Assignment 5
 Mathematics for Machine Learning

Submission due on 07.12.20, 8:00

Justify all your claims.
Exercise 1 (Positive (semi-)definite matrices, $3+2+3$ points).
a) Are the following matrices positive semi-definite? Are they positive definite?

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
4 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right) \\
B & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \cdot\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \quad \text { for } \theta \in \mathbb{R} \\
C & =\left(\begin{array}{ccc}
2 & 4 & 1 \\
0 & -3 & 1 \\
0 \\
0 & 0 & 12 \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
4 & -3 & 0 & 0 \\
1 & 1 & 12 & 0 \\
0 & -7 & 3 & 1
\end{array}\right)
\end{aligned}
$$

b) Let $A \in \mathbb{C}^{n \times n}$ be hermitian and positive (semi-)definite. Prove that A^{k} is symmetric and positive (semi-)definite as well.
c) Consider a symmetric and positive semi-definite matrix $A \in \mathbb{R}^{n \times n}$. Assume additionally that there exists no vector $x \in \mathbb{R}^{n} \backslash\{0\}$ which satisfies $x^{t} A y=0$ for all $y \in \mathbb{R}^{n}$. Prove that A is positive definite.

Exercise 2 (Singular value decomposition, $2+1+2+2$ points).
a) Compute the singular values of $A=\left(\begin{array}{cc}-\frac{1}{2} & \frac{3 \sqrt{3}}{2} \\ 0 & 0 \\ \frac{3 \sqrt{3}}{2} & \frac{3}{2}\end{array}\right) \in \mathbb{R}^{3 \times 2}$.

Hint: Proceed as in the proof sketch for the proposition about the SVD in lecture 29 (Singular value decomposition).
b) Prove that $A \in \mathbb{R}^{m \times n}$ and $A^{t} \in \mathbb{R}^{n \times m}$ have the same singular values.
c) Prove that the Frobenius norm defined by $\|A\|_{F}=\sqrt{\operatorname{tr}\left(A^{t} A\right)}$ can be computed as $\|A\|_{F}=$ $\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}}$, where σ_{i} are the singular values of $A \in \mathbb{R}^{m \times n}$.
d) Consider a matrix $A \in \mathbb{R}^{m \times n}$ with singular value decomposition $A=U \Sigma V^{t}$, where $U \in$ $\mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ are orthonormal and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal. The lecture stated that the matrix $A^{\#}=V \Sigma^{\#} U^{t}$ is a pseudo-inverse of A, where $\Sigma^{\#} \in \mathbb{R}^{n \times n}$ is obtained from Σ by transposing and inverting every non-zero element. Prove this statement.

Exercise 3 (Spectral clustering, $1+1+1+2$ points). Let $W \in \mathbb{R}^{n \times n}$ be a symmetric matrix with non-negative entries and $D \in \mathbb{R}^{n \times n}$ the diagonal matrix which contains the row sums of W, that is, $d_{i, i}=\sum_{j=1}^{n} w_{i, j}$. Define $L:=D-W$.
a) Prove that for all $x \in \mathbb{R}^{n}$ it holds

$$
x^{t} L x=\frac{1}{2} \sum_{i, j=1}^{n} w_{i, j}\left(x_{i}-x_{j}\right)^{2} .
$$

b) Conclude that L is symmetric and positive semi-definite.
c) Show that the vector of constant ones $\mathbb{1}=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right) \in \mathbb{R}^{n}$ is an eigenvector of L.
d) Solve the constrained minimization problem

$$
\min _{\substack{x \in \mathbb{R}^{n} \\\|x\|=1}} x^{t} L x \quad \text { subject to }\langle x, \mathbb{1}\rangle=0 .
$$

