Probability measure

1. **Given space** \(\Omega \) ("abstract space").

2. Need a \(\sigma \)-algebra \(\mathcal{F} \) on \(\Omega \) ("measurable events")
 - \(A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F} \)
 - \((A_i)_{i \in \mathbb{N}} \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F} \) ("countable unions")
 - \(\emptyset, \Omega \in \mathcal{F} \)
 - countable intersections

3. A measure \(\mu \) on \((\Omega, \mathcal{F}) \) is a function
 \[\mu : \mathcal{F} \rightarrow [0, \infty] \]
 that is countably additive: if \((A_i)_{i \in \mathbb{N}} \) is a sequence
 of pairwise disjoint sets, then
 \[\mu \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mu(A_i). \]

A measure \(\mu \) on a measurable space \((\Omega, \mathcal{F}) \) is called a **probability measure** if \(\mu(\Omega) = 1 \).

The elements in \(\mathcal{F} \) are called **events**.

Then \((\Omega, \mathcal{F}, \mu) \) is called a **probability space**.
Example (1): Throw one die

\[\mathcal{S} = \{1, 2, \ldots, 6\}, \quad \mathcal{A} = \mathcal{P}(\mathcal{S}) \] (\sigma\text{-algebra generated by the "elementary events" } \{1\}, \{2\}, \ldots, \{6\}).

\(\mathcal{P} \) can be defined uniquely by assigning

\[\mathcal{P}(\{1\}) = \mathcal{P}(\{2\}) = \ldots = \mathcal{P}(\{6\}) = \frac{1}{6} \]

For example

\[\mathcal{P}(\{1, 5\}) = \mathcal{P}(\{1\}) + \mathcal{P}(\{5\}) = \frac{1}{3} \]

Throw two dice:

\[\mathcal{S} = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \]

\[\mathcal{A} = \mathcal{P}(\mathcal{S}) \]

\[\mathcal{P}(\{(1, 3)\}) = \frac{1}{36} \]

Example (2): Normal distribution

\(\mathcal{S} = \mathbb{R} \)

\(\mathcal{A} = \sigma\text{-algebra} \)

\[f_{\mu_1, \sigma_1} : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \]

\[\mathcal{P} : \mathcal{A} \to [0, 1] \]

\[\mathcal{P}(A) := \int_A f_{\mu_1, \sigma_1}(x) \, dx \]
Different types of probability measures

Discrete measure:

$\mathcal{S} = \{x_1, x_2, \ldots \}$ finite or at most countable.

$\mathcal{A} = 2^\mathcal{S}$

We define a probability measure $P: \mathcal{A} \rightarrow [0,1]$ by assigning probabilities to the "elementary events":

$$P(\{x_i\}) = p_i$$

with $0 \leq p_i \leq 1$, $\sum_i p_i = 1$.

For $A \in \mathcal{A}$ we assign

$$P(A) = \sum_{\{i | x_i \in A\}} p_i$$

Examples: tossing a coin, distribution on \mathbb{R}

Dirac measure:

For $x \in \mathbb{R}$, we define the Dirac measure δ_x on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ by setting

$$\delta_x (A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

Sometimes this is called a point mass at a point x.

\[\cdot \]

\[x \]
A discrete measure on \(\mathbb{R} \) can be written as a sum of Dirac measures. For example, throwing a die can be described as
\[
\frac{1}{6} \left(\delta_1 + \delta_2 + \ldots + \delta_6 \right)
\]

Measures with a density

Consider \((\mathbb{R}^n, \mathcal{B}^n)\) and the Lebesgue measure \(\lambda\).

Consider a function \(f: \mathbb{R}^n \to \mathbb{R}_{\geq 0}\) that is measurable and satisfies \(\int f \, d\lambda = 1\). \((= \int f \, \text{vol} \, dx)\)

Then we define a measure \(\nu\) on \(\mathbb{R}^n\) by setting, for all \(A \in \mathcal{B}^n\),

\[
\nu(A) := \int_A f(x) \, dx.
\]

\(\nu\) is the probability measure on \((\mathbb{R}^n, \mathcal{B}^n)\) with density \(f\).

Notation: \(\nu = f \cdot \lambda\)

Question: Can we describe every probability measure on \((\mathbb{R}^n, \mathcal{B}^n)\) in terms of a density? **Answer:** no!

Counterexample: \(\delta_0\) Dirac measure
Def. A prob. measure ν on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ is called absolutely continuous with respect to another measure μ on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ if every μ-null set is also a ν-null set:

\[\forall B \in \mathcal{B}(\mathbb{R}^n): \quad \mu(B) = 0 \implies \nu(B) = 0. \]

Notation: $\nu \ll \mu$

\[\mu(A) = 0 \implies \int_A d\mu = 0 \]

\[\nu(A) \]

Example: $N(0, 1) \ll \lambda$

Example: $\delta_0 \not\ll \lambda$ because

$\lambda(\{0\}) = 0$ but $\delta_0(\{0\}) = \lambda$.

Theorem (Radon-Nikodym)

Consider two prob. measures ν, μ on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Then the following two statements are equivalent:

(See next page)
\((1) \) \(\nu \) has a density w.r.t \(\mu \).

\((2) \) \(\nu \) is absolutely continuous w.r.t \(\mu \).

Proof idea

\((1) \Rightarrow (2)\) easy

\((2) \Rightarrow (1)\) We need to construct a density.

Consider the set \(G \) of all functions \(g \) with the following properties:

- \(g \) is measurable, \(g \geq 0 \)
- \(g \cdot \mu \leq \nu \), that is
 \[\forall A \in \mathcal{A}(\mathbb{R}): \int g \, d\mu \leq \nu(A). \]

- \(\emptyset \) obviously \(g = 0 \) satisfies \((\star)\), so \(G \) is not empty.
- If \(g, h \) both satisfy \((\star)\), then \(\sup(g, h) \) satisfies \((\star)\).
- Define \(\gamma := \sup_{g \in G} \int g \, d\mu \) and construct a sequence \((g_n)_{n \in \mathbb{N}}\) such that \(\lim \int g_n \, d\mu = \mu \).
- Define "density" \(f := \sup g_n \)
- Now prove: \(f \) does the job.
Definition

A probability measure \(\mu \) on \((\Omega, \mathcal{B})\) is called **singular** wrt \(\nu \) if there exists \(A \in \mathcal{B} \) such that

\[
\mu(A) = 0 \quad \text{but} \quad \nu(A^c) > 0.
\]

Notation: \(\mu \perp \nu \).

Example: \(\lambda \perp \delta_0 \)

Theorem (Decomposition by Lebesgue)

\(\mu, \nu \) proto-measures on \((\Omega, \mathcal{B})\). Then there exists a unique decomposition \(\nu = \nu_1 + \nu_2 \) such that

\(\nu_1 \ll \mu \) and \(\nu_2 \perp \mu \).

