < 1

σ̃2 1
γ−1 , γ > 1

(10)

and therefore, RSX(β̂0)→ RS0 = BS0 + VS0 + σ̃2.
For λ > 0 and the corresponding ridge regression estimator β̂λ, it holds almost surely in X that

BSX(β̂λ)→ BSλ = r̃2λ2m′(−λ) , V SX (β̂λ)→ VSλ = σ̃2γ(m(−λ)− λm′(−λ)), (11)

where m(λ) =
(1−γ−λ)−

√
(1−γ−λ)2−4γλ

2γλ . Therefore, RSX(β̂λ)→ RSλ = BSλ + VSλ + σ̃2.

Proof. As stated in the main paper, this result for the statistical model was already proven in Hastie
et al. (2022).
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D Proof of Proposition 3.2

Proposition 3.2 (Causal Risk Increases with Confounding Strength). Consider the family of
causal models parameterized as in (1) that entail the same observational distribution. Let C1 and C2

be two such causal models with confounding strengths ζ1 and ζ2 and alignments η1 and η2 (defined
in Theorem 3.1), respectively. Then for all λ, γ ∈ (0,∞),

ζ1 > ζ2, η1 ≤ η2 =⇒ RC1

λ > RC2

λ .

In particular, for any fixed η, the measure of confounding strength ζ establishes a strict ordering of
causal models. This includes the ICM under which η = 0.

Proof. For any fixed λ ∈ (0,∞), the difference in limiting causal risks incurred by β̂λ on causal
models C1 and C2 is given by

RC1 (γ, λ)−RC2 (γ, λ) = 2r̃2
(
(
ω2

1

r̃2
− ω2

2

r̃2
)− (ζ1 − ζ2)λm(−λ)

)
= 2r̃2

(
(ζ1 − ζ2)(1− λm(−λ))− (η1 − η2)

)
= 2r̃2

(
(ζ1 − ζ2)(1− λm(−λ))− (η1 − η2)

)
Since, as shown below, (1− λm(−λ)) > 0 for any λ, γ ∈ (0,∞), it holds that

ζ1 > ζ2, η1 ≤ η2 =⇒ RC1 (γ, λ) > RC2 (γ, λ).

1− λm(−λ) = 1−
γ − 1− λ+

√
(1 + λ+ γ)2 − 4γ

2γ

=
(1 + γ + λ)−

√
(1 + λ+ γ)2 − 4γ

2γ

> 0 (since γ > 0)

E Proofs for Sections 4 and 5

We start with a technical lemma that we need in the proofs of the following theorems. It controls a
function that appears in the derivative of the limiting causal riks ∂λRCλ .
Lemma E.1. For λ ≥ 0 and γ, S > 0 consider the function

f(λ, γ, S) = 2γ
λ− S−1γ

(1 + λ+ γ −
√

(1 + λ+ γ)2 − 4γ)((1 + λ+ γ)2 − 4γ)
.

This function has the following properties

(i) f is increasing in λ,

(ii) f(λ, γ, S) −−−−→
λ→∞

1, and

(iii) f(λ, γ, S) −−−→
λ→0


−S−1 γ

(γ−1)2 , γ < 1

−∞, γ = 1

−S−1 γ2

(γ−1)2 , γ > 1

.

Proof. For readability, we use the shorthand notations x = 1 + λ+ γ and ϕ = x2− 4γ, under which
f is given by

f(λ, γ, S) = 2γ
λ− S−1γ

(x−√ϕ)ϕ
.
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(i) The partial derivative of f in λ is given by

∂λf(λ, γ, S) = 2γ
(x−√ϕ)ϕ− (λ− S−1γ)

[
(1− x√

ϕ )ϕ+ 2x(x−√ϕ)
]

(x−√ϕ)2ϕ2

=
2γ

(x−√ϕ)ϕ2︸ ︷︷ ︸
>0

[
ϕ− (λ− S−1γ)(2x−√ϕ)

]︸ ︷︷ ︸
=:g(λ)

,

where the first fraction is positive because ϕ > x2 and x−√ϕ > 0. It is therefore sufficient to show
g(λ) ≥ 0 for ∂λf(λ, γ, S) ≥ 0. We first get rid of the S term via

g(λ) = ϕ− (λ− S−1γ) (2x−√ϕ)︸ ︷︷ ︸
≥0

≥ ϕ− λ(2x−√ϕ) .

