Assignment 8 Mathematics for Machine Learning

Submission due on 18.01.21, 8:00

Justify all your claims.
Exercise 1 (Independence, $2+2+2$ points).
a) Let X describe the result of throwing a fair die. That is, X describes a random variable on a probability space (Ω, \mathcal{A}, P) such that $P(X=k)=\frac{1}{6}$ for $k \in\{1, \ldots, 6\}$. For the following two pairs of events A_{1}, B_{1} and A_{2}, B_{2}, prove whether they are independent:

$$
\begin{array}{rll}
A_{1}=\{X \text { is even }\} & \text { and } & B_{1}=\{X \geq 5\} \\
A_{2}=\{X \text { is odd }\} & \text { and } & B_{2}=\{X \geq 4\}
\end{array}
$$

b) Consider two random variables $X, Y:(\Omega, \mathcal{A}, P) \rightarrow(\{1,2,3\}, \mathcal{P}(\{1,2,3\}))$, whose distribution is described by a probability matrix $M \in \mathbb{R}^{3 \times 3}$ such that $P(X=x, Y=y)=M_{x, y}$ for $x, y \in\{1,2,3\}$. In the following two cases, prove whether X and Y are independent.

$$
M_{1}=\left(\begin{array}{ccc}
0.18 & 0.3 & 0.12 \\
0.03 & 0.05 & 0.02 \\
0.09 & 0.15 & 0.06
\end{array}\right) \quad \text { and } \quad M_{2}=\left(\begin{array}{ccc}
0.16 & 0.31 & 0.13 \\
0.05 & 0.04 & 0.01 \\
0.09 & 0.15 & 0.06
\end{array}\right)
$$

Hint: You may use that X and Y are independent if and only if $P(X=x, Y=y)=$ $P(X=x) P(Y=y)$ for all $x, y \in\{1,2,3\}$.
c) Consider the probability space $(\Omega, \mathcal{A}, P)=\left([0,2], \mathcal{B}, \frac{1}{2} \lambda_{[0,2]}\right)$, where \mathcal{B} is the Borel- σ algebra restricted to $[0,2]$ and $\frac{1}{2} \lambda_{[0,2]}$ is the normalized Lebesgue measure on $[0,2]$, that is, $\frac{1}{2} \lambda_{[0,2]}([a, b])=\frac{1}{2}(b-a)$. Define two random variables $X, Y:(\Omega, \mathcal{A}, P) \rightarrow([0,2], \mathcal{B})$ by $X(\omega)=\omega$ and $Y(\omega)=(\omega-1)^{2}$ for $\omega \in \Omega$. Prove that X and Y are dependent.
Exercise 2 (Surveillance, 3 points). A surveillance system is placed in the streets of London to detect criminals. It is equipped with a face recognition software and has access to a data base of criminal records. The software has a high true positive rate and low false positive rate when examining the face of a pedestrian: a criminal is correctly labeled as a criminal in 95% of the cases, while a righteous citizen is erroneously labeled as criminal in only 1% of the cases.
Aside from privacy concerns, discuss whether this surveillance system is as useful in detecting criminals as it seems. Invent some numbers to make your argument formal.
Exercise 3 (Covariance and correlation, $3+3+2$ points).
a) Consider two independent dice throws described by the random variables W_{1} and W_{2}. That is, W_{1} and W_{2} are independent random variables with $P\left(W_{i}=k\right)=\frac{1}{6}$ for $k \in\{1, \ldots, 6\}$ and $i \in\{1,2\}$. Define the sum $X=W_{1}+W_{2}$ and the product $Y=W_{1} \cdot W_{2}$. Compute the correlation coefficient $\varrho_{X, Y}$.
b) Consider two binary random variables M, G on $\{0,1\}$ that describe whether a student is motivated $(M=1)$ or $\operatorname{not}(M=0)$ and whether her grades are $\operatorname{good}(G=1)$ or not $(G=0)$. Assume additionally that they are independent, that is, $P((M, G)=(i, j))=\frac{1}{4}$ for $i, j \in\{0,1\}$. Compute the covariance $\operatorname{Cov}[M, G]$.
Now consider a scenario where a new course is offered, but students are only admitted if they are motivated or if their grades are high. What is the covariance between M and G of a student conditioned on the event that this student was admitted to the course?
c) Consider two random variables $X, Y \in L^{2}(\Omega, \mathcal{A}, P)$. Prove that the correlation coefficient satisfies $\varrho_{X, Y} \in[-1,1]$.
Hint: Use the Cauchy-Schwarz inequality for random variables with the scalar product $\langle X, Y\rangle=\mathbb{E}[X Y]$.

Exercise 4 (Chebyshev's inequality, 3 points). Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed random variables on $(\mathbb{R}, \mathcal{B})$ with $\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Denote $\mu:=\mathbb{E}\left[X_{1}\right]$ and consider the sum over the first n random variables denoted by $S_{n}:=\sum_{k=1}^{n} X_{k}$. Prove that

$$
P\left(\left|\frac{1}{n} S_{n}-\mu\right|>\varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \forall \varepsilon>0 .
$$

Hint: Use Chebyshev's inequality.
Bonus exercise (Bernoulli trials, $2+2+1$ points). A Bernoulli trial is a random experiment with only two outcomes, "success" and "failure". Assume that the probability of success is $p \in(0,1)$. This Bernoulli trial is now repeated arbitrarily often, where the outcome of each trial is independent of the other trials.
For $n \in \mathbb{N}$, let K_{n} denote the number of successes within the first n trials, T_{1} the number of failures until the first success, and T_{2} the total number of failures until the second success.
a) Prove that $K_{n} \stackrel{d}{=} B(n, p)$ for any $n \in \mathbb{N}$. This means that K_{n} is distributed as the binomial distribution $B(n, p)$, which is defined by $B(n, p)(\{k\})=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k \in\{0, \ldots, n\}$.
b) Compute the distribution of T_{1}, T_{2}, and $X:=T_{2}-T_{1}$.
c) Are X and T_{1} independent? (Prove your answer.)