Example: \(\nu = \frac{1}{2}(N(0,1) + \delta_0) \)

\(\nu = \nu_1 + \nu_2 \) where \(\nu_1 = \frac{1}{2} N(0,1) \) and \(\nu_2 = \frac{1}{2} \delta_0 \).

Proof

Let \(\mathcal{M} \) be the set of all null-sets wrt \(\mu \). Let

\[
\alpha := \sup \{ \nu(A) \mid A \in \mathcal{M} \}.
\]

Can construct a countable sequence \((A_n)_{n \in \mathbb{N}}\) such that \(A_n \in \mathcal{M} \), \(\alpha = \sum \nu(A_n) \).
such that $\nu(\mathcal{A}_n) \to \omega$. By countable additivity we get

$$\nu\left(\bigcup_{m \in \mathbb{N}} \mathcal{A}_m\right) = \omega.$$

Define $\nu_1: A \mapsto \nu(A \cap N^c)$

$$\nu_2: A \mapsto \nu(A \cap N)$$

Don the job.

Construction of the Cantor set:

- Start with $C_0 := [0, 1]$
 "Remove middle part"

- $C_1 := [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$
 "Remove middle part from all intervals"

- $C_2 = \ldots$

The Cantor set is the limit in this process.
Now construct a probability distribution:

Consider the cdf's of the sets C_0, C_1, C_2, \ldots

$C_0 : \quad \begin{array}{c|c}
0 & 1 \\
\hline
& \\
\end{array} \\
\text{uniform on } [0, 1]

$C_1 : \quad \begin{array}{c|c}
0 & 1 \\
\hline
\hline
\frac{1}{3} & 1 \\
\frac{2}{3} & 1 \\
\end{array} \\
\text{uniform on } [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]

$C_2 : \quad \begin{array}{c|c}
0 & 1 \\
\hline
\hline
\frac{1}{3} & 1 \\
\frac{2}{3} & 1 \\
\frac{1}{2} & 1 \\
\frac{5}{6} & 1 \\
\frac{2}{3} & 1 \\
\frac{1}{2} & 1 \\
\frac{5}{6} & 1 \\
1 & 1 \\
\end{array} \\
\text{uniform on } [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]

Take limit. Can prove many strange properties:

- Cantor set is compact, non-empty, empty interior.
- The cdf of "r" is continuous. r is a prob. measure.
- But: $\lambda (C) = 0$.

$\Rightarrow \lambda \perp r$
Cumulative distribution function

Let P be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Define the function $F: \mathbb{R} \to \mathbb{R}$, $x \mapsto P(-\infty, x]$. We say that F is a cumulative distribution function (CDF), that is, it satisfies the following properties:

(i) F is monotonically increasing:
\[
\lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to +\infty} F(x) = 1.
\]

(ii) F is continuous from the right:
If $(x_n)_n$ a sequence with $x_n \not\to x$ (i.e. $x_n \geq x_{n+1}$ and $x_n \to x$) then also $F(x_n) \to F(x)$.
Let $F : \mathbb{R} \to \mathbb{R}$ be a function with properties (i) and (ii). Then there exist a unique prob. measure \mathbb{P} on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$
P(-\infty, x] = F(x).$$
Random variable

Def. Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space, \((\tilde{\Omega}, \tilde{\mathcal{F}})\) be another measurable space. A mapping: \(X: \Omega \rightarrow \tilde{\Omega}\) is called a random variable if \(X\) is measurable, i.e.

\[\forall \tilde{A} \in \tilde{\mathcal{F}}: \ X^{-1}(\tilde{A}) := \{ \omega \in \Omega \mid X(\omega) \in \tilde{A} \} \in \mathcal{F}. \]

Example: sum of two dice

\(\Omega = \{(i, j) \mid i, j \in \{1, \ldots, 6\}\}\)

\(\mathcal{F} = 2^\Omega\)

\(\mathbb{P}(\{(i, j)\}) = \frac{1}{36}\)

\(X\) "sum of the two values"

\(X: \Omega \rightarrow \{2, \ldots, 12\}, \ (i, j) \mapsto i + j\)

is measurable.
A random variable $X: \Omega \to \tilde{\Omega}$ induces a measure on the target space.

For $\tilde{A} \in \tilde{\mathcal{F}}$ we define

$$P_X(\tilde{A}) := P(X^{-1}(\tilde{A}))$$

This is a probability measure on $(\tilde{\Omega}, \tilde{\mathcal{F}})$ and it is called the distribution of X.

$X: (\Omega, \mathcal{F}, P) \to (\tilde{\Omega}, \tilde{\mathcal{F}})$. Then the family

$$\sigma(X) := \{ X^{-1}(\tilde{A}) \mid \tilde{A} \in \tilde{\mathcal{F}} \}$$

is a σ-algebra on Ω and it is called the σ-algebra induced by X (it is the smallest σ-algebra on Ω that makes X measurable).
Conditional probabilities

Notation: \(P(A \cap B) = P(\text{"A and B"}) \)

\[
P(A \cup B) = P(\text{"A or B"})
\]

Def. \((\Omega, \mathcal{A}, P)\) probability space,
if \(A, B \in \mathcal{A}, P(B) > 0\). Then

\[
P(A | B) = \frac{P(A \cap B)}{P(B)}
\]

is called the conditional probability of \(A\) given \(B\).

Theorem. The mapping \(P_B: \mathcal{A} \rightarrow [0,1], A \rightarrow P_A|B\) is a probability measure on \((\Omega, \mathcal{A})\); it is called the conditional distribution of \(P\) with respect to \(B\).
Example:
\[\Omega = \text{all persons on earth} \]
\[A = \mathcal{B}(\Omega) \]
\[\rho = \text{"uniform"} \]

Event \(A : = \text{"person has been vaccinated"} \)
Event \(B : = \text{"person has disease"} \)

\[p(\text{disease} \mid \text{vaccinated}) \]

\[p(\text{vaccinated} \mid \text{disease}) \]

Example: two dice
\[p(\text{"sum is 10"} \mid \text{"first die was 5"}) \]
Bayes formula

Law of total probability: Let B_1, B_2, \ldots, B_n be a disjoint partition of Ω with $B_i \in \mathcal{A}$ for all i, and $A \in \mathcal{A}$. Then

$$p(A) = \sum_{i=1}^{n} p(A | B_i) \cdot p(B_i) = \sum_{i=1}^{n} p(A \cap B_i)$$

Bayes formula:

$$p(B_i | A) = \frac{p(A | B_i) \cdot p(B_i)}{\sum_{i} p(A | B_i) \cdot p(B_i)} = \frac{p(A \cap B_i)}{p(A)}$$

Example: breast cancer screening

Assume 1% of all women above 40 have breast cancer.