Finally, we lower bound
√
ϕ in two different ways depending on γ. For γ ≤ 1, it is ϕ = (1 + λ−

γ)2 + 4γλ and therefore
√
ϕ ≥ 1 + λ− γ = x− 2γ. This yields

g(λ) ≥ ϕ− λ(2x−√ϕ) ≥ ϕ− λ(x+ 2γ) = (1− γ)λ+ (γ − 1)2 ≥ 0 .

For γ > 1, it is ϕ = (−1 + λ+ γ)2 + 4λ and therefore
√
ϕ ≥ −1 + λ+ γ = x− 2. This yields

g(λ) ≥ ϕ− λ(2x−√ϕ) ≥ ϕ− λ(x+ 2) = (γ − 1)λ+ (γ − 1)2 ≥ 0 .

In summary, we have shown ∂λf(λ, γ, S) ≥ g(λ) ≥ 0.

(ii) With the first order Taylor approximation 1−
√

1− h = 1/2h+O(h2), we get

(x−√ϕ)ϕ =

(
1−

√
1− 4γ

x2

)
xϕ =

(
2γ

x2
+O(λ−4)

)
xϕ = 2γx+O(λ−1) = 2γλ+O(1) ,

which yields

f(λ, γ, S) = 2γ
λ− S−1γ

(x−√ϕ)ϕ
=

2γλ− 2S−1γ2

2γλ+O(1)
−−−−→
λ→∞

1 .

(iii) The denominator satisfies

(x−√ϕ)ϕ −−−→
λ→0

(1 + γ − |γ − 1|)(γ − 1)2 =


2γ(γ − 1)2, γ < 1

0, γ = 1

2γ − 1)2, γ > 1

.

Since λ− S−1γ −−−→
λ→0

S−1γ < 0, the claim follows.

Recall that the optimal causal regularization is defined as the minimizer of the causal risk λ∗C(γ) =
arg infλ∈(0,∞)RCλ . The following lemma distinguishes between three different regimes of the risk
functionRCλ depending on the confounding strength ζ.

Lemma E.2 (Regimes of the Optimal Causal Regularization). For any causal model parameter-
ized as in (1), we can distinguish the following regimes of λ∗C(γ):

1. The function λ 7→ RCλ is increasing (which implies λ∗C(γ) = 0), if and only if γ 6= 1 and

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2
.

2. For any γ > 0, the function λ 7→ RCλ is decreasing (which implies λ∗C(γ) = ∞) if and only if
ζ ≥ 1.
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3. For any ζ ∈ R, γ ∈ (0,∞) which do not satisfy the conditions 1. or 2., it is λ∗C(γ) ∈ (0,∞) and
it λC(γ) satisfies the critical point condition ∂λRCλ (λ∗C(γ)) = 0, or equivalently,

0 = λ∗C(γ)− SNRS
−1 γ − ζ

2γ

(
1 + λ∗C(γ) + γ −

√
ϕ(λ∗C(γ))

)
ϕ(λ∗C(γ)) ,

where ϕ(λ) = (1 + λ+ γ)2 − 4γ.

