Assignment 1
 Mathematics for Machine Learning

Submission due on 09.11.20, 8:00

Exercise 1 (Groups and vector spaces, $6+2+1$ points).
a) Decide whether the following statements are true. Justify your answer formally.
i) (\mathbb{R}, \square) is a group, wheredenotes the mean between two elements, that is, $x \square y=$ $(x+y) / 2$ for $x, y \in \mathbb{R}$.
ii) The set of functions $\mathcal{F}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ is a vector space over \mathbb{R} with addition $(f+$ $g)(x)=f(x)+g(x)$ and scalar multiplication $(\lambda f)(x)=\lambda f(x)$ for $x, \lambda \in \mathbb{R}, f, g \in \mathcal{F}$.
iii) The empty set $V=\emptyset$ is a vector space over \mathbb{R}.
iv) For any finite set X, the power set $\mathcal{P}(X)=\{A \mid A \subseteq X\}$ is a group with the symmetric difference \triangle, that is, $A \triangle B=(A \backslash B) \cup(B \backslash A)$ for $A, B \in \mathcal{P}(X)$.
Hint: You may use a Venn diagram (a visualization of three sets drawn as circles, which shows all possible intersections) to reason about equations.
b) Let (G, \circ) be a group. Prove that the neutral element and inverse elements are unique.
c) Let (G, \circ) be a group with neutral element $e \in G$ such that $x \circ x=e$ for all $x \in G$. Prove that G is commutative.

Exercise 2 (Subspaces and dimension, $3+2$ points). Let U_{1}, \ldots, U_{m} be subspaces of a finite-dimensional vector space.
a) Assume that $U_{1}+\cdots+U_{m}$ is a direct sum. Prove that $U_{1} \oplus \cdots \oplus U_{m}$ is finite-dimensional and that

$$
\begin{equation*}
\operatorname{dim} U_{1} \oplus \cdots \oplus U_{m}=\operatorname{dim} U_{1}+\cdots+\operatorname{dim} U_{m} \tag{1}
\end{equation*}
$$

b) It holds that $\operatorname{dim}\left(U_{1}+U_{2}\right)=\operatorname{dim} U_{1}+\operatorname{dim} U_{2}-\operatorname{dim}\left(U_{1} \cap U_{2}\right)$. Similar to the inclusionexclusion principle, which states that for three sets A, B, C it holds

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|,
$$

one might guess that

$$
\begin{align*}
\operatorname{dim}\left(U_{1}+U_{2}+U_{3}\right) & =\operatorname{dim} U_{1}+\operatorname{dim} U_{2}+\operatorname{dim} U_{3} \\
& -\operatorname{dim}\left(U_{1} \cap U_{2}\right)-\operatorname{dim}\left(U_{1} \cap U_{3}\right)-\operatorname{dim}\left(U_{2} \cap U_{3}\right) \tag{2}\\
& +\operatorname{dim}\left(U_{1} \cap U_{2} \cap U_{3}\right)
\end{align*}
$$

Prove Eq. (2) or give a counterexample.
Exercise 3 (Linear maps, $2+2+2$ points).
a) Give an example of a linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that range $T=\operatorname{ker} T$.
b) Prove that there does not exist a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ such that range $T=\operatorname{ker} T$.
c) Suppose U is a subspace of V with $U \neq V$, and let $S: \mathcal{L}(U, W)$ be a linear map to another vector space W, such that $S \neq 0$ (there exists an element $u \in U$ with $S u \neq 0$). Define $T: V \rightarrow W$ by extending S with zeros, that is,

$$
T v= \begin{cases}S v & \text { if } v \in U \\ 0 & \text { if } v \in V \backslash U .\end{cases}
$$

Prove that T is not a linear map on V.