90% of women with breast cancer will be tested positive. ("true positives")

80% of women without breast cancer will receive a positive result as well. ("false positives")

Given that a woman verso receives a positive test result, what is the likelihood that she has breast cancer?
\[P(\text{cancer} \mid \text{positive}) = \frac{P(\text{positive} \mid \text{cancer}) \cdot P(\text{cancer})}{P(\text{pos.} \mid \text{cancer}) P(\text{cancer}) + P(\text{pos.} \mid \text{not cancer}) \cdot P(\text{not cancer})} \]

\[
\approx \frac{0.9 \cdot 0.01}{0.9 \cdot 0.01 + 0.09 \cdot 0.99} \approx 10 \%
\]
Independence

Consider a probability space \((\Omega, \mathcal{A}, P)\). Two events \(A, B \in \mathcal{A}\) are called **independent** if

\[
P(A \cap B) = P(A) \cdot P(B)
\]

Observation: \(A\) is independent of \(B \iff P(A|B) = P(A)\)

A family of events \((A_i)_{i \in I}\) is called **independent** if for all finite subsets \(J \subset I\) we have

\[
P\left(\bigcap_{i \in J} A_i\right) = \prod_{i \in J} P(A_i)
\]

(Family is called pairwise independent if \(A_i, A_j \in I: P(A_i \cap A_j) = P(A_i) \cdot P(A_j)\). This does not imply independence!)

Two random variables \(X: \Omega \to \Omega_1\), \(Y: \Omega \to \Omega_2\) are called **independent** if their induced \(\sigma\)-algebras \(\sigma(X), \sigma(Y)\) are independent:

\[
\forall A \in \sigma(X), B \in \sigma(Y): P(A \cap B) = P(A) \cdot P(B).
\]
Notation for independence:

\[A \perp B \]
\[X \perp Y \]
Expectation (discrete case)

Consider a discrete random variable $X: \Omega \to \mathbb{R}$ (that is, $X(\Omega)$ is at most countable).

Definition $(\Omega, \mathcal{A}, \mathbb{P})$ prob. space, $S \subset \mathbb{R}$ at most countable, $X: \Omega \to S$ random variable.

If $\sum_{r \in S} |r| \cdot P(X=r) < \infty$, then

$$E(X) := \sum_{r \in S} r \cdot P(X=r)$$

is called the expectation of X.

(sometimes people write EX, $E X$, or $E(X)$).

Examples

- Toss a coin. $\Omega = \{\text{head, tail}\}$, $\mathcal{A} = 2^\Omega$, $P(\text{head}) = p$, $P(\text{tail}) = 1-p$.

 $0 < p < 1$.

 $X: \Omega \to \{0, 1\}$, head $\mapsto 1$, tail $\mapsto 0$.

 $E(X) = 0 \cdot P(X=0) + 1 \cdot P(X=1) = p$.

- Test error of a classifier.

Def A rv is called "centered" if $E(X) = 0$.
Important properties:

- **Linear:** \(E (a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y) \), for \(\alpha \in \mathbb{R} \) and \(\beta \in \mathbb{R} \).

- **\(X, Y \) independent \(\Rightarrow \) \(E(X \cdot Y) = E(X) \cdot E(Y) \)**

\[
\sum_{i,j} |x_i \cdot y_j| \cdot P(X=x_i, Y=y_j) = \sum_{i,j} |x_i \cdot y_j| \cdot P(X=x_i) \cdot P(Y=y_j) \\
= \sum_{i,j} |x_i \cdot y_j| \cdot \frac{P(X=x_i)}{\left| \frac{x_i}{y_j} \right|} \\
= \left(\sum_{i} |x_i| \cdot P(X=x_i) \right) \cdot \left(\sum_{j} |y_j| \cdot P(Y=y_j) \right)
\]
Variance, covariance, correlation
(discrete case)

Def \(X, Y : (\Omega, \mathcal{A}, \mathbb{P}) \rightarrow \mathbb{R}\) discrete rvs with
\(E(X^2) < \infty, \ E(Y^2) < \infty\).

Then \(\text{Var}(X) := E((X - E(X))^2)\)

is called the variance of \(X\)

and \(\sqrt{\text{Var}(X)} =: \sigma_X\)

is called the standard deviation.

\(\text{Cov}(X, Y) := E((X - E(X)) \cdot (Y - E(Y)))\)

is called the covariance of \(X\) and \(Y\).

\(\rho_{X,Y} := \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y} \in [-1, 1]\)

is called the correlation coefficient.

If \(\text{Cov}(X,Y) = 0\), then \(X\) and \(Y\) are called uncorrelated.

More generally, for \(k \in \mathbb{N}\) we define the formulas
\(E(X^k)\) ("\(k\)-th moment"),
\(E((X - E(X))^k)\) ("\(k\)-th centered moment").
Intuition about covariance

\[\text{Cov}(X, Y) = \mathbb{E}((X - \mathbb{E}(X)) \cdot (Y - \mathbb{E}(Y))) \]

Positive, large covariance \(g \approx 0.9 \)

Negative covariance, large in absolute values \(g \approx -0.9 \)

\[\text{Cov} \approx 0 \] (uncorrelated)
Properties

- \(\text{Var} (X) = E(X^2) - (E(X))^2 \)
- \(\text{Cov}(X, Y) = E(XY) - E(X) \cdot E(Y) \)
- \(E(aX + b) = a \cdot E(X) + b \)
- \(\text{Var}(aX + b) = a^2 \text{Var}(X) \)
- \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)
- \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + \text{Cov}(X, Y) \)
- \(X, Y \text{ independent } \iff \text{Cov}(X, Y) = 0 \)
- \(X, Y \text{ independent } \iff \text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \)
Expectation and variance in the general setting

\[\mathbb{L}^k(\Omega, \mathcal{A}, \rho) := \left\{ X: \Omega \to \mathbb{R} \mid X \text{ measurable and} \int_{\Omega} |X|^k \, d\rho < \infty \right\} \]

\((\Omega, \mathcal{A}, \rho)\) prob. space, \(X: \Omega \to \mathbb{R}\) with distribution \(\rho_X = X(\rho)\), \(X \in \mathbb{L}^k(\Omega, \mathcal{A}, \rho)\). The expectation of \(X\) is then defined as

\[
E(X) := \int_{\Omega} X \, d\rho = \int_{\mathbb{R}} x \, d\rho_X(x) \\
\text{(can of density}\ f) \quad \int_{\mathbb{R}} x \, f(x) \, dx
\]

If \(X^k \in \mathbb{L}^k(\Omega, \mathcal{A}, \rho)\) then

\[E(X^k) = \int_{\mathbb{R}} X^k \, d\rho \] is called the \(k\)-th moment of \(X\).