Proof. We use the shorthand notation ϕ(λ) = (1 + λ+ γ)2 − 4γ. Recall the confounding strength
ζ = (r2 + η)/r̃2 and the statistical signal-to-noise ratio SNRS = r̃2/σ̃2. The derivative of the
limiting causal riskRCλ in λ is given by

∂λRCλ =
2r̃2

ϕ(λ)3/2

(
λ− SNRS

−1 γ − ζ

2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

)
1. The first condition ∂λRCλ ≥ 0 for all λ > 0 can be equivalently rearranged for the confounding

strength as

ζ ≤ 2γ
λ− SNRS

−1 γ(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

= f(λ, γ, SNRS) ,

where f is the function investigated in Lemma E.1. This in turn is equivalent to taking the
infimum over λ, which is given by Lemma E.1 as

ζ ≤ inf
λ>0

f(λ, γ, SNRS) = −SNRS
−1 γmax{1, γ}

(1− γ)2
.

Note that for γ = 1 this infimum is −∞, so the condition cannot be satisfied for any ζ.

2. The proof of the second claim is analogue to the first with the reverse inequality ∂λRCλ ≤ 0.
Rearranging for ζ and using Lemma E.1 yields the equivalent condition

ζ ≥ sup
λ>0

f(λ, γ, SNRS) = 1 .

3. For the third claim, assume that the pair of ζ and γ satisfies neither of the first points. We will
use this to show that the derivative at 0 is negative ∂λRCλ (0) < 0 and the derivative ∂λRCλ for
sufficiently large λ is positive. This together then implies that the minimum λ∗C(γ) of the function
RCλ is indeed attained at a finite value in (0,∞), and RCλ satisfies the critical point condition
∂λRCλ (λ∗C(γ)) = 0.

For the derivative at 0, assume that the converse is true, that is, ∂λRCλ (0) ≥ 0. Rearranging this
condition for ζ yields similarly to the first case of this lemma that ζ ≤ f(0, γ, SNRS). However
Lemma E.1 states that f is increasing in λ, which means that this condition already implies
ζ ≤ f(λ, γ, SNRS) for all λ. This means that the pair ζ, γ would satisfy the condition of the first
case, which contradicts our assumption.

For the behavior of large λ, observe that the sign of the derivative is determined by the sign of the
term λ− SNRS

−1 γ − ζ
2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ). As derived in the proof of Lemma E.1,

we have the asymptotic behavior(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = 2γλ+O(1) ,

which yields

λ− SNRS
−1 γ − ζ

2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = (1− ζ)λ+O(1) .

Since the pair ζ, γ does by assumption not satisfy the conditions of the second case, we have
ζ < 1, which means that the above term is eventually positive.
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Theorem 4.1 (Optimal Regularization can be Negative). For any causal model parameterized as
in (1), the following cases distinguish between whether the min-norm interpolator is optimal or not.

1. For negative confounding strength ζ < 0 the optimal causal regularization λ∗C can be 0 or even
negative. A necessary and sufficient condition for λ∗C ≤ 0 depends on the difference in causal
and statistical signal-to-noise ratios and is given by

SNRC−SNRS ≥
γmax {1, γ}

(1− γ)2
.

2. For positive confounding strength ζ > 0 the optimal causal regularization is positive λ∗C > 0
andRC0 > RCλ∗C , hence regularization is beneficial. This includes the ICM.

Proof. The first statement of the theorem is a special case of Theorem 5.2. The necessary and
sufficient condition for λ∗C = 0 stated there is equivalently reformulated as

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2

⇔ −SNRS ζ ≥
γmax {1, γ}

(1− γ)2

⇔ SNRC−SNRS ≥
γmax {1, γ}

(1− γ)2
,

where the last part used the equality SNRC = (1− ζ) SNRS. The statement about negative λ∗C refers
to the fact that the derivative of the risk at 0 can be positive, that is, ∂RCλ (0) > 0. This was shown
in the proof of Lemma E.2 and suggests that without our restriction λ∗C ≥ 0, a negative value of λ
would yield an even smaller risk.

