Assignment 9
 Mathematics for Machine Learning

Submission due on 25.01.21, 8:00

Justify all your claims.
Exercise 1 (Limit theorems, $2+3$ points).
a) A laundry bag contains one black and one white sock. Now Tom keeps throwing socks into the laundry bag. Every sock he throws is either black with probability $p \in[0,1)$ or white with probability $1-p$, independently of the previous socks. Let X_{n} be the fraction of black socks to total amount of socks and Y_{n} the fraction of black to white socks after $n \in \mathbb{N}$ throws. Prove that
i) $X_{n} \rightarrow p$ almost surely as $n \rightarrow \infty$,
ii) $Y_{n} \rightarrow \frac{p}{1-p}$ almost surely as $n \rightarrow \infty$.
b) Consider an i.i.d. sequence of real-valued random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$ with $\mu=\mathbb{E}\left[X_{1}\right] \in \mathbb{R}$ and $\sigma^{2}=\operatorname{Var}\left[X_{1}\right]<\infty$. Define $S_{n}:=\sum_{k=1}^{n} X_{k}$ and let $a, b \in \mathbb{R}$ with $a<b$. Use the central limit theorem to prove

$$
P\left(a \leq S_{n} \leq b\right)=\Phi\left(\frac{b-n \mu}{\sqrt{n} \sigma}\right)-\Phi\left(\frac{a-n \mu}{\sqrt{n} \sigma}\right)+o(1)
$$

where Φ denotes the cumulative distribution function of the standard normal distribution $\mathcal{N}(0,1)$ and $o(1)$ satisfies $o(1) \rightarrow 0$ as $n \rightarrow \infty$.
Hint: You may use the characterization

$$
X_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} X \text { in distribution } \Leftrightarrow F_{n} \xrightarrow[n \rightarrow \infty]{ } F \text { uniformly on } C_{F},
$$

where F_{n}, F denote the cumulative distribution functions of X_{n}, X, and $C_{F}=\{x \in$ $\mathbb{R} \mid F$ is continuous at $x\}$.

Exercise 2 (Borel-Cantelli, $2+2+2$ points).
a) A monkey is furiously typing on a typewriter. The typewriter has 26 letters A-Z, and the monkey is hitting a letter X_{n} uniformly at random at every step $n \in \mathbb{N}$, independently of the previous letters. That is, $P\left(X_{n}=i\right)=\frac{1}{26}$ for $i \in\{\mathrm{~A}, \ldots, \mathrm{Z}\}$. Prove that the sequence M-O-N-K-E-Y appears infinitely often with probability 1 .
Hint: Use the Borel-Cantelli lemma to prove that $P\left(B_{n}\right.$ i.o. $)=1$, where

$$
B_{n}=\left\{\left(X_{6 n+1}, X_{6 n+2}, X_{6 n+3}, X_{6 n+4}, X_{6 n+5}, X_{6 n+6}\right)=(\mathrm{M}, \mathrm{O}, \mathrm{~N}, \mathrm{~K}, \mathrm{E}, \mathrm{Y})\right\}, \quad n \in \mathbb{N}_{0} .
$$

b) One direction of the Borel-Cantelli lemma requires the independence of the sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$. To show that this assumption is necessary, give an example for a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ which is not independent and satisfies

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty \quad \text { and } \quad P\left(A_{n} \text { i.o. }\right) \in(0,1)
$$

c) Consider a sequence of random variables X, X_{1}, X_{2}, \ldots that satisfies $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$. Prove that there exists a subsequene $\left(X_{n_{k}}\right)_{k \in \mathbb{N}}$ for which $X_{n_{k}} \rightarrow X$ almost surely as $k \rightarrow \infty$.
Hint: Use the Borel-Cantelli lemma and the characterization

$$
X_{n} \xrightarrow[n \rightarrow \infty]{ } X \text { almost surely } \Leftrightarrow \forall \varepsilon>0: P\left(\left\{\left|X_{n}-X\right|>\varepsilon\right\} \text { i.o. }\right)=0 .
$$

Exercise 3 (Convergence of random variables, $2+2+1$ points).
a) Consider the probability space $([0,1], \mathcal{B}, \lambda)$, where \mathcal{B} denotes the Borel- σ algebra on $[0,1]$ and λ the Lebesgue measure. For every $n \in \mathbb{N}$ there exist unique $h, k \in \mathbb{N}_{0}$ with $0 \leq k<2^{h}$ such that $n=2^{h}+k$. Then define the random variable X_{n} using these h, k as

$$
X_{n}(\omega)=\mathbb{1}_{\left[\frac{k}{2^{h}}, \frac{k+1}{2^{h}}\right]}(\omega)=\left\{\begin{array}{ll}
1, & \omega \in\left[\frac{k}{2^{h}}, \frac{k+1}{2^{h}}\right] \quad \forall \omega \in[0,1] . \\
0, & \text { otherwise }
\end{array} \quad .\right.
$$

A similar example was also given in the lecture. Prove that $X_{n} \rightarrow 0$ as $n \rightarrow \infty$ in probability and in L^{1}, but not almost surely.
b) As stated in Exercise 2c), convergence in probability implies the existence of a subsequence that converges almost surely. Find such a subsequence for the sequence given in a).
c) Consider real-valued random variables X, X_{1}, X_{2}, \ldots with $X_{n} \rightarrow X$ almost surely as $n \rightarrow$ ∞. Prove that for every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ it also holds $f\left(X_{n}\right) \rightarrow f(X)$ almost surely as $n \rightarrow \infty$.

Exercise 4 (Joint, marginal, conditional distribution, $2+2$ points).
a) Consider two random variables X and Y, where $X \in \mathcal{X}=\{$ Sun, Rain, Snow $\}$ describes the weather and $Y \in \mathcal{Y}=\{$ Few, Many $\}$ describes how many pedestrians are taking a stroll. The joint distribution of X and Y is given by the following table, which contains the probabilities $P(X=x, Y=y)$:

X	Few	Many
Sun	0.1	0.4
Rain	0.27	0.03
Snow	0.06	0.14

Compute the probabilities of the following events:
i) Many pedestrians on a sunny day or few pedestrians on a rainy day.
ii) The sun shines.
iii) The sun shines given that many pedestrians take a stroll.
b) Now consider two random variables X, Y on $\mathcal{X}=\{1, \ldots, n\}, \mathcal{Y}=\{1, \ldots, m\}$ with $n, m \in$ \mathbb{N}. Their joint distribution is described by a matrix $M \in \mathbb{R}^{n \times m}$ with $M_{x, y}=P(X=$ $x, Y=y)$ for $x \in \mathcal{X}, y \in \mathcal{Y}$.
Let $J \in \mathbb{R}^{m \times n}$ denote the matrix of containing only 1 s and $r_{n} \in \mathbb{R}^{n}, r_{m} \in \mathbb{R}^{m}$ denote the vectors containing increasing integers $1, \ldots, n$, respectively $1, \ldots, m$. Prove the following two statements:
i) X and Y are independent $\Leftrightarrow M=M J M$,
ii) X and Y are uncorrelated $\Leftrightarrow r_{n}^{T} M r_{m}=r_{n}^{T} M J M r_{m}$.