If \(X \in \mathbb{L}^2(\Omega, \mathcal{A}, \rho)\) we define

\[
\text{Var}(X) = E((X - E(X))^2) \\
\text{Cov}(X,Y) = E((X - E(X))(Y - E(Y)))
\]
Chebyshev inequality: \(\varepsilon > 0, X \in L^2(\Omega, \mathcal{A}, \mathbb{P}) \). Then:
\[
\mathbb{P}(|X - \mathbb{E}(X)| > \varepsilon) \leq \frac{\text{Var}(X)}{\varepsilon^2}
\]

Markov inequality: \(\varepsilon > 0, f: \mathbb{E}_{0, \infty} \rightarrow \mathbb{E}_{0, \infty}, f \text{ monotonically increasing} \). Then
\[
\mathbb{P}(1_{|Y| > \varepsilon}) \leq \frac{\mathbb{E}(f(1_{|Y|}))}{f(\varepsilon)}
\]
In particular,
\[
\mathbb{P}(1_{|Y| > \varepsilon}) \leq \frac{\mathbb{E}(1_{|Y|})}{\varepsilon}
\]

Cachy-Schwarz inequality: \(X, Y \in L^2(\Omega, \mathcal{A}, \mathbb{P}) \). Then:
\[
\mathbb{E}(|X \cdot Y|^2) \leq \mathbb{E}(X^2) \cdot \mathbb{E}(Y^2)
\]
Examples of probability distributions

Discrete distributions

- **Uniform distribution on \([1, \ldots, n] \):** \(P(\{i\}) = \frac{1}{n} \)

- **Binomial distribution on \([0, \ldots, n]\)
 Toss a coin \(n \) times, independently, each time with probability \(p \) of observing head. Denote head = 1, tail = 0,
 \(X \): # heads
 \(P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \)

- **Poisson distribution on \(\mathbb{N} \)
 Parameter \(\lambda > 0 \)
 \(P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \)
 Intuition: number of incoming calls at a hotline.

Continuous distributions

- **Uniform distribution on \([a, b]\) :** constant density
 \[f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases} \]
Normal distribution on \mathbb{R}

Density: parameters μ (mean), σ (std. deviation)

$$f_{\mu,\sigma}(x) := \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2 \sigma^2}\right)$$

Notation: $N(\mu, \sigma^2)$

Some first properties:

- $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, X, Y independent.

Then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
Normal distribution in higher dimension

\[X: \mathcal{X} \to \mathbb{R}^n, \quad X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \mu_i \in \mathbb{E}(X_i), \quad \mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} \]

\[\Sigma \in \mathbb{R}^{n \times n} \text{ with } \Sigma_{ij} = \text{Cov}(X_i, X_j), \text{ called covariance matrix.} \]

\[f_{\mu, \Sigma}(x) = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \]

Notation: \(\mathcal{N}(\mu, \Sigma) \)

Prop. \(\Sigma \) is positive definite and symmetric.

Consequence: \(\Sigma \) has real-valued, non-negative eigenvalues.

Contour lines of \(f_{\mu, \Sigma} \)

If \(X_1, \ldots, X_n \) are independent \(\Leftrightarrow \) \(\Sigma = \begin{pmatrix} \delta_{11} & \delta_{12} & \cdots & 0 \\ \delta_{21} & \delta_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \delta_{nn} \end{pmatrix} \)
\[X \sim N(\mu_1, \Sigma_1), \quad Y \sim N(\mu_2, \Sigma_2), \quad \text{independent, then} \]
\[X + Y \sim N(\mu_1 + \mu_2, \Sigma_1 + \Sigma_2) \]

Mixture of Gaussians

Consider \(\pi_1, \pi_2, \ldots, \pi_k \) with \(0 \leq \pi_i \leq 1 \) and \(\sum \pi_i = 1 \)

Consider the following density:

\[
f(x) = \sum_{i=1}^{k} \pi_i \cdot f_{\mu_i, \Sigma_i}(x)
\]
Consider in $X_i: \Omega \to \mathbb{R}$, $i \in \mathbb{N}$, $X: \Omega \to \mathbb{R}$, $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.

(1) $(X_i)_{i \in \mathbb{N}}$ converges to X almost surely : \iff

$$\mathbb{P}\left(\left\{ \omega \in \Omega \mid \lim_{i \to \infty} X_i(\omega) = X(\omega) \right\} \right) = 1$$

Notation: $X_i \to X$ a.s.

(2) $(X_i)_{i \in \mathbb{N}}$ converges to X in probability : \iff

$$\forall \varepsilon > 0 \quad \mathbb{P}\left(\left\{ \omega \in \Omega \mid |X_i(\omega) - X(\omega)| > \varepsilon \right\} \right) \to 0$$

Let us check that these definitions make sense. We need to prove that the events in (1) and (2) are in fact in \mathcal{F}. We have

Case (1):

$$\lim_{i \to \infty} X_i(\omega) = X(\omega)$$

$$\Rightarrow \forall k \in \mathbb{N} \exists N \in \mathbb{N} \forall n > N : |X_n(\omega) - X(\omega)| < \frac{1}{k}$$

So we get:

...
\[
\{ w \mid X_i(w) \to X(w) \} = \\
\bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{n \geq N} \{ w \mid |X_n(w) - X(w)| < \frac{1}{k} \} \in \mathcal{F}
\]

\text{countable union and intersection}

\text{X_n, X are measurable} \implies \text{|X_n - X| is measurable}

\text{so } \{ \ldots \} \in \mathcal{F}

(\text{3}) \quad X_n \Rightarrow X \text{ in } L^p \quad \text{("in the } p \text{-th mean")}: \iff \\
X_n, X \in L^p \text{ and } \|X_i - X\|_p \to 0.

(\text{4}) \quad \text{Let } M^1(\mathbb{R}^n) \text{ be the set of all probability measures on } (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)). \text{ Assume } (\mu_n)_n \subset M^1(\mathbb{R}^n), \mu \in M^1(\mathbb{R}^n).

C_b(\mathbb{R}^n) := \text{space of bounded continuous functions}.

\mu_n \to \mu \text{ weakly } \iff \\
\forall f \in C_b(\mathbb{R}^n) : \int f \, d\mu_n \to \int f \, d\mu

\text{Diagram:}

\mu_n \quad \text{to} \quad \mu
In functional analysis, a sequence \((x_n)_n\) in a Banach space \(B\) converges weakly if for all bounded linear functionals \(f\), we have that \(f(x_n) \to f(x)\). (i.e. for all \(f \in B^*\)).

Space \(M^n(\mathbb{R}^n)\) itself is not a Banach space, but \(C(M^n)\), space of all bounded measures.

The dual space of \(M^n(\mathbb{R}^n)\) is \(C_0(\mathbb{R}^n)\).

\[
(5) \quad X_i, X : (\Omega, \Delta, \mathbb{P}) \to \mathbb{R}^n. \text{ The sequence } X_n \text{ converges in distribution to } X : \iff \\
\text{ the distributions } P_{X_n} \text{ converge to } P_X \text{ weakly.}
\]

We have the following implications (but none of the missing implications is true in general):

\[
\begin{align*}
\text{almost surely} & \quad \iff \quad \text{in } L^1 \\
\text{in probability} & \quad \iff \quad \text{in } L^p (p > 1) \\
\text{in distribution} & \quad \iff \quad \text{in } L^p (p > 1)
\end{align*}
\]
Example (convergence a.s., in prob., but not in L^1)

$$X_n : \mathbb{R} \to \mathbb{R}, \quad X_n(x) = \left\{ \begin{array}{ll}
n & \text{for } 0 \leq x \leq \frac{1}{n} \\
0 & \text{otherwise} \end{array} \right.$$

$$\lim_{n \to \infty} X_n = 0 : \ X_n(x) \to 0.$$

Can formally see: a.s., in prob.

