Übungsblatt 3

Abgabe am 05.11.2018

Aufgabe 1: Stacks und Queues (3+4 Punkte)

Angenommen Sie möchten eine Queue-Datenstruktur mit den üblichen Funktionen $Enqueue(\cdot)$ und $Dequeue(\cdot)$ bereitstellen, wozu Ihnen "intern" allerdings nur *genau 2 Stacks* zur Verfügung stehen (also keine Arrays, Listen, oder anderes).

- a) Beschreiben Sie eine Implementierung der Queue (in Worten und in Pseudocode), die nur die beiden Stacks benutzt. Was können Sie über die worst-case-Laufzeit für eine ENQUEUE(·)- bzw. DEQUEUE(·)-Operation sagen?
- b) Nun wollten wir eine Methode betrachten, mit der man die Laufzeit mehrerer Operationen gemeinsam betrachtet:
 - Betrachten Sie eine beliebige Folge von insgesamt n_E ENQUEUE(·) und insgesamt n_D DEQUEUE(·)-Operationen mit $n_E + n_D = n$.
 - \bullet Berechnen Sie die worst-case-Laufzeit T_n für diese Folge von Operationen in Abhängigkeit von der Anzahl der Operationen n.
 - Dann heißt T_n/n die amortisierte Laufzeit dieser Operationen.

Falls nicht bereits geschehen, finden Sie eine Implementierung einer Queue, die wie oben nur zwei Stacks benutzt und amortisierte Laufzeit $\mathcal{O}(1)$ hat. Begründen Sie Ihre Antwort. Tipp: Betrachten Sie, welche Stack-Operationen ein Element v im schlimmsten Fall mit ENQUEUE(·)-bzw. DEQUEUE(·) durchläuft.

Aufgabe 2: k-närer Heap (2+2+2+1+2 Punkte)

In dieser Aufgabe benötige die Heapify-Operation an der Wurzel eines Array-basierten k-nären Heaps mit n Elementen im worst-case $\lceil k \log_k(n) \rceil$ Schritte. Dabei sind auf jedem seiner $\lceil \log_k(n) \rceil$ vielen Level zusätzlich k Schritte zum Finden (und ggf. Vertauschen) des Maximums der k Kinder des aktuellen Knotens bereits berücksichtigt. Welche Wahl von $k \in \mathbb{N}$ minimiert diesen Ausdruck? Diese Frage wollen wir in dieser Aufgabe beantworten.

- a) Bestimmen Sie zunächst das Minimum der Funktion $f(x) = x \log_x(n)$ auf dem Definitionsbereich $\mathbb{R}_{>1}$ für festes, aber beliebiges n. Tipp: Kurvendiskussion schreiben Sie dazu mittels Basiswechsel $x \log_x(n) = x \cdot \log_e(n) / \log_e(x)$.
- b) Nutzen Sie einen Plot von f(x) aus (a) oder die Einsichten aus (a), um die beste Wahl $k^* \in \mathbb{N}$ zu ermitteln. Wie viele Schritte benötigt diese im worst-case bei Heap-Größe $n=10^\ell$ für $\ell \in \{1,\ldots,9\}$? Vergleichen Sie dies mit dem Fall k=2.
- c) Wie wirkt es sich auf die Gesamtlaufzeit von HEAPIFY aus, wenn jeder Knoten seine (bis zu k vielen) Kinder in einem separaten binären Max-Heap verwaltet? Bestimmen Sie hierfür insbesondere die notwendige Anzahl Schritte zum Finden (und. ggf. Austauschen) des Maximums der k Kinder des aktuellen Knotens.
- d) Führen Sie auf dem binären Heap $B = \boxed{9 \ | \ 8 \ | \ 6 \ | \ 7 \ | \ 3 \ | \ 5 \ | \ 2}$ und dem ternären Heap $T = \boxed{9 \ | \ 7 \ | \ 5 \ | \ 8 \ | \ 3 \ | \ 6 \ | \ 2}$ jeweils die Operation Decrease $(9 \mapsto 1)$ aus. Wie viele Vertauschungen wurden jeweils durchgeführt?
- e) Wir bezeichnen ein Array A mit paarweise unterschiedlichen Einträgen als 2/3-kompatibel, wenn sowohl der jeweils per Level-Order definierte binäre Heap H_2 als auch der ternäre Heap H_3 beide die Max-Heap-Eigenschaft erfüllen. Überdenken Sie folgende Aussage: "Für alle 2/3-kompatiblen Arrays gilt: In H_3 benötigt keine Decrease-Operation auf der Wurzel mehr Vertauschungen als dieselbe Decrease-Operation auf der Wurzel in H_2 ". Stimmt das? Beweisen oder widerlegen Sie!

Aufgabe 3: Hashing (1+1+1+1) Punkte

Sei $\mathbb{N}:=\{0,1,2,\ldots\}$. Wir schreiben $a\mathbb{N}+b:=\{a\cdot t+b\mid t\in\mathbb{N}\}$ für $a,b\in\mathbb{N}$, beispielsweise $5\mathbb{N}+2=\{2,7,12,17,\ldots\}$. Geben Sie in dieser Schreibweise jeweils die Menge aller Keys k an (inkl. Begründung), die auf der letzten Position (Index 10) in einer Hashtabelle der Größe 11 kollidieren, wenn folgende Hashfunktionen verwendet werden:

(a)
$$h(k) = k \mod 11$$

(c)
$$h(k) = (k^2 + 10) \mod 11$$

(b)
$$h(k) = 2k \mod 11$$

(d)
$$h(k) = (3^k - 1) \mod 11$$

Tipp: Für (c) und (d) rufen Sie sich die Bedeutung der Primfaktorzerlegung einer natürlichen Zahl in Erinnerung, insbesondere wenn sie quadriert wird.