For the second statement, observe that the condition ζ > 0 implies the cases 2. or 3. from Lemma E.2.
In particular, this implies λ∗C > 0. The proof of Lemma E.2 showed that in both of these cases it
holds ∂λRCλ (0) < 0, which means that the causal limiting risk BCλ is strictly decreasing in a small
neighborhood around 0. In particular, this implies that the minimal risk is strictly smaller than the
risk at 0, that is,RC0 > RCλ∗C .

Theorem 5.1 (Optimal Statistical vs. Causal Regularization). For any causal model parameter-
ized as in (1), the condition ζ = 0 defines a phase transition for the optimal regularization via

ζ < 0 ⇐⇒ λ∗C < λ∗S , ζ = 0 ⇐⇒ λ∗C = λ∗S , and ζ > 0 ⇐⇒ λ∗C > λ∗S .

In particular under the ICM, the optimal causal regularization λ∗C is always strictly larger than the
optimal statistical regularization λ∗S , unless ζ = 0, in which case they coincide.

Proof. Lemma E.2 distinguishes between three different regimes of ζ. The first two regimes yield

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2
=⇒ λ∗C = 0 and 1 ≤ ζ =⇒ λ∗C =∞ .

Combined with λ∗S = SNRS
−1 γ ∈ (0,∞), these regimes agree with the claim in the theorem. It

remains to show that the theorem also holds for the last regime −SNRS
−1 γmax {1,γ}

(1−γ)2 < ζ < 1. In
this regime according to Lemma E.2, the optimal causal regularization λ∗C satisfies the critical point
condition

0 = λ∗C − SNRS
−1 γ − ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C)

⇔ λ∗C − λ∗S =
ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C) .

Since the term 1/(2γ)
(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C) is positive, the sign of λ∗C−λ∗S is determined

by the sign of ζ as claimed in the theorem.
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Theorem 5.2 (Increasing Confounding Strength Requires Stronger Regularization). Consider
the family of causal models parameterized as in (1) that entail the same observational distribution.
The optimal causal regularization λ∗C only depends on the confounding strength ζ and λ∗C is an
increasing function in ζ. More specifically, using % = −SNRS

−1 γmax {1, γ}/(1− γ)2:

% < ζ < 1 =⇒ λ∗C ∈ (0,∞) with ∂ζλ∗C > 0 ,

λ∗C = 0 if ζ ≤ % and λ∗C =∞ for ζ ≥ 1.

Proof. The theorem follows directly from Lemma E.2, except for the statement about λ∗C being
strictly increasing in ζ. In the corresponding regime, Lemma E.2 states that λ∗C satisfies the critical
point condition ∂λRCλ (λ∗C) = 0, which we will use to show that the derivative of λ∗C in ζ is strictly
positive. For readability, we use the notation x(ζ) = 1 + λ∗C(ζ) + γ and ϕ(ζ) = x(ζ)2 − 4γ. The
optimal causal regularization λ∗C(ζ) satisfies the critical point condition

0 = x(ζ)− (1 + γ + SNRS
−1 γ)− ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)
ϕ(ζ) =: g(x(ζ), ζ) .

Rearranging this equation yields

ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)
=
x(ζ)− (1 + γ + SNRS

−1 γ)

ϕ(ζ)
. (12)

The partial derivatives of the function g = g(x, ζ) evaluated at (x(ζ), ζ) are given by

∂ζg(x(ζ), ζ) = − 1

2γ

(
x(ζ)−

√
ϕ(ζ)

)
ϕ(ζ) < 0

and

∂xg(x(ζ), ζ) = 1− ζ

2γ

[(
1− x(ζ)√

ϕ(ζ)

)
ϕ(ζ) + 2x(ζ)

(
x(ζ)−

√
ϕ(ζ)

)]

= 1− ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)(
2x(ζ)−

√
ϕ(ζ)

)
= 1− x(ζ)− (1 + γ + SNRS

−1 γ)

ϕ(ζ)