But: no convergence in L^1.

Example (convergence in prob., in L^1, but not a.s.)

"sliding blocks"

$$f_1 = \mathcal{M}_{[0,1]}$$

$$f_2 = \mathcal{M}_{[0,\frac{1}{2}]} , \quad f_3 = \mathcal{M}_{[\frac{1}{2},1]}$$

$$f_4 = \mathcal{M}_{[0,\frac{1}{3}]} , \quad f_5 = \mathcal{M}_{[\frac{1}{3},\frac{2}{3}]} , \quad f_6 = \mathcal{M}_{[\frac{2}{3},1]}$$
Example (Conv. in distribution, but not in prob.)

\[X_n : [0, 1] \to \mathbb{R} \] \(\\xRightarrow{\text{d}} \) \[\mathcal{D}[0, 1/2] \]

\[X \sim \mathcal{U}[\frac{1}{2}, 1] \]

Obviously \(X_n \xrightarrow{\text{d}} X \) in prob., but:

\[p_{X_n} = \frac{1}{2}(\delta_0 + \delta_1) = p_{X_2} = p_{X_3} = \ldots = p_X \]

so \(X_n \xrightarrow{\text{d}} X \) in distribution.
Theorem of Borel–Cantelli

$(\mathcal{S}, \mathcal{A}, P)$ prob. space, $(A_n)_n$ sequence of events in \mathcal{A}.

$$P(\text{An infinitely often}) = P(\text{An i.o.})$$

$$= P(\{w \in \mathcal{S} \mid w \in A_n \text{ for infinitely many } n\})$$

Proposition: X_n, X r.v. on $(\mathcal{S}, \mathcal{A}, P)$.

$$X_n \xrightarrow{\text{a.s.}} X \iff$$

$$\forall \varepsilon > 0 : P(\{ |X_n - X| > \varepsilon \text{ (inf. often)} \}) = 0$$

Proof intuition:

$$\{ \lim X_n = X \}$$

$$= \{ \forall k : |X_n - X| > \frac{\varepsilon}{k} \text{ at most finitely often} \}$$

$$= \bigcap_{k \in \mathbb{N}} \{ |X_n - X| > \frac{\varepsilon}{k} \text{ at most fin. often} \}$$

$$= \left(\bigcup_{k \in \mathbb{N}} \{ |X_n - X| > \frac{\varepsilon}{k} \text{ inf. often} \} \right)^{\text{complement}}$$
Theorem: Consider a sequence of events \((A_n) \subseteq \Omega \).

1. If \(\sum_{n=1}^{\infty} P(A_n) < \infty \), then \(P(A_n \text{ i.o.}) = 0 \).

2. If \(\sum_{n=1}^{\infty} P(A_n) = \infty \), and if \((A_n) \) are independent, then \(P(A_n \text{ i.o.}) = 1 \).

Application in Learning Theory:

Assume that \(P(|X_n - \xi| > \frac{1}{n}) < \delta_n \), and

assume that \(\sum_{n=1}^{\infty} \delta_n < \infty \). Then you can use

Borel-Cantelli to prove that

\(P(|X_n - \xi| > \frac{1}{n} \text{ i.o.}) = 0 \),

Thus \(X_n \rightarrow \xi \text{ a.s.} \).
Limit Theorems: LLN and CLT

Strong Law of Large Numbers

\[X_n : (\mathbb{S}^2, \mathcal{A}, \mathbb{P}) \to \mathbb{R} \text{ iid } (\text{identically distributed and independent}). \text{ Assume the mean } \mu := E(X_n) < \infty, \text{ and } \text{Var}(X_n) = \sigma^2 < \infty. \text{ Then:} \]

\[\lim \frac{1}{n} \sum_{i=1}^{n} X_i = \mu \text{ a.s. and in } L^2. \]

Remarks:

- Many versions of this theorem exist, (slightly relaxing iid)
- "Strong law" \Rightarrow convergence a.s.
- "Weak law" \Rightarrow convergence in probability

Central Limit Theorem

\((X_i)_{i=1}^\infty \text{ iid rv with mean } \mu_1 \text{ variance } \sigma_1^2 < \infty. \)

Consider the rv \(S_n := \sum_{i=1}^{n} X_i \). We normalize it to

\[Y_n := \frac{S_n - n\mu}{\sqrt{n}\sigma} \]

Then \(Y_n \to Y \) in distribution where \(Y \sim N(0,1) \).
Illustration: X_i: coin, head $\in \Lambda$, tail $\in O$

$S_n = \sum X_i \in [0, n]$
Concentration inequalities

Motivation: random projections

Motivation: random projections

\[\mathbb{R}^d \rightarrow \mathbb{R}^l \]

want to project in \(\mathbb{R}^d \rightarrow \mathbb{R}^l \) "small"

\[\text{Theorem of Johnson-Lindenstrauss:} \]

Can guarantee (for certain parameters \(\varepsilon, k \))

\[
(n - \varepsilon) \| x_i - x_j \|_{\mathbb{R}^d} \leq \| \pi(x_i) - \pi(x_j) \|_{\mathbb{R}^l} \leq (n + \varepsilon) \| x_i - x_j \|_{\mathbb{R}^d}
\]

Construction / proof steps:

(a) Assume you know \(\| x_i - x_j \|_{\mathbb{R}^d} = 1 \).

Compute \(\mathbb{E}(\| \pi(x_i) - \pi(x_j) \|_{\mathbb{R}^l}) \), "easy".

(b) \(\mathbb{P}(\| \pi(x_i) - \pi(x_j) \|_{\mathbb{R}^l} - \mathbb{E}(\cdots) > \varepsilon) ? \)
Hoeffding inequality

Theorem (Hoeffding): \(X_1, \ldots, X_n \) rv, independent, assume that \(X_i \in \mathcal{C}(a_i, b_i) \) a.s. for \(i = 1, \ldots, n \).

