Assignment 6
 Mathematics for Machine Learning

Submission due on $14.12 .20,8: 00$

Justify all your claims.
Exercise 1 (Continuous functions, $2+2$ points).
a) Consider the normed spaces $\left(L_{p}([0,1]),\|\cdot\|_{p}\right)$ and $\left(\mathbb{R}^{n},\|\cdot\|_{q}\right)$ with $n \in \mathbb{N}$ and $p, q \in[1, \infty]$, where $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$ for $f \in L_{\infty}([0,1])$. Let $\left[\delta_{x}\right] \in L_{p}([0,1])$ be the equivalence class of the indicator function $\delta_{x}(y)=\left\{\begin{array}{ll}1, & \text { if } x=y \\ 0, & \text { else }\end{array}\right.$ for $y \in[0,1]$. Prove whether the following functions are continuous:

$$
\begin{aligned}
& f:\left(\mathbb{R}^{3},\|\cdot\|_{2}\right) \rightarrow\left(\mathbb{R}^{2},\|\cdot\|_{1}\right), \quad(x, y, z) \mapsto\left(x+2 y, z^{2}\right) \\
& g:\left(\mathbb{R},\|\cdot\|_{1}\right) \rightarrow\left(\mathbb{R},\|\cdot\|_{1}\right), \quad x \mapsto \operatorname{sgn}(x)= \begin{cases}1, & \text { if } x>0 \\
0, & \text { if } x=0 \\
-1, & \text { otherwise }\end{cases} \\
& h_{1}:\left([0,1],\|\cdot\|_{q}\right) \rightarrow\left(L_{p}([0,1]),\|\cdot\|_{p}\right), \quad x \mapsto\left[\delta_{x}\right] \quad \text { with } q \in[1, \infty] \text { and } p \in[1, \infty) \\
& h_{2}:\left([0,1],\|\cdot\|_{q}\right) \rightarrow\left(L_{\infty}([0,1]),\|\cdot\|_{\infty}\right), \quad x \mapsto\left[\delta_{x}\right] \quad \text { with } q \in[1, \infty]
\end{aligned}
$$

b) Let $(V,\|\cdot\|)$ be a normed vector space and $\|\cdot\|_{a},\|\cdot\|_{b}$ two norms on \mathbb{R}^{n} with $n \in \mathbb{N}$. Prove that every continuous map $f:(V,\|\cdot\|) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|_{a}\right)$ is also continuous when the norm on \mathbb{R}^{n} is replaced by $\|\cdot\|_{b}$.

Exercise 2 (Supremum and infimum, $1+1+2$ points).
a) Compute the liminf and limsup of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ with $x_{n}=(-1)^{n}(1+1 / n)$.

Consider two sets $A \subseteq B \subset \mathbb{R}$.
b) Prove that $\inf A \geq \inf B$ and $\sup A \leq \sup B$.
c) Prove that $\inf A=-\sup (-A)$, where $-A=\{-a \in A\}$.

Exercise 3 (Uniform convergence, $2+1+1+2$ points).
a) Prove whether the following sequences of functions converge pointwise. If they do state the limit and prove whether they converge uniformly.

$$
\begin{aligned}
& \left(f_{n}\right)_{n \in \mathbb{N}} \quad \text { with } \quad f_{n}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \frac{1}{n} \sin (n x) \\
& \left(g_{n}\right)_{n \in \mathbb{N}} \quad \text { with } \quad g_{n}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto x+\frac{x}{n} \cos (x)
\end{aligned}
$$

b) Consider a sequence of functions $f_{n}: \mathcal{D} \rightarrow \mathbb{R}$ on a finite set \mathcal{D} that converges pointwise to a function $f: \mathcal{D} \rightarrow \mathbb{R}$. Prove that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f.

Consider a sequence of functions $f_{n}:[a, b] \rightarrow \mathbb{R}$, which are all Lipschitz continuous with the same Lipschitz constant $L>0$. Assume that this sequence converges pointwise to $f:[a, b] \rightarrow \mathbb{R}$, where $a, b \in \mathbb{R}$ and $a<b$.
c) Prove that f is also Lipschitz continuous with Lipschitz constant L.
d) Prove that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f.

Hint: For an $\varepsilon>0$ consider the set \mathcal{D} of points $a, a+\varepsilon, a+2 \varepsilon, \ldots$ up to b. Then let $\lfloor x\rfloor:=\max \{y \in \mathcal{D} \mid y \leq x\}$ and use the equality

$$
f_{n}(x)-f(x)=f_{n}(x)-f_{n}(\lfloor x\rfloor)+f_{n}(\lfloor x\rfloor)-f(\lfloor x\rfloor)+f(\lfloor x\rfloor)-f(x)
$$

Exercise 4 (Power and Taylor series, $2+2+2$ points).
a) Determine the convergence radius of the following power series:

$$
\sum_{j=1}^{\infty} \frac{j^{2}}{2^{j}} x^{j} \quad \text { and } \quad \sum_{j=1}^{\infty} 3^{j} x^{j^{2}}
$$

b) Compute the Taylor series of $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}, x \mapsto e^{\pi-x} \sin x$ in $a=\pi$ up to degree $n=$ 3 with the Lagrange remainder. Find an upper bound for the remainder by bounding $\sup _{\xi \geq 0} f^{(4)}(\xi)$ with a constant.
c) Prove that f from part b) is equal to its Taylor series, that is, $f(x)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} T_{k}(x, \pi)$ for all $x \in \mathbb{R}_{\geq 0}$.
Hint: What is the connection between f and $f^{(4)}$?