(
2x(ζ)−

√
ϕ(ζ)

)
(Using Eq. (12))

> 1−
x(ζ)− 2

√
γ

ϕ(ζ)

(
2x(ζ)−

√
ϕ(ζ)

)
. (1 + γ + SNRS

−1 γ > 2
√
γ)

Since ϕ(ζ) = (x(ζ)− 2
√
γ)(x(ζ) + 2

√
γ) < (x(ζ) + 2

√
γ)2, it further follows

∂xg(x(ζ), ζ) > 1−
x(ζ)− 2

√
γ

(x(ζ)− 2
√
γ)(x(ζ) + 2

√
γ)

(2x(ζ)− (x(ζ) + 2
√
γ))

= 1−
x(ζ)− 2

√
γ

x(ζ) + 2
√
γ

> 0 .

With these results, we can take the derivative in ζ of the critical point condition 0 = g(x(ζ), ζ) and
obtain

0 =
d

dζ
g(x(ζ), ζ) = ∂xg(x(ζ), ζ)︸ ︷︷ ︸

>0

·dx
dζ

(ζ) + ∂ζg(x(ζ), ζ)︸ ︷︷ ︸
<0

·1 ,

which yields 0 < dx
dζ (ζ) =

dλ∗C
dζ (ζ). This implies that λ∗C is increasing in ζ and concludes the

proof.
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F Shift interventions.

F.1 Causal risk under relative interventions.

Here, we characterize the causal risk of any linear predictor under relative or shift interventions.
Similar to the definition of causal risk under hard interventions, to isolate the effects of the choice of
α on the risk, we draw perturbations from the marginal of x. Formally, intervening on x under the
causal model given by Eq. (1) corresponds to the structural equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , ν ∼ N (0,MMT ) , x = Mz , x′ = x+ν , y = x′Tβ+zTα+ε .

Similar to the proof of Proposition 2.1, the key step here is to characterize the distribution of y under
the shift intervention y|do(x′ := x+ ν) for some ν chosen independently of x.

This lets us compute the risk of a linear predictor β̂ ∈ Rd under a shift intervention as

RC(β̂) = EνExEy0|do(x′=x+ν)

(
xT β̂ − y

)2

= EνEx,z,ε
(

(β̂ − β)T (x+ ν) + αT z + ε
)2

= Eν
(

(β̂ − β)T ν
)2

+ ExEz,ε|x
(

(β̂ − β)Tx+ αT z + ε
)2

=
∥∥∥β̂ − β∥∥∥2

Σ
+
∥∥∥β̂ − β̃∥∥∥2

Σ
+ σ̃2

To obtain the last equality, refer to the derivation of the statistical and causal risks in Proposition 2.1.
The expected risk under conditioning of X is then given by

EY |X‖β̂ − β‖2Σ + EY |X‖β̂ − β̃‖2Σ . (13)

F.2 Asymptotics and Optimal Ridge Regularization.

The limiting risk of any ridge estimator can then be directly derived from Theorems 3.1 and C.1.
Theorem F.1 (Limiting Causal Risk of the Ridge Estimator Under Shift Interventions). Let
‖β‖2 = r2, ‖Γ‖2 = ω2, 〈Γ, β〉 = η, and fix σ̃2. Then as n, d→∞ such that d/n→ γ ∈ (0,∞), it
holds almost surely in X for every λ > 0 that

RCX(β̂λ)→ RCλ = ω2 + 2r̃2λ2m′(−λ)− 2(ω2 + η)λm(−λ) + 2σ̃2γ(m(−λ)− λm′(−λ)) ,

where m(λ) = ((1 − γ − λ) −
√

(1− γ − λ)2 − 4γλ)/(2γλ) and r̃2 = r2 + ω2 + 2η. The
corresponding limiting quantities for the min-norm interpolator can be obtained by taking the limit
λ→ 0+.
Lemma F.2 (Regimes of the Optimal Causal Regularization Under Shift Interventions). For
any causal model parameterized as in (1), we can distinguish the following regimes of λ∗C(γ):

1. The function λ 7→ RCsoft

λ is increasing (which implies λ∗Csoft
(γ) = 0), if and only if γ 6= 1 and

ζ ≤ −2 SNRS
−1 γmax {1, γ}

(1− γ)2
.