Let \(S_n = \sum_{i=1}^{n} (X_i - \mathbb{E}(X_i)) \). Then for any \(t > 0 \),

\[
P(S_n \geq t) \leq \exp \left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2} \right).
\]

Application of Hoeffding: SLLN

Prop (\(X_i \) i.i.d rv, a \leq X_i \leq b, let \(K \) have the same distribution as \(X_i \). Then:

\[
\frac{1}{n} \sum_{i=0}^{n} X_i \to \mathbb{E}(X) \text{ a.s.}
\]

Proof. Hoeffding \(\Rightarrow \)

- \(P \left(\frac{1}{n} \sum X_i - \mathbb{E}(X) > t \right) \leq \exp \left(-\frac{2nt^2}{(b-a)^2} \right) \)
- \(P \left(\frac{1}{n} \sum X_i - \mathbb{E}(X) < -t \right) \)
\[p \left(\frac{1}{n} \sum (-x_i) - E(x) \geq t \right) \leq \exp \left(-\frac{2nt^2}{(b-a)^2} \right) \]

Combined we get

\[p \left(\left| \frac{1}{n} \sum x_i - E(x) \right| > t \right) \leq 2 \exp \left(-\frac{2nt^2}{(b-a)^2} \right). \]

Now want to apply Borel-Cantelli to get a.s. convergence:

\[Z_n := \frac{1}{n} \sum_{i=1}^{n} x_i \]

\[\sum_{n=0}^{\infty} p (Z_n - E(x) > t) \leq 2 \sum_{n=0}^{\infty} \exp \left(-\frac{2nt^2}{(b-a)^2} \right) \leq \infty \]

\[\text{Sum} \]

\[\text{Substitute: } r := \exp \left(-\frac{2nt^2}{(b-a)^2} \right) \in [0, 1] \]

\[\text{Observe: } \exp \left(-\frac{2nt^2}{(b-a)^2} \right) = r^n \]

\[\text{Sum} = 2 \sum_{n=0}^{\infty} r^n = 2 \cdot \frac{1}{1-r} < \infty. \]

Now Borel-Cantelli gives almost sure convergence.

Remark: Hoeffding is tight (cannot be improved without further assumptions). For fair coin tosses it is tight.

But: not tight if coin is biased \(\Rightarrow \) need other inequalities.
Bernstein inequality

Theorem (Bernstein): \(X_1, \ldots, X_n \) independent with 0 mean, \(|X_i| < \Lambda \) a.s. Let \(\sigma^2 := \frac{1}{n} \sum_{i=1}^{n} \text{Var}(X_i) \). Then for all \(t > 0 \),

\[
P\left(\frac{1}{n} \sum_{i=1}^{n} X_i > t \right) \leq \exp\left(-\frac{n t^2}{2(\sigma^2 + \frac{\Lambda}{3})}\right)
\]

Concentration inequality for functions with bounded differences

Consider a function \(f: \mathbb{R}^n \to \mathbb{R} \) (or more generally, \(f: \mathcal{X}^n \to \mathbb{R} \) for some “arbitrary” space \(\mathcal{X} \)).

We say that \(f \) has the bounded differences property if there exist constants \(c_1, \ldots, c_n \) such that

\[
\sup_{x_1, \ldots, x_n} \left| f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, \frac{X_i}{\Lambda}, x_{i+1}, \ldots, x_n) \right| \leq c_i
\]

Example: \(f(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i \), and \(a \leq x_i \leq b \) for \(i \), then \(f \) satisfies \(\oplus \) with \(c_i = b - a \).
Theorem (Mc Diarmid) \(X_1, \ldots, X_n \) independent rv, \(X_i \in \mathcal{X}_i \), \(f: X_1 \times \cdots \times X_n \to \mathbb{R} \) function with bounded difference property.

Then, for any \(t > 0 \),

\[
P \left(f(X_1, \ldots, X_n) - E(f(X_1, \ldots, X_n)) \geq t \right) \leq \exp \left(- \frac{2t^2}{\sum_{i=1}^{n} c_i^2} \right)
\]

Applications:
- stability in ML
- standard theoretical CS, randomized algorithm
- largest eigenvalue of a random symmetric matrix

\[
A = \begin{pmatrix}
X_{11} & \cdots & \cdots \\
\vdots & \ddots & \vdots \\
\cdots & \cdots & X_{nn}
\end{pmatrix} \sim \text{draw iid}
\]
Glivenko–Cantelli Theorem

\(F \) cdf : \(F(a) = P(X \leq a) \)

\(X_1, \ldots, X_n \sim F, \text{iid} \)

\(F_n : \mathbb{R} \to [0, 1] \)

\(F_n(a) := \frac{1}{n} \sum_{i=1}^{n} I\{X_i \leq a\} \)

Now fix one particular \(a_0 \in \mathbb{R} \).

\(F_n(a_0) \to F(a_0) \) by the law of large numbers.

Because \(I\{X_i \leq a_0\} \) is a Binomial rv with

\[p = P(X_i \leq a_0). \]

So it is clear that \(F_n \rightarrow F \) pointwise (i.e. \(\forall a_0 \))

Now let's look at uniform convergence.

Theorem \(X_1, \ldots, X_n \text{ iid random variables with cdf } F. \)

Let \(F_n \) be the empirical cdf induced by the sample. Then:

\[P\left(\sup_{a \in \mathbb{R}} | F_n(a) - F(a) | > \varepsilon \right) \leq \]

\[\leq 8 \cdot (n+1) \cdot \exp\left(-\frac{n \varepsilon^2}{32} \right). \]

In particular, \(\sup_{a} | F_n - F | \to 0 \text{ a.s.}, \)

i.e. \(F_n \to F \text{ uniformly a.s.} \)
Proof: Observe: \(P(\sup_{a \in R} | F_u(a) - F(a) | > \varepsilon) \to 0 \) for any fixed \(a_0 \).

Problem: need to look at

\[
P(\sup_{a \in R} | F_u(a) - F(a) | > \varepsilon)\]

difficult because \(R \) is uncountable

If we take a supremum over a finite set, it is easier:

\[
P(\max_{i=1}^n | u_i | > \varepsilon) = \]

\[
= P(|u_1| > \varepsilon \text{ or } |u_2| > \varepsilon \text{ or } \ldots \text{ or } |u_n| > \varepsilon) = \sum_{i=1}^n P(|u_i| > \varepsilon)
\]

Trick of the proof: cannot sup over \(a \in R \) to something "finite".

How could we achieve this?

\[
| \text{red - green} |
\leq 2 | \text{green - blue} |
\]
Step 1: Symmetrization by ghost sample
Assume $X_1', \ldots, X_n' \sim \mathcal{F}$ independently ("ghost sample"),
Denote by F_n' the empirical cdf induced by ghost sample
Now it is easy to prove:

$$P\left(\sup_a | F_n(a) - F_n'(a) | > \varepsilon \right)$$

$$\leq 2 P\left(\sup_a | F_n(a) - F_n'(a) | > \frac{\varepsilon}{2} \right)$$

Step 2: Want to split this in two terms

$$| F_n(a) - F_n'(a) | = \left| \frac{1}{n} \sum_{i=1}^{n} (\mathbb{I}\{X_i \leq a\} - \mathbb{I}\{X_i' \leq a\}) \right|$$

Introduce Rademacher random variables $\sigma_1, \ldots, \sigma_n$:

$\sigma_i(\{\cdot\}) = \sigma_i(\{\cdot\}) = 1/2$.

