Assignment 2
 Mathematics for Machine Learning

Submission due on 16.11.20, 8:00

Exercise 1 (Eigenvalues and eigenspaces, $2+1+2+1$ points). Consider the matrices

$$
A=\left(\begin{array}{ccc}
-8 & 2 & 16 \\
0 & -2 & 0 \\
-3 & 1 & 6
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \text { and } \quad C=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

a) Compute the characteristic polynomials p_{A}, p_{B}, and p_{C}.
b) Compute the eigenvalues of A, B, and C over \mathbb{R}.
c) For every matrix and eigenvalue, give a basis of the corresponding eigenspace.
d) What are the algebraic and geometric multiplicities of the eigenvalues?

Exercise 2 (Matrices I, $1+1+1+1$ points). Consider the differentiation operator $D=\mathrm{d} / \mathrm{d} t: \mathbb{R}^{\mathbb{R}} \rightarrow$ $\mathbb{R}^{\mathbb{R}}, f \mapsto f^{\prime}$ on the vector space $\mathbb{R}^{\mathbb{R}}$ of all real functions. In the following cases we give bases \mathcal{W} with corresponding subspaces $\mathcal{U}=\operatorname{span}(\mathcal{W})$, such that D restricted to \mathcal{U} describes a linear map $\left.D\right|_{\mathcal{U}}: \mathcal{U} \rightarrow \mathcal{U}$. Note that range $\left(\left.D\right|_{\mathcal{U}}\right) \subseteq \mathcal{U}$ is an additional statement and does not hold for general \mathcal{U}. State the matrix $\mathcal{M}(D \mid \mathcal{U})$ with respect to the corresponding basis \mathcal{W} in each of the cases.
a) $\mathcal{W}=\left(e^{t}, e^{2 t}\right)$
b) $\mathcal{W}=\left(1, t, t^{2}, t^{3}, t^{4}\right)$
c) $\mathcal{W}=\left(e^{t}, t e^{t}\right)$
d) $\mathcal{W}=(\sin t, \cos t)$

Exercise 3 (Matrices II, $1+2+2$ points).
a) Give an example for a 2 -by-2 matrix A with $A \neq 0$, but $A^{2}=0$.
b) Consider two square matrices $A, B \in \mathbb{R}^{n \times n}$ with $A \cdot B=I$. Prove that $B \cdot A=I$
c) Consider a matrix $A \in \mathbb{R}^{n \times n}$ with $A^{2}=0$. Show that $A-I$ is invertible.

Exercise 4 (Eigenvalues I, $2+3$ points).
a) Let $A \in \mathbb{R}^{n \times n}$ with $A^{k}=0$ for some $k \in \mathbb{N}$. Prove that if λ is an eigenvalue of A, then $\lambda=0$.
b) Let V be a finite-dimensional vector space and $T: V \rightarrow V$ a linear map such that every $v \in V$ with $v \neq 0$ is an eigenvector of T. Prove that $T=\lambda \operatorname{Id}$ for some $\lambda \in \mathbb{R}$.

Bonus exercise (Eigenvalues II, $3+1$ points). Consider a matrix $A \in \mathbb{R}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{R}$.
a) Consider a polynomial $p(x)=\sum_{k=0}^{K} c_{k} x^{k}$ with $c_{i} \in \mathbb{R}$. Show that $p(\lambda)=\sum_{k=0}^{K} c_{k} \lambda^{k}$ is an eigenvalue of $p(A)=\sum_{k=0}^{K} c_{k} A^{k}$, where $A^{0}=I$.
b) Assume that A is invertible and $\lambda \neq 0$. Show that $1 / \lambda$ is an eigenvalue of A^{-1}.