2. For any γ > 0, the function λ 7→ RCsoft

λ is decreasing (which implies λ∗Csoft
(γ) =∞) if and only

if ζ ≥ 2.

3. For any ζ ∈ R, γ ∈ (0,∞) which do not satisfy the conditions 1. or 2., it is λ∗Csoft
(γ) ∈ (0,∞)

and it λ∗Csoft
(γ) satisfies the critical point condition ∂λR

Csoft

λ (λ∗Csoft
(γ)) = 0, or equivalently,

0 = λ∗Csoft
(γ)− SNRS

−1 γ − ζ

4γ

(
1 + λ∗Csoft

(γ) + γ −
√
ϕ(λ∗Csoft

(γ))
)
ϕ(λ∗Csoft

(γ)) ,

where ϕ(λ) = (1 + λ+ γ)2 − 4γ.
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Proof. We use the shorthand notation ϕ(λ) = (1 + λ+ γ)2 − 4γ. Recall the confounding strength
ζ = (r2 + η)/r̃2 and the statistical signal-to-noise ratio SNRS = r̃2/σ̃2. The derivative of the
limiting causal risk under shift interventionsRCsoft

λ in λ is given by

∂λRCsoft
λ =

2r̃2

ϕ(λ)3/2

(
λ− SNRS

−1 γ − ζ

4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

)
1. The first condition ∂λRCsoft

λ ≥ 0 for all λ > 0 can be equivalently rearranged for the confounding
strength as

ζ ≤ 4γ
λ− SNRS

−1 γ(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

= 2f(λ, γ, SNRS) ,

where f is the function investigated in Lemma E.1. This in turn is equivalent to taking the
infimum over λ, which is given by Lemma E.1 as

ζ ≤ inf
λ>0

2f(λ, γ, SNRS) = −2 SNRS
−1 γmax{1, γ}

(1− γ)2
.

Note that for γ = 1 this infimum is −∞, so the condition cannot be satisfied for any ζ.

2. The proof of the second claim is analogue to the first with the reverse inequality ∂λRCsoft
λ ≤ 0.

Rearranging for ζ and using Lemma E.1 yields the equivalent condition

ζ ≥ sup
λ>0

2f(λ, γ, SNRS) = 2 .

3. For the third claim, assume that the pair of ζ and γ satisfies neither of the conditions from above.
We will use this to show that the derivative at 0 is negative ∂λRCsoft

λ (0) < 0 and the derivative
∂λRCsoft

λ for sufficiently large λ is positive. This together then implies that the minimum λ∗Csoft
(γ)

of the functionRCsoft
λ is indeed attained at a finite value in (0,∞), andRCsoft

λ satisfies the critical
point condition ∂λRCsoft

λ (λ∗Csoft
(γ)) = 0.

For the derivative at 0, assume that the converse is true, that is, ∂λRCsoft
λ (0) ≥ 0. Rearranging this

condition for ζ yields similarly to the first case of this lemma that 2ζ ≤ f(0, γ, SNRS). However
Lemma E.1 states that f is increasing in λ, which means that this condition already implies
ζ ≤ 2f(λ, γ, SNRS) for all λ. This means that the pair ζ, γ would satisfy the condition of the
first case, which contradicts our assumption.

For the behavior of large λ, observe that the sign of the derivative is determined by the sign of the
term λ− SNRS

−1 γ − ζ
4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ). As derived in the proof of Lemma E.1,

we have the asymptotic behavior(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = 2γλ+O(1) ,

which yields

λ− SNRS
−1 γ − ζ

4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = (1− ζ/2)λ+O(1) .

