Assignment 4
 Mathematics for Machine Learning

Submission due on 30.11.20, 8:00

Justify all your claims.
Exercise 1 (Scalar product, $2+2+2$ points). Prove that the following functions $\langle\cdot, \cdot\rangle: V \times$ $V \rightarrow \mathbb{R}$ define a scalar product.
a) $V=\mathbb{C}^{n}$ with $\langle x, y\rangle=\sum_{j=1}^{n} x_{j} \bar{y}_{j}$ for $x, y \in \mathbb{C}^{n}$.
b) $V=\mathbb{R}^{n \times n}$ with $\langle A, B\rangle=\operatorname{tr}\left(A^{t} B\right)$ for $A, B \in \mathbb{R}^{n \times n}$.

Let $\left(V,\langle\cdot, \cdot\rangle_{0}\right)$ be a scalar product space over \mathbb{R} and define $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R},(v, w) \mapsto\langle v, w\rangle=$ $\langle S v, S w\rangle_{0}$ for an $S \in \mathcal{L}(V)$.
c) Prove that $\langle\cdot, \cdot\rangle$ is a scalar product if and only if S is injective.

Exercise 2 (Scalar products and norms, $2+2+1$ points). Consider a normed vector space $(V,\|\cdot\|)$. The parallelogram equality states that the norm is given by a scalar product $\langle\cdot, \cdot\rangle: V \times$ $V \rightarrow \mathbb{R}$ via $\|v\|=\sqrt{\langle v, v\rangle}$ if and only if for all $v, w \in V$ it holds that

$$
\begin{equation*}
\|v+w\|^{2}+\|v-w\|^{2}=2\left(\|v\|^{2}+\|w\|^{2}\right) \tag{1}
\end{equation*}
$$

a) Prove the forward implication. That is, prove that Eq. (1) holds if the norm is given by a scalar product.
b) Let $p>0$. Prove that there is a scalar product on \mathbb{R}^{2} such that the associated norm is given by

$$
\|x\|=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{1 / p}
$$

for all $x \in \mathbb{R}^{2}$ if and only if $p=2$.
c) Let $(V,\|\cdot\|)$ be a normed vector space, where the norm is given by a scalar product. Prove the Pythagorean theorem $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$ for all orthogonal $u, v \in V$.

Exercise 3 (Cauchy-Schwarz inequality, $2+1+1$ points). Let $(V,\langle\cdot, \cdot\rangle)$ be a scalar product space. The Cauchy-Schwarz inequality states that all $u, v \in V$ satisfy

$$
|\langle u, v\rangle| \leq\|u\|\|v\|
$$

a) Prove that $16 \leq(a+b+c+d)(1 / a+1 / b+1 / c+1 / d)$ for all $a, b, c, d>0$.
b) Prove that $\left(x_{1}+\cdots+x_{n}\right)^{2} \leq n\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$ for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}$.
c) Prove that for continuous real-valued functions f, g on $[a, b] \subseteq \mathbb{R}$ with $a<b$ it holds that $\left|\int_{a}^{b} f(x) g(x) d x\right|^{2} \leq\left(\int_{a}^{b} f(x)^{2} d x\right)\left(\int_{a}^{b} g(x)^{2} d x\right)$.

Exercise 4 (Gram-Schmidt orthonormalization, $3+2$ points). The Gram-Schmidt orthonormalization takes any basis v_{1}, \ldots, v_{n} of a scalar product space $(V,\langle\cdot, \cdot\rangle)$ and outputs an orthonormal basis u_{1}, \ldots, u_{n}. It starts with $u_{1}=v_{1} /\left\|v_{1}\right\|$ and then iteratively applies the update

$$
\begin{aligned}
& u_{k+1}^{\prime}=v_{k+1}-P_{U_{k}}\left(v_{k+1}\right)=v_{k+1}-\sum_{i=1}^{k}\left\langle v_{k+1}, u_{i}\right\rangle u_{i} \\
& u_{k+1}=\frac{u_{k+1}^{\prime}}{\left\|u_{k+1}^{\prime}\right\|},
\end{aligned}
$$

for $k=1, \ldots, n-1$, where $U_{k}=\operatorname{span}\left(u_{1}, \ldots, u_{k}\right)$.
a) Consider the subspace $V=\operatorname{span}\left(1, x, x^{2}, x^{3}\right) \subseteq \mathbb{R}^{\mathbb{R}}$ of polynomials with degree ≤ 3 with the scalar product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$ for $f, g \in V$. Apply Gram-Schmidt to the basis $1, x, x^{2}, x^{3}$ in order to compute an orthonormal basis of V.
Hint: You may use a computer to compute any integrals. To check whether your solution is correct simply verify whether your basis is orthonormal.
b) What happens if the procedure is applied to a list of vectors $\left(v_{1}, \ldots, v_{m}\right)$ that is not linearly independent?