Distribution of σ_i is the same as the cdf of the following:

$$\left| \frac{1}{n} \sum_{i=1}^{n} \sigma_i (\mathbb{I}\{X_i \leq a\} - \mathbb{I}\{X_i' \leq a\}) \right| = \mathcal{N}$$

Now we can:
\[
2 \mathbb{P} \left(\sup_a \left(E(u) - E_u'(a) \right) \right) \\
= 2 \mathbb{P} \left(\sup_a \left(\frac{1}{n} \sum_{i=1}^{n} \xi_i \Delta \lambda_{x_i \in a} - \Delta \lambda_{x_i \in a} \right) \left| \frac{1}{n} \sum_{i=1}^{n} \xi_i \right| > \frac{\varepsilon}{2} \right) \\
\leq 2 \mathbb{P} \left(\sup_a \left(\frac{1}{n} \sum_{i=1}^{n} \xi_i \Delta \lambda_{x_i \in a} \right) > \frac{\varepsilon}{4} \right) + 2 \mathbb{P} \left(\sup_a \left(\frac{1}{n} \sum_{i=1}^{n} \xi_i \Delta \lambda_{x_i \in a} \right) \left| \frac{1}{n} \sum_{i=1}^{n} \xi_i \right| > \frac{\varepsilon}{4} \right)
\]

\text{Observe:}
\[
\mathbb{P} \left(\left| \mu - \nu \right| > \frac{\varepsilon}{2} \right) \leq \mathbb{P} \left(\left| \mu \right| > \frac{\varepsilon}{4} \right) \text{ or } \mathbb{P} \left(\left| \nu \right| > \frac{\varepsilon}{4} \right)
\]

\[
\leq 4 \cdot \mathbb{P} \left(\sup_a \left(\frac{1}{n} \sum_{i=1}^{n} \xi_i \Delta \lambda_{x_i \in a} \right) > \frac{\varepsilon}{4} \right)
\]

\textbf{Step 3:}

\textbf{Exploit "finiteness structure":}

\textbf{Fix } X_{k_1}, \ldots, X_k \textbf{ (i.e. condition on } X_1, \ldots, X_k) \textbf{.}

\textbf{We look at } \Delta \lambda_{x_i \in a} \textbf{.}

\textbf{The rest } \Delta \lambda_{x_i \in a}, \ldots, \Delta \lambda_{x_k \in a} \textbf{. For fixed } a \textbf{, one can only have } a \textbf{-realizable}

\[
\mathbb{P} \left(\sup_a \left(\frac{1}{n} \sum_{i=1}^{n} \xi_i \Delta \lambda_{x_i \in a} \right) \left| \frac{1}{n} \sum_{i=1}^{n} \xi_i \right| > \frac{\varepsilon}{4} \ \left| X_1, \ldots, X_k \right) \right.
\]

\[
\leq \left(n+1 \right) \sup_a \mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} \xi_i \Delta \lambda_{x_i \in a} \left| \frac{1}{n} \sum_{i=1}^{n} \xi_i \right| > \frac{\varepsilon}{4} \ \left| X_1, \ldots, X_k \right) \right.
\]

\[
\text{use Hoeffding (44)}
\]
Step 4: Apply Hoeffding to (1.5):

$k_\alpha:
\Pr \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_i < \epsilon \mid \epsilon_1, \ldots, \epsilon_n \right) \leq 2 \exp \left(-\frac{3n}{\varepsilon^2} \right)

Combining everything gives the theorem.
Product space, joint distributions

Consider two measurable spaces \((\Omega_1, \mathcal{A}_1, P_1), (\Omega_2, \mathcal{A}_2, P_2)\).

Define the product space \((\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2)\) with
\[
\Omega_1 \times \Omega_2 = \{(w_1, w_2) \mid w_1 \in \Omega_1, w_2 \in \Omega_2\}
\]
\[
\mathcal{A}_1 \otimes \mathcal{A}_2 = \{A_1 \times A_2 \mid A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}.
\]

Consider two rvs \(X_1 : (\Omega_1, \mathcal{A}_1, P_1) \to (\Omega_1, \mathcal{A}_1)\),
\(X_2 : (\Omega_1, \mathcal{A}_1, P_1) \to (\Omega_2, \mathcal{A}_2)\).

\(X : (X_1, X_2) : (\Omega_1, \mathcal{A}_1, P_1) \to (\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2)\)
\[
(X_1, X_2)(\omega) = (X_1(\omega), X_2(\omega)).
\]

The distribution \(P_{X_1, X_2}\) on \((\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2)\) is called the joint distribution of \(X_1\) and \(X_2\).

Example in ML: \((X, Y)\) where \(X\) is the input data, \(Y\) is the label.

Product measure: \((\Omega_1, \mathcal{A}_1, P_1), (\Omega_2, \mathcal{A}_2, P_2)\) two prob. spaces. We define the product measure \(P_1 \otimes P_2\) on the product space \((\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2)\) as
\[(P_1 \otimes P_2) (A_1 \times A_2) := P_1(A_1) \cdot P_2(A_2).\]

Theorem Two rvs \(X_1, X_2\) are independent if and only if their joint distribution coincides with the product distribution:

\[P(X_1, X_2) = P_1 \otimes P_2.\]
Consider the joint distribution $P_{X_1 X_2}$ of two rvs $X := (X_1, X_2)$. The marginal distribution of X wrt X_1 is the original distribution of X_1 on $(\mathbb{R}_1, \mathcal{B}(\mathbb{R}))$, namely P_{X_1}. Similarly for P_{X_2}.

Example in the discrete case:

<table>
<thead>
<tr>
<th>Y \ X</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>p_1</td>
<td>p_2</td>
<td>p_3</td>
<td>$p_1 + p_2 + p_3 = P(Y = y_1)$</td>
</tr>
<tr>
<td>y_2</td>
<td>p_4</td>
<td>p_5</td>
<td>p_6</td>
<td>\sum marginal distribution wrt Y.</td>
</tr>
</tbody>
</table>

Marginal distributions in case of densities

$X, Y : (\mathbb{R}, \mathcal{B}(\mathbb{R}), P) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, $Z := (X, Y)$. Assume that the joint distribution of Z has a density f on \mathbb{R}^2 then the following statements hold:
(1) Both X and Y have densities on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ given by

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx$$

(2) X and Y are independent iff

$$f(x, y) = f_X(x) \cdot f_Y(y) \quad \text{a.s.}$$

Mixed cases

For example, consider X a continuous RV with density and Y a discrete RV.

Say, X = income $\in \mathbb{R}$

Y = "yes" or "no", discrete

Special case: marginals of multivariate normal distributions

2-dim Consider a 2-dim normal RV $X = (X_1, X_2)$ with mean

$$\mu = (\mu_1, \mu_2) \in \mathbb{R}^2$$

and cov. $\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}$.

