Assignment 7 Mathematics for Machine Learning

Submission due on **21.12.20**, **8:00** Assignment 8 will be released on 10.01.21 and is due on 17.01.21.

Justify all your claims.

Exercise 1 (Measures, 1+1+3+3 points).

a) Consider the set $X = \{1, 2, 3, 4\}$. Is the following set $\mathcal{F} \subset \mathcal{P}(X)$ a σ -algebra on X?

 $\mathcal{F} = \{ \emptyset, \{3\}, \{1,2\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,2,3,4\} \}$

- b) Let X be a non-empty set and $A \subseteq X$. Compute the σ -algebra $\sigma(\{A\})$ generated by A.
- c) Let X be an uncountable set. Consider the collection of sets $\mathcal{F} = \{A \subset X \mid A \text{ or } A^c \text{ countable}\}$ and the function $\mu \colon \mathcal{F} \to \{0,1\}, A \mapsto \begin{cases} 0, & \text{if } A \text{ countable} \\ 1, & \text{if } A^c \text{ countable} \end{cases}$, where $A^c \coloneqq X \setminus A$ denotes the complement. Prove that (X, \mathcal{F}, μ) is a measure space. In particular, prove that μ is well-defined. **Hint:** You may use the fact that countable unions of countable sets are countable.
- d) Consider a measure space (X, \mathcal{F}, μ) . Prove the following properties:
 - i) If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcap_{i \in \mathbb{N}} A_i \in \mathcal{F}$.
 - ii) If $A_1, \ldots, A_m \in \mathcal{F}$, then $\bigcup_{i=1}^m A_i \in \mathcal{F}$. If the A_i are additionally disjoint, then $\mu(\bigcup_{i=1}^m A_i) = \sum_{i=1}^m \mu(A_i)$. **Hint:** Show that $\emptyset \in \mathcal{F}$.
 - iii) For $A, B \in \mathcal{F}$, it holds $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$

Exercise 2 (Derivatives, 4+2+1 points).

a) Compute the Jacobian matrix of the following functions

$$f_1: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto \begin{pmatrix} \cos t \\ t^2 - 2 \end{pmatrix} \qquad f_2: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x_1, x_2) \mapsto \begin{pmatrix} x_1^3 - 3x_1 x_2^2 \\ 3x_1^2 x_2 - x_2^3 \end{pmatrix}$$
$$f_3: \mathbb{R}^n \to \mathbb{R}, \quad x \mapsto x^t A x \quad \text{for } A \in \mathbb{R}^{n \times n} \qquad f_4: \mathbb{R}^{n \times m} \to \mathbb{R}, \quad X \mapsto a^t X b \quad \text{for } a, b \in \mathbb{R}^n$$

b) Prove that the function $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, X \mapsto X^2$ is differentiable and that the Jacobian matrix Df(X) at $X \in \mathbb{R}^{n \times n}$ satisfies

$$Df(X)(H) = HX + XH$$
 for $H \in \mathbb{R}^{n \times n}$

Hint: By definition, $Df(X): \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is given via $(Df(X)(H))_{i,j} = \sum_{k,l=1}^{n} \partial_{X_{k,l}} f_{i,j}(X) H_{k,l}$ for $i, j \in \{1, \ldots, n\}$ and $H \in \mathbb{R}^{n \times n}$.

c) Consider the function $g: \mathbb{R}^2 \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}, (x, y, z) \mapsto \frac{\cos(xy)}{z^2}$. Compute the directional derivative of g at $\xi = (1, \pi/2, -3)$ in the direction v = (1, 2, 3). What is the direction of steepest descent (the direction for which the directional derivative attains its smallest value) at ξ ?

Exercise 3 (Extremal points, 2+1+2 points). Consider the function $f \colon \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^3 + 1/3y^3 - 12x - y$.

- a) Compute the set of critical points for f and classify them into local minima, local maxima, or saddle point.
- b) Does f have a global minimum or global maximum?
- c) Consider the function $g: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto \alpha x^2 e^y + y^2 e^z + z^2 e^x$ with $\alpha \in \mathbb{R}$. For which values of α is (0, 0, 0) a local minimum, local maximum, or saddle point?

Bonus exercise (More measure theory, 2+3 points). Consider a measure space (X, \mathcal{F}) , where $\mathcal{F} = \sigma(\mathcal{E})$ is generated by $\mathcal{E} \subseteq \mathcal{P}(X)$. To show that all elements in \mathcal{F} have a property E, we can use the following principle: first, we show that the collection $\mathcal{G} = \{A \subset X \mid A \text{ has property } E\}$ of sets with property E is a σ -algebra. Next, we show that it contains the generator \mathcal{E} , that is, $\mathcal{E} \subseteq \mathcal{G}$.

- a) Argue how the above (\mathcal{G} is a σ -algebra with $\mathcal{E} \subseteq \mathcal{G}$) can be used to conclude that all elements in \mathcal{F} have property E.
- b) Consider a map $f: (X, \mathcal{A}) \to (Y, \mathcal{B})$ between two measurable spaces, where $\mathcal{B} = \sigma(\mathcal{E})$ for a collection of subsets $\mathcal{E} \subseteq \mathcal{P}(Y)$. Use the above principle to prove that f is measurable if and only if $f^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{E}$.