Since the pair ζ, γ does by assumption not satisfy the conditions of the second case, we have
ζ < 1, which means that the above term is eventually positive.

Theorem F.3 (Optimal Causal Regularization Under Shift Interventions). For any causal model
parameterized as in (1),

1. If ζ ≥ 0, then the optimal causal regularization under shift interventions λ∗Csoft
satisfies λ∗S ≤

λ∗Csoft
≤ λ∗C .
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2. If ζ < 0, then λ∗C ≤ λ∗Csoft
≤ λ∗S .

Indeed, the optimal causal regularization under shift interventions satisfies λ∗Csoft
= λ∗S+(λ∗C−λ∗S)/2.

Proof. Lemma E.2 distinguishes between three different regimes of ζ. The first two regimes yield

ζ ≤ −2 SNRS
−1 γmax {1, γ}

(1− γ)2
=⇒ λ∗C = 0 and 2 ≤ ζ =⇒ λ∗C =∞ .

Combined with λ∗S = SNRS
−1 γ ∈ (0,∞), these regimes agree with the claim in the theorem. It

remains to show that the theorem also holds for the last regime −2 SNRS
−1 γmax {1,γ}

(1−γ)2 < ζ < 2. In
this regime according to Lemma E.2, the optimal causal regularization λ∗C satisfies the critical point
condition

0 = λ∗Csoft
− SNRS

−1 γ − ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

)

⇔ λ∗Csoft
− λ∗S =

ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) .

Similarly, we know from the proof of Theorem 5.1 λ∗C satisfies

0 = λ∗C − SNRS
−1 γ − ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C)

⇔ λ∗C − λ∗Csoft
=

ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) .

Since the term 1/(2γ)
(

1 + λ∗Csoft
+ γ −

√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) is positive, the sign of λ∗Csoft
−λ∗S and

λ∗C − λ∗Csoft
is determined by the sign of ζ as claimed in the theorem.
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Figure 5: Causal risk of the minimum norm l2 interpolator and the (causally)optimally regularized
ridge regressor under a student-t distribution with unbounded 4th moments (3 degrees of freedom,
left), a student-t distribution with bounded 4th moments (10 degrees of freedom, middle), a mixture
of Gaussians (right). We choose the parameters d = 300, l = 350, statistical signal r̃2 = 5, statistical
noise σ̃2 = 1, causal noise σ2 = .5 and confounding strength ζ = 0.5. For Gaussian mixtures,
we consider a (centered and normalized) mixture of k = 5 Gaussians. Each individual mixture
component has mean µi ∼ N (0l,

k2

(k−1)lIl) and identity covariance Covi = Il.

The analysis of this paper can be extended beyond the Gaussian setting by considering random
variables generated by finite mixtures of Gaussians. The analysis can get considerably more technical
and is left as future work, but we include a brief discussion here. Due to the Universality phenomenon
in the high-dimensional limit, we believe that our limiting expressions (and the qualitative messages
derived henceforth) would be rather robust to shifts in the marginal distribution as long as moments
of order (4 + δ) for some δ > 0 are bounded. We conducted experiments to verify this claim and
the corresponding results can be found in Figure 5. These experiments compare our theoretically
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derived asymptotic risks with finite-sample risks of the min-norm interpolator and causally optimally
regularized ridge regressor. Instead of Gaussian confounders z ∼ N (0, Il), we only fix the first two
moments 0 and Il and generate z such that E[z] = 0, Cov[z] = I from heavy-tailed multivariate
t-distribution with different degrees of freedom, and finite mixture of Gaussians. Each plot shows the
causal risk of min-norm interpolator and optimally regularized ridge regressor based on finite samples
along with our theoretical asymptotic predictions. Our experiments show that, for distributions with
finite 4th moments, the finite-sample risks closely match the theoretical results.
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