Then the marginal distribution of X with X_1 is again
a normal distribution with mean μ_1 and var σ_1^2.

\[x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n. \] Group the variables: \[x_i^{(k)} \} x \in \mathbb{R}^k \]

Want to look at the marginal of X wrt x^k.

\[p = \begin{pmatrix} \mu^k \\ \mu_n \end{pmatrix} \text{ mean } \quad \tilde{\mu} = \begin{pmatrix} \mu^k \\ \mu_n \end{pmatrix}, \quad \mu^k = \begin{pmatrix} \mu^k_{x^k} \\ \mu_n \end{pmatrix} \]

\[\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \] \[\tilde{\Sigma} = \begin{pmatrix} \Sigma_{11} \\ \Sigma_{21} \end{pmatrix} \]

Now the marginal of X wrt x^k is a normal dist. on \mathbb{R}^k with mean $\tilde{\mu}$ and cov. $\tilde{\Sigma}_{11}$.
Conditional distributions

Direct case:

Know conditional probabilities: \(P(A | B) \)
defined for events \(A, B \subseteq \Omega \), and \(P(B) > 0 \).

Let \(X, Y : (\Omega, A, \mathbb{P}) \to \mathbb{R} \) be discrete \(X, Y \in \mathbb{R} \) such that
\(P(Y = y) > 0 \). Then we can define the conditional probability measure
\[
P_{X | Y = y} : A \to P(X \in A | Y = y).
\]
This is a probability measure.

For general \(X, Y \) this is surprisingly complicated!

\(\Rightarrow \) "regular conditional probabilities" are specified.

Conditional distributions in case of densities

Assume \(Z = (X, Y) \) has a joint density \(f : \mathbb{R}^2 \to \mathbb{R} \),
and marginal densities \(f_X, f_Y : \mathbb{R} \to \mathbb{R} \). Then the function
\[
f_{X | Y = y}(x) = \frac{f(x, y)}{f_Y(y)}
\]
is then also a density on \(\mathbb{R} \), called the conditional density of \(X \)
given \(Y = y \).
Example: normal distribution

$$\mu = \left(\begin{array}{c} \mu_1 \\ \vdots \\ \mu_n \end{array} \right) \quad \Sigma = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array} \right)$$

If $X = \left(\begin{array}{c} X_1 \\ \vdots \\ X_n \end{array} \right) \sim N(\mu, \Sigma)$, then the conditional distribution of $\tilde{X} = \left(\begin{array}{c} X_n \end{array} \right)$ w.r.t $x^u = \left(\begin{array}{c} x_{1:n} \end{array} \right)$ is given by

$$p_{\tilde{X} \mid X^u} \sim N\left(\mu_n + \Sigma_{1n} \Sigma_{22}^{-1} (x^u - \tilde{\mu}), \Sigma_{22} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12} \right).$$
\textbf{Conditional expectation}

\textbf{Definition (discrete case)} \(X, Y : (\mathcal{X}, \mathcal{A}, \mathbb{P}) \rightarrow \mathbb{R} \)

Assume \(X \) takes finitely (countably) many values \(x_1, \ldots, x_n \in \mathbb{R}, \) \(Y \) takes finitely (countably) many values \(y_1, \ldots, y_m \in \mathbb{R}, \) always with a positive probability.

\[
E(Y \mid X = x_i) := \sum_{j=1}^{m} y_j \cdot P(Y = y_j \mid X = x_i)
\]

\textit{well defined}

\textit{Example:} two dice, \(X \) = first one, \(Y \) = second one, independent

\[
E(\text{sum} \mid X = i) = \sum_{i=1}^{12} i \cdot P(\text{sum} = i \mid X = i)
\]

\[
= \sum_{k=1}^{6} (i + k) \cdot P(Y = k \mid X = i)
\]

\[
= \sum_{k=1}^{6} (i + k) \cdot \frac{1}{6} = \frac{1}{6} \sum_{k=1}^{6} (i + k) = 4.5
\]

So far we defined \(E(Y \mid X = x_i) \), but often we want to consider the "function" \(E(Y \mid X)(\omega) \). This is a \(\mathbb{R} \)-valued random variable:

\[
E(Y \mid X) : (\Omega, \mathcal{A}, \mathbb{P}) \rightarrow (\mathbb{R}, \mathcal{B})
\]

Leads to the following:
Def (discrete case) X, Y as before. Then the conditional expectation is defined as follows:

$$E(Y|X) := f(X) \quad \text{with}$$

$$f(x) = \begin{cases}
E(Y|X=x) & \text{if } P(X=x) > 0 \\
\text{arbitrary, say } 0 & \text{otherwise}
\end{cases}$$

$E(Y|X)$ is only defined a.s.

Now we want to move to the more general case.

Sketch: X continuous rv

Y discrete rv $\sim Y_1, \ldots, Y_5$

Want to look at $E(X|Y)$

$$E(X|Y=y_i) = \sum_{i=1}^{5} E(X|Y=y_i) \cdot \mathbb{P}(\omega)$$

But need to make sure that it is measurable w.r.t $\sigma(Y)$. ("the clue")
Def (Conditional expectation on L_1)

Consider rv $X : (\Omega, \mathcal{F}_0, P) \to \mathbb{R}$, $X \in L_1(\Omega, \mathcal{F}_0, P)$.
Let \mathcal{G} be a sub-σ-algebra of \mathcal{F}_0. (Intuitively \mathcal{F}_0 will be the σ-alg. generated by the variable Y we want to condition on).

We now define the **conditional expectation** of X given \mathcal{G}
$E(X | \mathcal{G})$ as any random variable Z that satisfies

1. Z is measurable w.r.t \mathcal{G}
2. For all $A \in \mathcal{G}$ we have

$$\int_A X \, dP = \int_A Z \, dP$$

Existence of $E(X | \mathcal{G})$ is not clear a priori, it needs to be proved.

$E(X | Y) := E(X | \sigma(Y))$

Examples (two extreme cases)

- $X = Y$. Then $E(X | Y) = X$ (a.s.)
- $X \perp \perp Y$. $E(X | Y) = E(X)$ (a.s.)
Can of joint densities

$x, z : \mathbb{R} \rightarrow \mathbb{R}$ have a joint density $f(x, z)$.

Let $g : \mathbb{R} \rightarrow \mathbb{R}$ bounded, set $y := g(z)$. Assume we want to compute $E(Y \mid X) = E(g(Z) \mid X)$.

Recall x has density $f_X(x) = \int f(x, z) \, dz$.

The conditional density of z given $X = x$ is

$$f_{X \mid x}(z) = \frac{f(x, z)}{f_X(x)} \quad \text{if } f_X(x) \neq 0$$

Now consider $h(x) := \int g(z) f_{X \mid x}(z) \, dz$, now define

$$E(Y \mid X) = h(x).$$